首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naturally arising CD4+CD25+ regulatory T (T(R)) cells have been shown to prevent and cure murine T cell-mediated colitis. However, their exact mechanism of controlling colitogenic memory CD4+ T cells in in vivo systems excluding the initial process of naive T cell activation and differentiation has not been examined to date. Using the colitogenic effector memory (T(EM)) CD4+ cell-mediated colitis model induced by adoptive transfer of colitogenic CD4+CD44(high)CD62L(-) lamina propria (LP) T cells obtained from colitic CD4+CD45RB(high) T cell-transferred mice, we have shown in the present study that CD4+CD25+ T(R) cells are able not only to suppress the development of colitis, Th1 cytokine production, and the expansion of colitogenic LP CD4+ T(EM) cells but also to expand these cells by themselves extensively in vivo. An in vitro coculture assay revealed that CD4+CD25+ T(R) cells proliferated in the presence of IL-2-producing colitogenic LP CD4+ T(EM) cells at the early time point (48 h after culture), followed by the acquisition of suppressive activity at the late time point (96 h after culture). Collectively, these data suggest the distinct timing of the IL-2-dependent expansion of CD4+CD25+ T(R) cells and the their suppressive activity on colitogenic LP CD4+ T(EM) cells.  相似文献   

2.
A function for IL-7R for CD4+CD25+Foxp3+ T regulatory cells   总被引:1,自引:0,他引:1  
The IL-2/IL-2R interaction is important for development and peripheral homeostasis of T regulatory (Treg) cells. IL-2- and IL-2R-deficient mice are not completely devoid of Foxp3+ cells, but rather lack population of mature CD4+CD25+Foxp3high Treg cells and contain few immature CD4+CD25-Foxp3low T cells. Interestingly, common gamma chain (gammac) knockout mice have been shown to have a near complete absence of Foxp3+ Treg cells, including the immature CD25-Foxp3low subset. Therefore, other gammac-cytokine(s) must be critically important during thymic development of CD4+CD25+Foxp3+ Treg cells apart from the IL-2. The present study was undertaken to determine whether the gammac-cytokines IL-7 or IL-15 normally contribute to expression of Foxp3 and Treg cell production. These studies revealed that mice double deficient in IL-2Rbeta and IL-7Ralpha contained a striking lack in the CD4+Foxp3+ population and the Treg cell defect recapitulated the gammac knockout mice. In the absence of IL-7R signaling, IL-15/IL-15R interaction is dispensable for the production of CD4+CD25+Foxp3+ Treg cells, indicating that normal thymic Treg cell production likely depends on signaling through both IL-2 and IL-7 receptors. Selective thymic reconstitution of IL-2Rbeta in mice double deficient in IL-2Rbeta and IL-7Ralpha established that IL-2Rbeta is dominant and sufficient to restore production of Treg cells. Furthermore, the survival of peripheral CD4+Foxp3low cells in IL-2Rbeta-/- mice appears to depend upon IL-7R signaling. Collectively, these data indicate that IL-7R signaling contributes to Treg cell development and peripheral homeostasis.  相似文献   

3.
Immune regulation of autoimmune disease can function at two sites: at the secondary lymphoid organs or in the target organ itself. In this study, we investigated the natural resolution of autoimmune pathology within the CNS using murine experimental autoimmune encephalomyelitis (EAE). Recovery correlates with the accumulation of IL-10-producing CD4+CD25+ T cells within the CNS. These CD4+CD25+ cells represent as many as one in three of CD4+ cells in the CNS during recovery, they are FoxP3+ and express other markers associated with regulatory cells (CTLA-4, GITR, and alpha(E)beta7), and they have regulatory function ex vivo. Depletion of CD25+ cells inhibits the natural recovery from EAE. Also, depletion of CD25+ cells after recovery removes the resistance to reinduction of EAE observed in this model. Furthermore, passive transfer of CNS-derived CD4+CD25+ cells in low numbers provides protection from EAE in recipient mice. These are the first data demonstrating the direct involvement of CD4+CD25+ regulatory T cells in the natural resolution of autoimmune disease within the target organ.  相似文献   

