首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B L Bertagnolli  P F Cook 《Biochemistry》1984,23(18):4101-4108
Inorganic pyrophosphate dependent D-fructose-6-phosphate 1-phosphotransferase from Propionibacterium freudenreichii was purified to apparent homogeneity by the criterion of silver staining on sodium dodecyl sulfate (SDS) gels. In the direction of phosphorylation of fructose 6-phosphate (F6P), an intersecting initial velocity pattern is obtained when MgPPi is varied at several levels of F6P. In the reverse reaction direction, the reactants are Mg2+, Pi, and fructose 1,6-bisphosphate (FDP). Variation of Pi at several levels of Mg2+ and a single level of FDP gives an intersecting pattern. When this pattern is repeated at several additional FDP levels, data are consistent with a fully random terreactant mechanism at pH 8.0 and 25 degrees C. The Keq calculated from the Haldane relationship [(5 +/- 1.5) X 10(-3) M] agrees with that determined directly from 31P NMR of the equilibrium mixture [(7 +/- 2) X 10(-3) M]. Product inhibition by Pi is competitive vs. either MgPPi or F6P with the other reactant saturating but changes to noncompetitive inhibition when the fixed reactant is decreased to Km levels. Product inhibition by MgPPi is competitive vs. either Pi or FDP with the other reactant saturating but changes to noncompetitive when the fixed reactant is decreased to Km levels. Tagatose 6-phosphate is competitive vs. F6P and noncompetitive vs. MgPPi. Methylenediphosphonate is competitive vs. MgPPi and noncompetitive vs. F6P. Sulfate is competitive vs. Pi and noncompetitive vs. FDP, while 2,5-anhydro-D-mannitol 1,6-bisphosphate is competitive vs. FDP and noncompetitive vs. Pi.  相似文献   

2.
The kinetic mechanism of phosphofructokinase has been determined at pH 8 for native enzyme and pH 6.8 for an enzyme desensitized to allosteric modulation by diethylpyrocarbonate modification. In both cases, the mechanism is predominantly steady state ordered with MgATP binding first in the direction of fructose 6-phosphate (F6P) phosphorylation and rapid equilibrium random in the direction of MgADP phosphorylation. This is a unique kinetic mechanism for a phosphofructokinase. Product inhibition by MgADP is competitive versus MgATP and noncompetitive versus F6P while fructose 1,6-bisphosphate (FBP) is competitive versus fructose 6-phosphate and uncompetitive versus MgATP. The uncompetitive pattern obtained versus F6P is indicative of a dead-end E.MgATP.FBP complex. Fructose 6-phosphate is noncompetitive versus either FBP or MgADP. Dead-end inhibition by arabinose 5-phosphate or 2,5-anhydro-D-mannitol 6-phosphate is uncompetitive versus MgATP corroborating the ordered addition of MgATP prior to F6P. In the direction of MgADP phosphorylation, inhibition by anhydromannitol 1,6-bisphosphate is noncompetitive versus MgADP, while Mg-adenosine 5'(beta, gamma-methylene)triphosphate is noncompetitive versus FBP. Anhydromannitol 6-phosphate is a slow substrate, while anhydroglucitol 6-phosphate is not. This suggests that the enzyme exhibits beta-anomeric specificity.  相似文献   

3.
Purified chicken liver 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase was phosphorylated either from fructose 2,6-bis[2-32P]phosphate or fructose 2-phosphoro[35S]thioate 6-phosphate. The turnover of the thiophosphorylated enzyme intermediate as well as the overall phosphatase reaction was four times faster than with authentic fructose 2,6-bisphosphate. Fructose 2-phosphorothioate 6-phosphate was 10-100-fold less potent than authentic fructose 2,6-bisphosphate in stimulating 6-phosphofructo-1-kinase and pyrophosphate:fructose 6-phosphate phosphotransferase, but about 10 times more potent in inhibiting fructose 1,6-bisphosphatase. The analogue was twice as effective as authentic fructose 2,6-bisphosphate in stimulating pyruvate kinase from trypanosomes.  相似文献   

