首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
PCR differentiation of seventeen genospecies of Acinetobacter   总被引:1,自引:0,他引:1  
Abstract In the present study, strains of 17 reference Acinetobacter genospecies were investigated by using the polymerase chain reaction (PCR). We used primers to amplify spacer regions between the 16S and 23S genes in the prokaryotic rRNA genetic loci. When the spacer amplification products were resolved by electrophoresis, the resulting patterns could be used to distinguish all of the tested acinetobacters into 15 groups. The genospecies 5 ( Acinetobacter junii ), 7 ( Acinetobacter johnsonii ) and 10 produced the same characteristic PCR patterns, suggesting the identity of these three genospecies. A preliminary evaluation of the proposed scheme for PCR diagnostics was carried out. Using the proposed scheme, tested clinical strains were identified correctly to the genospecies level, and the identifications confirmed by conventional biochemical tests. On the basis of our results, PCR amplification of the 16S–23S spacer region shows significant promise as a tool for the simple identification of genospecies belonging to Acinetobacter sp. The nucleotide sequences of our primers are sufficiently highly conserved among these organisms as to permit PCR reactions to be carried out with a single set of reaction conditions and amplification parameters irrespective of species or genus.  相似文献   

2.
The aim of this study was to develop an easy and accurate technique for the identification of the genus Geobacillus. For this purpose, Geobacillus genus-specific primers GEOBAC (GEOBAC-F and GEOBAC-R) based on the 16S-23S rRNA gene internal transcribed spacer (ITS) region sequences have been designed. In total, 52 sequences from three species of the genus Geobacillus (Geobacillus stearothermophilus, Geobacillus kaustophilus and Geobacillus lituanicus) were examined for the design of these primers. Analysis of the sequences revealed three highly conservative regions common to these species: 5' and 3' end regions of 16S-23S rRNA gene ITSs and box A. Some sequences possessed two additional conservative regions - genes of tRNA(Ile) and tRNA(Ala). These particular sequences were chosen for the construction of the primers. The designed primers targeted the gene of tRNA(Ile) and the 3' end region of ITSs. This technique was validated with both the reference strains of the genus Geobacillus and the thermophilic aerobic endospore-forming environmental isolates. Different Geobacillus species could be grouped according to the number and size of GEOBAC-PCR products and identified on the basis of the AluI and TaqI restriction analysis of these products.  相似文献   

3.
目的16SrRNA和16S-23SrRNA间区片段是常用细菌分类鉴定靶点,本研究探讨人工神经原网络(ANN)对上述位点PCR扩增产物数据分析在细菌快速鉴定方面的价值。方法2对15SrRNA基因荧光引物和1对16S-23SrRNA区间基因引物用于扩增血液标本中分离出的317株细菌。相关毛细管电泳(CE)限制性片段长度多态性(RFLP)和单链构象多态性(SSCP)数据进行人工神经原网络分析。结果16S-23SrRNA基因的RFLP数据对未知菌鉴定的准确率高于16SrRNA基因的SSCP数据,分别为98.0%和79.6%。结论实验证明了人工神经原网络作为一种模式识别方法对于简化细菌鉴定十分有价值。  相似文献   

4.
Using the polymerase chain reaction the 16S rRNA genes and the 16S-23S spacer regions of phytoplasmas associated with lethal decline diseases of coconut palm (Cocos nucifera), were amplified from infected plants from Florida and the Yucatan region in Mexico and from east and west Africa. Following sequencing of the rDNA products, phylogenetic analysis confirmed that these coconut phytoplasmas form a separate cluster within the phytoplasma clade and that the pathogen causing diseases in west Africa formed a new sub-clade within this cluster. Analysis of the 16S-23S intergenic spacer regions confirmed the sequence diversity of this region and enabled two primers to be designed which were specific for the diseases found in east and west Africa. None of these specific primers, when paired with a universal primer, produced PCR amplification products from healthy coconut DNA, infected coconut DNA from the Caribbean or DNA from a variety of periwinkle (Catharanthus roseus)-maintained phytoplasmas. These specific primers can serve as effective tools for identifying particular coconut phytoplasmas in field samples.  相似文献   

5.
Streptococcus canis isolates, also including S. canis of artificially contaminated milk, could be identified by polymerase chain reaction (PCR) amplification using oligonucleotide primers designed according to species-specific parts of the 16S rRNA gene and, after sequencing, according to S. canis-specific parts of the 16S-23S rDNA intergenic spacer region and with oligonucleotide primers detecting an internal fragment of the group G streptococcal CAMP factor gene cfg. The 16S rRNA gene- and CAMP factor gene cfg-specific oligonucleotide primers could be used together in a multiplex PCR. No cross-reactivities could be observed with other group G streptococcal isolates or with any of the other control strains of various streptococcal species and serogroups. The PCR methods presented in this study allowed a rapid and reliable identification of S. canis and might help to improve the diagnosis of this bacterial species in animal and human infections.  相似文献   