4.
CD4+CD25+Foxp3+ regulatory T cells (Tregs) contribute to the maintenance of peripheral tolerance by inhibiting the expansion and function of conventional T cells. Treg development and homeostasis are regulated by the Ag receptor, costimulatory receptors such as CD28 and CTLA-4, and cytokines such as IL-2, IL-10, and TGF-beta. Here we show that the proportions of Tregs in the spleen and lymph nodes of mice with inactive p110delta PI3K (p110deltaD910A/D910A) are reduced despite enhanced Treg selection in the thymus. p110deltaD910A/D910A CD4+CD25+Foxp3+ Tregs showed attenuated suppressor function in vitro and failed to secrete IL-10. In adoptive transfer experiments, p110deltaD910A/D910A T cells failed to protect against experimental colitis. The identification of p110delta as an intracellular signaling protein that regulates the activity of CD4+CD25+Foxp3+ Tregs may facilitate the further elucidation of the molecular mechanisms responsible for Treg-mediated suppression.  相似文献   

5.
Regulatory CD4(+)CD25(+)Foxp3(+) T cells play a critical role in controlling autoimmunity and T cell homeostasis. However, their role in regulation of lymphopenia-induced proliferation (LIP), a potential mechanism for generation of autoaggressive T cells, has been poorly defined. Currently, two forms of LIP are recognized: spontaneous and homeostatic. Spontaneous LIP is characterized by fast, burst-like cell-cycle activity, and may allow effector T cell differentiation. Homeostatic LIP is characterized by slow and steady cell cycle activity and is not associated with the acquisition of an effector phenotype. In this study, we demonstrate that CD4(+)CD25(+)Foxp3(+) T cells suppress the spontaneous, but not homeostatic, LIP of naive CD8 and CD4 T cells. However, selective inhibition of spontaneous LIP does not fully explain the tolerogenic role of Tregs in lymphopenia-associated autoimmunity. We show here that suppression of LIP in the lymphoid tissues is independent of Treg-derived IL-10. However, IL-10-deficient Tregs are partially defective in their ability to prevent colitis caused by adoptive transfer of CD4 T cells into RAG(-/-) mice. We propose that Tregs may inhibit emergence of effector T cells during the inductive phase of the immune response in the secondary lymphoid tissues by IL-10-independent mechanisms. In contrast, Treg-mediated inhibition of established effector T cells does require IL-10. Both Treg functions appear to be important in control of lymphopenia-associated autoimmunity.  相似文献   

6.
IL-10 is an immunoregulatory cytokine expressed by numerous cell types. Studies in mice confirm that different IL-10-expressing cell subsets contribute differentially to disease phenotypes. However, little is known about the relationship between cell- or tissue-specific IL-10 expression and disease susceptibility in humans. In this study, we used the previously described human (h)IL10BAC transgenic model to examine the role of hIL-10 in maintaining intestinal homeostasis. Genomically controlled hIL-10 expression rescued Il10(-/-) mice from Helicobacter-induced colitis and was associated with control of proinflammatory cytokine expression and Th17 cell accumulation in gut tissues. Resistance to colitis was associated with an accumulation of hIL-10-expressing CD4(+)Foxp3(+) regulatory T cells specifically within the lamina propria but not other secondary lymphoid tissues. Cotransfer of CD4(+)CD45RB(lo) cells from Il10(-/-)/hIL10BAC mice rescued Rag1(-/-) mice from colitis, further suggesting that CD4(+) T cells represent a protective source of hIL-10 in the colon. In concordance with an enhanced capacity to express IL-10, CD4(+)CD44(+) T cells isolated from the lamina propria exhibited lower levels of the repressive histone mark H3K27Me3 and higher levels of the permissive histone mark acetylated histone H3 in both the human and mouse IL10 locus compared with the spleen. These results provide experimental evidence verifying the importance of T cell-derived hIL-10 expression in controlling inflammation within the colonic mucosa. We also provide molecular evidence suggesting the tissue microenvironment influences IL-10 expression patterns and chromatin structure in the human (and mouse) IL10 locus.  相似文献   