4.
经硫酸铵分部,DEAE—纤维素、羟基磷灰石、Sephadex G—200及磷酸纤维素柱层析,从菠萝叶片分离得到电泳均一的依赖焦磷酸的磷酸果糖激酶(PFP)。SDS电泳图谱表明有一条分子量为62kD的主带和一条57 kD的弱带。Fru—2,6—P_2对酶的正反应活性有促进作用。动力学研究表明,Fru—2,6—P_2增加V_(max)及酶对底物Fru—6—P和Mg~(2+)的亲和性。  相似文献   

5.
In gluconeogenesis, fructose 6-phosphate is formed from fructose 1,6-bisphosphate, and if fructose 1,6-bisphosphate were reformed by the phosphofructokinase reaction there would be a "gluconeogenic futile cycle." We assessed the extent of this cycling in Escherichia coli growing on glycerol 3-phosphate, using a medium containing 32Pi. Fructose 1,6-bisphosphate coming from glycerol 3-phosphate should be unlabeled, but any coming from fructose 6-phosphate should contain label from the gamma-position of ATP. The amount of labeling of the 1-position of fructose 1,6-bisphosphate was only 2 to 10% of that of the gamma-position of ATP in a series of isogenic strains differing in phosphofructokinases (Pfk-1, Pfk-2, or Pfk-2). In control experiments with glucose 6-phosphate instead of glycerol 3-phosphate, the two positions were equally labeled. Thus, although the presence of Pfk-2 causes gluconeogenic impairment (Daldal et al., Eur. J. Biochem., 126:373-379, 1982), gluconeogenic futile cycling cannot be the reason.  相似文献   

6.
Pyrophosphate-dependent 6-phosphofructo-1-kinase (PPi-PFK) from Propionibacterium freudenreichii was inactivated by low concentrations of the lysine-specific reagent pyridoxal phosphate (PLP) after sodium borohydride reduction. The substrates fructose 6-phosphate and fructose 1,6-bisphosphate protected against inactivation whereas inorganic pyrophosphate had little effect. An HPLC profile of a tryptic digest of PPi-PFK modified at low concentrations of PLP showed a single major peak with only a small number of minor peaks. The major peak peptide was isolated and sequenced to obtain IGAGXTMVQK, where X represents a modified lysine residue, corresponding to Lys-315. Lys-315 was protected from reaction with PLP by fructose 1,6-bisphosphate. As indicated by HPLC maps of PPi-PFK modified with varying concentrations of PLP, a direct correlation was observed between activity loss and the modification of Lys-315. Two of the minor peptide peaks were shown to contain Lys-80 and Lys-85, which were modified in a mutually exclusive manner. Partial protection against modification of these two residues was provided by MgPPi. The data were used to adjust the sequence alignment of the Propionibacterium enzyme with that of ATP-dependent PFK of Escherichia coli to identify homologous residues in the substrate binding site. It is suggested that Lys-315 interacts with the 6-phosphate of fructose 6-phosphate and that Lys-80 and -85 may be located near the pyrophosphate binding site.  相似文献   

7.
Pyrophosphate : fructose-6-phosphate phosphotransferase (PPi-PFK) has been purified 150-fold from potato tubers and the kinetic properties of the purified enzyme have been investigated both in the forward and the reverse direction. Saturation curves for fructose 6-phosphate and also for fructose 1,6-bisphosphate were sigmoidal whereas those for PPi and Pi were hyperbolic. In the presence of fructose 2,6-bisphosphate, the affinity for fructose 6-phosphate and for fructose 1,6-bisphosphate were greatly increased and the kinetics became Micha?lian. The effect of fructose 2,6-bisphosphate was increased by the presence of fructose 6-phosphate and decreased by the presence of Pi. Consequently, the Ka for fructose 2,6-bisphosphate was as low as 5 nM for the forward reaction and reached 150 nM for the reverse reaction. On the basis of these properties, a procedure allowing one to measure fructose 2,6-bisphosphate in amounts lower than a picomole, is described.  相似文献   

8.
Phosphofructokinase 2 from Saccharomyces cerevisiae was purified 8500-fold by chromatography on blue Trisacryl, gel filtration on Superose 6B and chromatography on ATP-agarose. Its apparent molecular mass was close to 600 kDa. The purified enzyme could be activated fivefold upon incubation in the presence of [gamma-32P]ATP-Mg and the catalytic subunit of cyclic-AMP-dependent protein kinase from beef heart; there was a parallel incorporation of 32P into a 105-kDa peptide and also, but only faintly, into a 162-kDa subunit. A low-Km (0.1 microM) fructose-2,6-bisphosphatase could be identified both by its ability to hydrolyze fructose 2,6-[2-32P]bisphosphate and to form in its presence an intermediary radioactive phosphoprotein. This enzyme was purified 300-fold, had an apparent molecular mass of 110 kDa and was made of two 56-kDa subunits. It was inhibited by fructose 6-phosphate (Ki = 5 microM) and stimulated 2-3-fold by 50 mM benzoate or 20 mM salicylate. Remarkably, and in deep contrast to what is known of mammalian and plant enzymes, phosphofructokinase 2 and the low-Km fructose-2,6-bisphosphatase clearly separated from each other in all purification procedures used. A high-Km (approximately equal to 100 microM), apparently specific, fructose 2,6-bisphosphatase was separated by anion-exchange chromatography. This enzyme could play a major role in the physiological degradation of fructose 2,6-bisphosphate, which it converts to fructose 6-phosphate and Pi, because it is not inhibited by fructose 6-phosphate, glucose 6-phosphate or Pi. Several other phosphatases able to hydrolyze fructose 2,6-bisphosphate into a mixture of fructose 2-phosphate, fructose 6-phosphate and eventually fructose were identified. They have a low affinity for fructose 2,6-bisphosphate (Km greater than 50 microM), are most active at pH 6 and are deeply inhibited by inorganic phosphate and various phosphate esters.  相似文献   

9.
Gibson GE  Harris BG  Cook PF 《Biochemistry》2006,45(7):2453-2460
Phosphofructokinase (PFK) catalyzes the phosphorylation of fructose 6-phosphate (F6P) to give fructose 1,6-bisphosphate (FBP) using MgATP as the phosphoryl donor. As the concentration of Mg(2+) increases above the concentration needed to generate the MgATP chelate complex, a 15-fold increase in the initial rate was observed at low MgATP. The effect of Mg(2+) is limited to V/K(MgATP), and initial rate studies indicate an equilibrium-ordered addition of Mg(2+) before MgATP. Isotope partitioning of the dPFK:MgATP complex indicates a random addition of MgATP and F6P at low Mg(2+), with the rate of release of MgATP from the central E:MgATP:F6P complex 4-fold faster than the net rate constant for catalysis. This can be contrasted with the ordered addition of MgATP prior to F6P at high Mg(2+). The addition of fructose 2,6-bisphosphate (F26P(2)) has no effect on the mechanism at low Mg(2+), with the exception of a 4-fold increase in the affinity of the enzyme for F6P. At high Mg(2+), F26P(2) causes the kinetic mechanism to become random with respect to MgATP and F6P and with MgATP released from the central complex half as fast as the net rate constant for catalysis. The latter is in agreement with previous studies [Gibson, G. E., Harris, B. G., and Cook, P. F. (1996) Biochemistry 35, 5451-5457]. The overall effect of Mg(2+) is a decrease in the rate of release of MgATP from the E:MgATP:F6P complex, independent of the concentration of F26P(2).  相似文献   