7.
Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells   总被引:36,自引:0,他引:36  
CD4(+)CD25(+) regulatory T cells have been shown to prevent T cell-mediated immune pathology; however, their ability to ameliorate established inflammation has not been tested. Using the CD4(+)CD45RB(high) T cell transfer model of inflammatory bowel disease, we show that CD4(+)CD25(+) but not CD4(+)CD25(-)CD45RB(low) T cells are able to cure intestinal inflammation. Transfer of CD4(+)CD25(+) T cells into mice with colitis led to resolution of the lamina propria infiltrate in the intestine and reappearance of normal intestinal architecture. CD4(+)CD25(+) T cells were found to proliferate in the mesenteric lymph nodes and inflamed colon. They were located between clusters of CD11c(+) cells and pathogenic T cells and found to be in contact with both cell types. These studies suggest that manipulation of CD4(+)CD25(+) T cells may be beneficial in the treatment of chronic inflammatory diseases.  相似文献   

8.
Inflammatory bowel disease (IBD), which is characterized by a dysregulated intestinal immune response, is postulated to be controlled by intestinal self-antigens and bacterial Ags. Fecal extracts called cecal bacterial Ag (CBA) have been implicated in the pathogenesis of IBD. In this study, we identified a major protein of CBA related to the pathogenesis of IBD and established a therapeutic approach using Ag-pulsed regulatory dendritic cells (Reg-DCs). Using two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry, carbonic anhydrase I (CA I) was identified as a major protein of CBA. Next, we induced colitis by transfer of CD4(+)CD25(-) T cells obtained from BALB/c mice into SCID mice. Mice were treated with CBA- or CA I-pulsed Reg-DCs (Reg-DCs(CBA) or Reg-DCs(CA1)), which expressed CD200 receptor 3 and produced high levels of IL-10. Treatment with Reg-DCs(CBA) and Reg-DCs(CA1) ameliorated colitis. This effect was shown to be Ag-specific based on no clinical response of irrelevant Ag (keyhole limpet hemocyanin)-pulsed Reg-DCs. Foxp3 mRNA expression was higher but RORγt mRNA expression was lower in the mesenteric lymph nodes (MLNs) of the Reg-DCs(CA1)-treated mice compared with those in the MLNs of control mice. In the MLNs, Reg-DCs(CA1)-treated mice had higher mRNA expression of IL-10 and TGF-β1 and lower IL-17 mRNA expression and protein production compared with those of control mice. In addition, Reg-DCs(CBA)-treated mice had higher Foxp3(+)CD4(+)CD25(+) and IL-10-producing regulatory T cell frequencies in MLNs. In conclusion, Reg-DCs(CA1) protected progression of colitis induced by CD4(+)CD25(-) T cell transfer in an Ag-specific manner by inducing the differentiation of regulatory T cells.  相似文献   

9.
10.
CD4(+)CD25(+) regulatory T cells in normal animals are engaged in the maintenance of immunological self-tolerance and prevention of autoimmune disease. However, accumulating evidence suggests that a fraction of the peripheral CD4(+)CD25(-) T cell population also possesses regulatory activity in vivo. Recently, it has been shown glucocorticoid-induced TNFR family-related gene (GITR) is predominantly expressed on CD4(+)CD25(+) regulatory T cells. In this study, we show evidence that CD4(+)GITR(+) T cells, regardless of the CD25 expression, regulate the mucosal immune responses and intestinal inflammation. SCID mice restored with the CD4(+)GITR(-) T cell population developed wasting disease and severe chronic colitis. Cotransfer of CD4(+)GITR(+) population prevented the development of CD4(+)CD45RB(high) T cell-transferred colitis. Administration of anti-GITR mAb-induced chronic colitis in mice restored both CD45RB(high) and CD45RB(low) CD4(+) T cells. Interestingly, both CD4(+)CD25(+) and CD4(+)CD25(-) GITR(+) T cells prevented wasting disease and colitis. Furthermore, in vitro studies revealed that CD4(+)CD25(-)GITR(+) T cells as well as CD4(+)CD25(+)GITR(+) T cells expressed CTLA-4 intracellularly, showed anergic, suppressed T cell proliferation, and produced IL-10 and TGF-beta. These data suggest that GITR can be used as a specific marker for regulatory T cells controlling mucosal inflammation and also as a target for treatment of inflammatory bowel disease.  相似文献   