10.
The mechanism of rabbit muscle phosphofructokinase was investigated by measurement of fluxes, isotope trapping and steady-state velocities at pH8 in triethanolamine/HCl buffer with 4 mM free Mg2+. Most observations were made at I0.2. The ratio Flux of fructose 1,6-bisphosphate----fructose 6-phosphate/Flux of fructose 1,6-bisphosphate----ATP at zero ATP concentration increased hyperbolically from unity to about 3.2 as the concentration of fructose 6-phosphate was increased. Similarly, the ratio Flux of fructose 1,6-bisphosphate----ATP/Flux of fructose 1,6-bisphosphate----fructose 6-phosphate at zero fructose 6-phosphate concentration increased from unity to about 1.4 as the concentration of ATP was increased. The addition of substrates must therefore be random, whatever the other aspects of the reaction. Further, from the plateau values of the ratios, it follows that the substrates dissociate very infrequently from the ternary complex and that at a low substrate concentration 72% of the reaction follows the pathway in which ATP adds first to the enzyme. Isotope-trapping studies with [32P]ATP confirmed that ATP can bind first to the enzyme in rate-limiting step and that dissociation of ATP from the ternary complex is slow in relation to the forward reaction. No isotope trapping of [U-14C]-fructose 6-phosphate could be demonstrated. The ratios Flux of ATP----fructose 1,6-bisphosphate/Flux of ATP----ADP measured at zero ADP concentration and the reciprocal of the ratio measured at zero fructose 1,6-bisphosphate concentration did not differ significantly from unity. Calculated values for these ratios based on the kinetics of the reverse reaction and assuming ordered dissociations of products or a ping-pong mechanism gave values very significantly greater than unity. These findings exclude an ordered dissociation or a substantial contribution from a ping-pong mechanism, and it is concluded that the reaction is sequential and that dissociation of products is random. Rate constants were calculated for the steps in the enzyme reaction. The results indicate a considerable degree of co-operativity in the binding between the two substrates. The observations on phosphofructokinase are discussed in relation to methods of measurement and interpretation of flux ratios and in relation to the mechanism of other kinase enzymes.  相似文献   

11.
Pyrophosphate:fructose-6-phosphate phosphotransferase (PFP) was purified over 500-cold from endosperm of germinating castor bean (Ricinus commiunis L. var. Hale). The kinetic properties of the purified enzyme were studied. PFP was specific for pyrophosphate and had a requirement for a divalent metal ion. The pH optimum for activity was 7.3 to 7.7. The enzyme had similar activities in the forward and reverse directions and exhibited hyperbolic kinetics with all substrates. Kinetic constants were determined in the presence of fructose 2,6-bisphosphate, which stimulated activity about 20-fold and increased the affinity of the enzyme for fructose 6-phosphate, fructose 1,6-bisphosphate, and pyrophosphate up to 10-fold. Half-maximum activation of PFP by fructose 2,6-bisphosphate was obtained at 10 nanomolar. The affinity of PFP for this activator was reduced by decreasing the concentration of fructose 6-phosphate or increasing that of phosphate. Phosphate inhibited PFP when the reaction was measured in the reverse direction, i.e. fructose 6-phosphate production. In the presence of fructose 2,6-bisphosphate, phosphate was a mixed inhibitor with respect to both fructose 6-phosphate and pyrophosphate when the reaction was measured in the forward direction, i.e. fructose 1,6-bisphosphate production. The possible roles of fructose 2,6-bisphosphate, fructose 6-phosphate, and phosphate in the control of PFP are discussed.  相似文献   

12.
It has been suggested that in spinach leaves an enzyme able to catalyze the phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate can exist in two different interconvertible forms which use ATP and pyrophosphate respectively as phosphoryl donors [FEBS Letters 169 (1984) 287-292]. However, the data presented to support this suggestion could also be interpreted without assuming such an unusual type of interconversion. This reinterpretation considers that PFK and PFP are two distinct enzymes which are differentially activated by incubation with various effectors such as UDPG, pyrophosphate, ATP, fructose 6-phosphate and fructose 2,6-bisphosphate.  相似文献   

13.
Phosphoglucose isomerase negative mutant of mucoid Pseudomonas aeruginosa accumulated relatively higher concentration of fructose 1,6-bisphosphate (Fru-1,6-P2) when mannitol induced cells were incubated with this sugar alcohol. Also the toluene-treated cells of fructose 1,6-bisphosphate aldolase negative mutant of this organism produced Fru-1,6-P2 from fructose 6-phosphate in presence of ATP, but not from 6-phosphogluconate. The results together suggested the presence of an ATP-dependent fructose 6-phosphate kinase (EC 2.7.1.11) in mucoid P. aeruginosa.Abbreviations ALD Fru-1,6-P2 aldolse - DHAP dihydroxyacetone phosphate - F6P fructose 6-phosphate - G6P glucose 6-phosphate - Gly3P glyceraldehyde 3-phosphate - KDPG 2-keto 3-deoxy 6-phosphogluconate - PFK fructose 6-phosphate kinase - PGI phosphoglucose isomerase - 6PG 6-phosphogluconate  相似文献   

14.
Rapid turnover of mannitol-1-phosphate in Escherichia coli.   总被引:3,自引:1,他引:2       下载免费PDF全文
The phosphate moiety of D-mannitol-1-phosphate in Escherichia coli is subject to rapid turnover and is in close equilibrium with Pi and the phosphorus of fructose-1,6-bisphosphate. These three compounds account for the bulk of 32P label found in cells after several minutes of uptake of 32Pi and mannitol-1-phosphate represents some 30% of this label. Mannitol-1-phosphate occurs in E. coli grown on a variety of carbon sources, in the absence of D-mannitol, and is synthesized de novo even in mutants lacking mannitol-1-phosphate dehydrogenase. The mannitol moiety of mannitol-1-phosphate was not affected during the total chase of the P moiety, which exchanged with a half-life of about 30 s. These findings suggest that the rapid equilibration of the phosphorus is a function of an enzyme, possibly a component of the phosphotransferase system, capable of forming a complex that allows the exchange of the phosphate without the equilibration of the mannitol moiety with free mannitol.  相似文献   

15.
Ian E. Woodrow  Keith A. Mott 《Planta》1993,191(4):421-432
A model of the C 3 photosynthetic system is developed which describes the sensitivity of the steadystate rate of carbon dioxide assimilation to changes in the activity of several enzymes of the system. The model requires measurements of the steady-state rate of carbon dioxide assimilation, the concentrations of several intermediates in the photosynthetic system, and the concentration of the active site of ribulose 1,5-bisphosphate carboxyalse/oxygenase (Rubisco). It is shown that in sunflowers (Helianthus annuus L.) at photon flux densities that are largely saturating for the rate of photosynthesis, the steady-stete rate of carbon dioxide assimilation is most sensitive to Rubisco activity and, to a lesser degree, to the activities of the stromal fructose, 6-bisphosphatase and the enzymes catalysing sucrose synthesis. The activities of sedoheptulose 1,7-bisphosphatase, ribulose 5-phosphate kinase, ATP synthase and the ADP-glucose pyrophosphorylase are calculated to have a negligible effect on the flux under the high-light conditions. The utility of this analysis in developing simpler models of photosynthesis is also discussed.Abbreviations c i intercellular CO2 concentration - C infP supJ control coefficient for enzyme P with respect to flux J - DHAP dihydroxyacetonephosphate - E4P erythrose 4-phosphate - F6P fructose 6-phosphate - FBP fructose 1,6-bisphosphate - FBPase fructose 1,6-bisphosphatase - G3P glyceraldehyde 3-phosphate - G1P glucose 1-phosphate - G6P glucose 6-phosphate - Pi inorganic phosphate - PCR photosynthetic carbon reduction - PGA 3-phosphoglyceric acid - PPFD photosynthetically active photon flux density - R n J response coefficient for effector n with respect to flux J - R5P ribose 5-phosphate - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - Ru5P ribulose 5-phosphate - RuBP ribulose 1,5-bisphosphate - S7P sedoheptulose 7-phosphate - SBP sedoheptulose 1,7-bisphosphate - SBPase sedoheptulose 1,7-bisphosphatase - SPS sucrose-phosphate synthase - Xu5P xylulose 5-phosphate - n P elasticity coefficient for effector n with respect to the catalytic velocity of enzyme P This research was funded by an Australian Research Council grant to I.E.W. and was undertaken during a visity by K.A.M. to the James Cook University of North Queensland. The expert help of Glenys Hanley and Mick Kelly is greatly appreciated.  相似文献   