11.
It is well known that immune responses in the intestine remain in a state of controlled inflammation, suggesting that not only does active suppression by regulatory T (T(REG)) cells play an important role in the normal intestinal homeostasis, but also that its dysregulation of immune response leads to the development of inflammatory bowel disease. In this study, we demonstrate that murine CD4(+)CD25(+) T cells residing in the intestinal lamina propria (LP) constitutively express CTLA-4, glucocorticoid-induced TNFR, and Foxp3 and suppress proliferation of responder CD4(+) T cells in vitro. Furthermore, cotransfer of intestinal LP CD4(+)CD25(+) T cells prevents the development of chronic colitis induced by adoptive transfer of CD4(+)CD45RB(high) T cells into SCID mice. When lymphotoxin (LT)alpha-deficient intercrossed Rag2 double knockout mice (LTalpha(-/-) x Rag2(-/-)), which lack mesenteric lymph nodes and Peyer's patches, are transferred with CD4(+)CD45RB(high) T cells, they develop severe wasting disease and chronic colitis despite the delayed kinetics as compared with the control LTalpha(+/+) x Rag2(-/-) mice transferred with CD4(+)CD45RB(high) T cells. Of note, when a mixture of splenic CD4(+)CD25(+) T(REG) cells and CD4(+)CD45RB(high) T cells are transferred into LTalpha(-/-) x Rag2(-/-) recipients, CD4(+)CD25(+) T(REG) cells migrate into the colon and prevent the development of colitis in LTalpha(-/-) x Rag2(-/-) recipients as well as in the control LTalpha(+/+) x Rag2(-/-) recipients. These results suggest that the intestinal LP harboring CD4(+)CD25(+) T(REG) cells contributes to the intestinal immune suppression.  相似文献   

12.
Oral administration of Ag coupled to cholera toxin B subunit (CTB) efficiently induces peripheral immunological tolerance. We investigated the extent to which this oral tolerance is mediated by CD25+CD4+ regulatory T cells (T(reg)). We found that total T(reg), KJ1-26+ T(reg) and CTLA-4+ T(reg) were all increased in Peyer's patches, mesenteric lymph nodes, and, to a lesser extent, in spleen of mice after intragastric administration of OVA/CTB conjugate, which also increased TGF-beta in serum. This could be abolished by co-administering cholera toxin or by treatment with anti-TGF-beta mAb. CD25+ T(reg), but also CD25-CD4+ T cells from OVA/CTB-treated BALB/c or DO11.10 mice efficiently suppressed effector T cell proliferation and IL-2 production in vitro. Following adoptive transfer, both T cell populations also suppressed OVA-specific T cell and delayed-type hypersensitivity responses in vivo. Foxp3 was strongly expressed by CD25+ T(reg) from OVA/CTB-treated mice, and treatment also markedly expanded CD25+Foxp3+ T(reg). Furthermore, in Rag1(-/-) mice that had adoptively received highly purified Foxp3-CD25-CD4+ OT-II T cells OVA/CTB feeding efficiently induced CD25+ T(reg) cells, which expressed Foxp3 more strongly than naturally developing T(reg) and also had stronger ability to suppress effector OT-II T cell proliferation. A remaining CD25- T cell population, which also became suppressive in response to OVA/CTB treatment, did not express Foxp3. Our results demonstrate that oral tolerance induced by CTB-conjugated Ag is associated with increase in TGF-beta and in both the frequency and suppressive capacity of Foxp3+ and CTLA-4+ CD25+ T(reg) together with the generation of both Foxp3+ and Foxp3-CD25- CD4+ T(reg).  相似文献   