16.
This work presents findings, which indicate important role of fructose, fructose 6-phosphate (F6P), and fructose 1,6-bisphosphate (FBP) in preservation of homeostasis in plants under low temperature. Cold combined with light is known to incite increased generation of superoxide in chloroplasts leading to photoinhibition, but also an increased level of soluble sugars. In the present study, oxidative stress in pea leaves provoked by cold/light regime was asserted by the observed decrease of the level of oxidized form of PSI pigment P700 (P700(+)). Alongside, the increased antioxidative status and the accumulation of fructose were observed. The antioxidative properties of fructose and its phosphorylated forms were evaluated to appraise their potential protective role in plants exposed to chilling stress. Fructose, and particularly F6P and FBP exhibited high capacities for scavenging superoxide and showed to be involved in antioxidative protection in pea leaves. These results combined with previously established links implicate that the increase in level of fructose sugars through various pathways intercalated into physiological mechanisms of homeostasis represents important non-enzymatic antioxidative defense in plants under cold-related stress.  相似文献   

17.
W. M. Kaiser  J. A. Bassham 《Planta》1979,144(2):193-200
The conversion of U-labelled [14C]glucose-6-phosphate into other products by a soluble fraction of lysed spinach chloroplasts has been studied. It was found that both an oxidative pentose phosphate cycle and a glycolytic reaction sequence occur in this fraction. The formation of bisphosphates and of triose phosphates was ATP-dependent and occurred mainly via a glycolytic reaction sequence including a phosphofructokinase step. The conversion, of glucose-6-phosphate via the oxidative pentose phosphate cycle stopped with the formation of pentose monophosphates. This was found not to be because of a lack in transaldolase (or transketolase) activity, but because of the high concentration ratios of hexose monophosphate/pentose monophosphate used in our experiments for simulating the conditions in whole chloroplasts in the dark. Some regulatory properties of both the oxidative pentose phosphate cycle and of the glycolytic pathway were studied.Abbreviations DHAP dihydroxyacetone phosphate - GAP 3-phosphoglyceraldehyde - PGA 3-phosphoglycerate - HMP hexose monophosphates - including F6P fructose-6-phosphate - G6P glucose-6-phosphate - GIP glucose-1-phosphate - 6-PGL phosphogluconate - PMP pentose monophosphates - including R5P ribose-5-phosphate - Ru5P ribulose-5-phosphate - X5P xylulose-5-phosphate - E4P erythrose-4-phosphate - S7P sedoheptulose-7-phosphate - FBP fructose-1,6-bisphosphate - SBP sedoheptulose-1,7-bisphosphate - RuBP ribulose-1,5-bisphosphate  相似文献   