13.
CD4+CD25high regulatory cells in human peripheral blood   总被引:90,自引:0,他引:90  
Thymectomy in mice on neonatal day 3 leads to the development of multiorgan autoimmune disease due to loss of a CD(+)CD25(+) T cell regulatory population in their peripheral lymphoid tissues. Here, we report the identification of a CD4(+) population of regulatory T cells in the circulation of humans expressing high levels of CD25 that exhibit in vitro characteristics identical with those of the CD4(+)CD25(+) regulatory cells isolated in mice. With TCR cross-linking, CD4(+)CD25(high) cells did not proliferate but instead totally inhibited proliferation and cytokine secretion by activated CD4(+)CD25(-) responder T cells in a contact-dependent manner. The CD4(+)CD25(high) regulatory T cells expressed high levels of CD45RO but not CD45RA, akin to the expression of CD45RB(low) on murine CD4(+)CD25(+) regulatory cells. Increasing the strength of signal by providing either costimulation with CD28 cross-linking or the addition of IL-2 to a maximal anti-CD3 stimulus resulted in a modest induction of proliferation and the loss of observable suppression in cocultures of CD4(+)CD25(high) regulatory cells and CD4(+)CD25(-) responder cells. Whereas higher ratios of CD4(+)CD25(high) T cells are required to suppress proliferation if the PD-L1 receptor is blocked, regulatory cell function is shown to persist in the absence of the PD-1/PD-L1 or CTLA-4/B7 pathway. Thus, regulatory CD4 T cells expressing high levels of the IL-2 receptor are present in humans, providing the opportunity to determine whether alterations of these populations of T cells are involved in the induction of human autoimmune disorders.  相似文献   

14.
CD4+CD25+调节性T细胞   总被引:13,自引:0,他引:13  
调节性T细胞(regulatory T cells,Treg)是机体维持自身耐受的重要组成部分。CD4^ CD25^ Treg细胞来源于胸腺,其主要功能是抑制自身反应性T细胞,并且其作用是通过直接的Treg-T效应细胞之间的相互接触方式来实现的。CD4^ CD25^ Treg细胞可分泌多种抑制性细胞因子,但与其抑制功能关系并不明确,目前有证据表明GITR和Foxp3与CD4^ CD25^ Treg细胞的抑制功能有关,并且Foxp3已作为CD4^ CD25^ Treg细胞的特异性标志。通过IL-10、TGF-β等抑制性细胞因子、imDC以及转基因技术可以产生具有免疫抑制功能的调节性T细胞。调节性T细胞在免疫相关性疾病、肿瘤免疫和抗感染免疫等方面具有重要意义。  相似文献   

15.
目的探讨双歧杆菌治疗溃疡性结肠炎与CD4+ CD25+ Foxp3+调节T细胞的相关可能机制。方法采用DSS制作UC小鼠结肠炎模型,随机分成3组:正常对照(NC)组,模型(MD)组,双歧杆菌治疗(BbT)组。造模7 d后,给予双歧杆菌后续治疗7 d。评估小鼠疾病活动指数(DAI),结肠行HE染色及病理学评分(HDS);流式细胞仪检测外周血和肠系膜淋巴细胞中表达CD4+ CD25+ Foxp3+的Treg细胞的百分比率。结果 BbT组的DAI明显低于模型组(P〈0.05);MD组HDS明显高于正常组(P〈0.05);BbT组的HDS明显低于模型组(P〈0.05);模型组外周血和肠系膜淋巴细胞CD4+ CD25+ Foxp3+Treg细胞占CD4+T细胞的百分率明显低于正常组(P〈0.05);BbT组结肠外周血和肠系膜淋巴细胞CD4+ CD25+ Foxp3+Treg细胞占CD4+T细胞的百分率明显高于模型组(P〈0.05)。结论双歧杆菌可以提高CD4+ CD25+ Foxp3+Treg数量,调节机体和肠道免疫功能,对UC发挥了一定的治疗作用。  相似文献   

16.
17.
CD4+CD25+Foxp3+ T cells (CD25+ T regulatory [Treg] cells) are a naturally occurring suppressor T-cell population that regulates a wide variety of immune responses. A major function of CD25+ Treg cells is to inhibit the activity of self-reactive T cells that can potentially cause autoimmune disease. This review examines the recent advances in CD25+ Treg cell biology, with particular focus on the thymic and peripheral development of CD25+ Treg cells, the signals that promote their expansion and maintenance in the periphery and the mechanism by which they mediate their suppressor activity in peripheral lymphoid tissues. An understanding of these issues is likely to facilitate the development of CD25+ Treg-cell-based therapies for the treatment of autoimmune disease.  相似文献   

18.
GRAIL (gene related to anergy in lymphocytes) is an ubiquitin-protein isopeptide ligase (E3) ubiquitin ligase necessary for the induction of CD4(+) T cell anergy in vivo. We have extended our previous studies to characterize the expression pattern of GRAIL in other murine CD4(+) T cell types with a described anergic phenotype. These studies revealed that GRAIL expression is increased in naturally occurring (thymically derived) CD4(+) CD25(+) T regulatory cells (mRNA levels 10-fold higher than naive CD25(-) T cells). Further investigation demonstrated that CD25(+) Foxp3(+) antigen-specific T cells were induced after a "tolerizing-administration" of antigen and that GRAIL expression correlated with the CD25(+) Foxp3(+) antigen-specific subset. Lastly, using retroviral transduction, we demonstrated that forced expression of GRAIL in a T cell line was sufficient for conversion of these cells to a regulatory phenotype in the absence of detectable Foxp3. These data demonstrate that GRAIL is differentially expressed in naturally occurring and peripherally induced CD25(+) T regulatory cells and that the expression of GRAIL is linked to their functional regulatory activity.  相似文献   

19.
Immunization with serological identification of Ags by recombinant expression cloning (SEREX)-defined self-Ags leads to generation/activation of CD4+ CD25+ regulatory T cells with suppressive activities and enhanced expression of Foxp3. This is associated with increased susceptibility to pulmonary metastasis following challenge with syngeneic tumor cells and enhanced development of 3-methylcholanthrene-induced primary tumors. In contrast, coimmunization with the same SEREX-defined self-Ags mixed with a CTL epitope results in augmented CTL activity and heightened resistance to pulmonary metastasis, both of which depend on CD4+ Th cells. These active regulatory T cells and Th cells were derived from two distinct CD4+ T cell subsets, CD4+ CD25+ T cells and CD4+ CD25- T cells, respectively. In the present study, IFN-gamma was found to abrogate the generation/activation of CD4+ CD25+ regulatory T cells by immunization with SEREX-defined self-Ag. CD4+ CD25+ T cells from these IFN-gamma-treated mice failed to exhibit immunosuppressive activity as measured by 1) increased number of pulmonary metastasis, 2) enhanced development of 3-methylcholanthrene-induced primary tumors, 3) suppression of peptide-specific T cell proliferation, and 4) enhanced expression of Foxp3. The important role of IFN-gamma produced by CD8+ T cells was shown in experiments demonstrating that CD4+ CD25+ T cells cotransferred with CD8+ T cells from IFN-gamma(-/-) mice, but not from wild-type BALB/c mice, became immunosuppressive and enhanced pulmonary metastasis when recipient animals were subsequently immunized with a SEREX-defined self-Ag and a CTL epitope. These findings support the idea that IFN-gamma regulates the generation/activation of CD4+ CD25+ regulatory T cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号