18.
The enzymatic hydrolysis of fructose 1,6-bisphosphate (Fru-1,6-P2) to fructose 6-phosphate (Fru-6-P) and inorganic phosphate (Pi), which is catalyzed by fructose-1,6-bisphosphatase, has been studied by 31P nuclear magnetic resonance spectroscopy (NMR). At pH 7.5 and 15 degrees C, the equilibrium constant for the central complex K'eq = [E.Fru-6-P.Pi]/[E.Fru-1,6-P2.H2O] is about 2. This observation is in harmony with results obtained with a number of Bi Bi enzyme systems for the determination of K'eq in which a variety of experimental techniques were used (Knowles, J.R. (1980) Annu. Rev. Biochem. 49, 877-919). Significant changes in 31P NMR chemical shifts were observed for both the substrate, Fru-1,6-P2, and the product, Fru-6-P, when bound to the enzyme relative to ligand free in solution. The chemical shifts of the substrate and product were altered further in the presence of Mg2+, the catalytic divalent metal ion. The chemical shifts caused by the addition of metal ion can be reversed in the presence of trans-1,2-diaminocyclohexane- N,N,N',N'-tetraacetic acid (CDTA) or AMP. In the presence of the metal ion chelator or the nucleotide, the substrate had a chemical shift that was about the same as that observed in the absence of metal ion. On the basis of these observations we suggest that AMP and CDTA exhibit similar effects, i.e. they both remove the catalytic metal ion from the enzyme. This finding is supportive of the suggestion (Scheffler, J. E., and Fromm, H.J. (1986) Biochemistry 25, 6659-6665; Liu, F., and Fromm, H.J. (1990) J. Biol. Chem. 265, 7401-7406) that the role of AMP in the regulation of fructose-1,6-bisphosphatase is to prevent binding of the divalent metal activator to the enzyme.  相似文献   

19.
Y K Cho  P F Cook 《Biochemistry》1989,28(10):4155-4160
The pH dependence of kinetic parameters for the pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii suggests that the enzyme catalyzes its reaction via general acid-base catalysis with the use of a proton shuttle. The base is required unprotonated in both reaction directions. In the direction of fructose 6-phosphate phosphorylation the base accepts a proton from the hydroxyl at C-1 of F6P and then donates it to protonate the leaving phosphate. Whether this occurs in one or two steps cannot be deduced from the present data. The maximum velocity of the reaction is pH independent in both reaction directions while V/K profiles exhibit pKs for binding groups (including enzyme and reactant functional groups) as well as pKs for enzyme catalytic groups. These data suggest that reactants bind only when correctly protonated and only to the correctly protonated form of the enzyme. Specifically, the requirement for two enzyme epsilon-amino groups in the protonated form for reactant binding was detected as was the requirement for the ionized phosphates of fructose 6-phosphate, fructose 1,6-bisphosphate, MgPPi and HPO4(2-). The protonation state of enzyme and reactant binding groups is in agreement with data obtained previously [Cho, Y.-K., & Cook, P. F. (1988) J. Biol. Chem. 263, 5135].  相似文献   

20.
The kinetic mechanism of pyruvate phosphate dikinase (PPDK) from Bacteroides symbiosus was investigated with several different kinetic diagnostics. Initial velocity patterns were intersecting for AMP/PPi and ATP/Pi substrate pairs and parallel for all other substrate pairs. PPDK was shown to catalyze [14C]pyruvate in equilibrium phosphoenolpyruvate (PEP) exchange in the absence of cosubstrates, [14C]AMP in equilibrium ATP exchange in the presence of Pi/PPi but not in their absence, and [32P]Pi in equilibrium PPi exchange in the presence of ATP/AMP but not in their absence. The enzyme was also shown, by using [alpha beta-18O, beta, beta-18O2]ATP and [beta gamma-18O, gamma, gamma, gamma-18O3]ATP and 31P NMR techniques, to catalyze exchange in ATP between the alpha beta-bridge oxygen and the alpha-P nonbridge oxygen and also between the beta gamma-bridge oxygen and the beta-P nonbridge oxygen. The exchanges were catalyzed by PPDK in the presence of Pi but not in its absence. These results were interpreted to support a bi(ATP,Pi) bi(AMP,PPi) uni(pyruvate) uni(PEP) mechanism. AMP and Pi binding order was examined by carrying out dead-end inhibition studies. The dead-end inhibitor adenosine 5'-monophosphorothioate (AMPS) was found to be competitive vs AMP, noncompetitive vs PPi, and uncompetitive vs PEP. The dead-end inhibitor imidodiphosphate (PNP) was found to be competitive vs PPi, uncompetitive vs AMP, and uncompetitive vs PEP. These results showed that AMP binds before PPi. The ATP and Pi binding order was studied by carrying out inhibition, positional isotope exchange, and alternate substrate studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号