6.
Selective culture media and phenotypic tests enable lactobacilli to be differentiated from morphologically similar bacteria. The accurate identification of Lactobacillus species can be accomplished by reference to 16S rRNA gene sequences. Species-specific, PCR primers that target the 16S-23S rRNA spacer region are available for a limited number of Lactobacillus species. Molecular methods for the comprehensive identification of Bifidobacterium species are not yet available. Only DNA-DNA reassociation provides a reliable means of species identification for this genus at present. Bifidobacteria can be differentiated from morphologically similar bacteria by the use of genus-specific, PCR primers or oligonucleotide probes.  相似文献   

7.
The composition of bacterial populations in copper bioleaching systems was investigated by analysis of DNA obtained either directly from ores or leaching solutions or after laboratory cultures. This analysis consisted of the characterization of the spacer regions between the 16 and 23S genes in the bacterial rRNA genetic loci after PCR amplification. The sizes of the spacer regions, amplified from DNAs obtained from samples, were compared with the sizes of those obtained from cultures of the main bacterial species isolated from bioleaching systems. This allowed a preliminary assessment of the bacterial species present in the samples. Identification of the bacteria was achieved by partial sequencing of the 16S rRNA genes adjacent to the spacer regions. The spacer regions observed in DNA from columns leached at different iron concentrations indicated the presence of a mixture of different bacteria. The spacer region corresponding to Thiobacillus ferrooxidans was the main product observed at high ferrous iron concentration. At low ferrous iron concentration, spacer regions of different lengths, corresponding to Thiobacillus thiooxidans and "Leptospirillum ferrooxidans" were observed. However, T. ferrooxidans appeared to predominate after culture of these samples in medium containing ferrous iron as energy source. Although some of these strains contained singular spacer regions, they belonged within previously described groups of T. ferrooxidans according to the nucleotide sequence of the neighbor 16S rRNA. These results illustrate the bacterial diversity in bioleaching systems and the selective pressure generated by different growth conditions.  相似文献   

8.
Three strains of thermophilic-acidophilic bacteria isolated previously from different hot springs in Japan were characterized by molecular genetic methods. The strategy taken involved PCR amplification, sequencing and restriction pattern analysis of 16S rDNA, 16S-23S rDNA spacer polymorphism analysis and genomic DNA-DNA hybridization. A phylogenetic analysis based on 16S rDNA sequences showed that the new thermoacidophilic isolates formed a genetically coherent group at the species level and fell into a major cluster together with members of the genera Alicyclobacillus and Sulfobacillus with A. acidocaldarius and A. acidoterrestris as their closest relatives. The levels of binary sequence similarity between the isolates and the two Alicyclobacillus species were 97.6 to 97.9%, values considered low enough to warrant placement of the isolates in a distinct species of the genus Alicyclobacillus. The 16S rDNA restriction pattern analysis, but not 16S-23S rDNA spacer polymorphism analysis, was useful for differentiating the isolates from the established Alicyclobacillus species. DNA-DNA hybridization assays demonstrated a distinct phylogenetic position of our isolates as a genospecies within the genus Alicyclobacillus. On the basis of these results, the thermoacidophilic isolates should be classified into a new species of Alicyclobacillus. The results of this study suggest that this new genospecies of Alicyclobacillus is widely distributed in hot springs in Japan.  相似文献   

9.
Genetic diversity of carbofuran-degrading soil bacteria   总被引:4,自引:0,他引:4  
The genetic diversity of 128 carbofuran-degrading bacteria was determined by ARDRA (amplified ribosomal DNA restriction analysis) of 16S rDNA and restriction fragment length polymorphism analysis of the 16S-23S rDNA spacer region (IGS) using five endonucleases. The isolates were distributed in 26 distinct ARDRA groups and 45 IGS types revealing a high level of microbial diversity confirmed by ARDRA clustering and sequencing of 16S rDNA. The occurrence of a methylcarbamate-degrading gene (mcd) was monitored by polymerase chain reaction amplification using specific primers. The mcd gene was detected only in 58 bacteria and there was no clear relationship between the presence of this gene and the phylogenetic position of the strain.  相似文献   

10.
The identification of Gram-negative pathogenic and non-pathogenic bacteria commonly isolated from an orchard phylloplane may result in a time consuming and tedious process for the plant pathologist. The paper provides a simple "one-step" protocol that uses the polymerase chain reaction (PCR) to amplify intergenic spacer regions between 16S and 23S genes and a portion of 16S gene in the prokaryotic rRNA genetic loci. Amplified 16S rDNA, and restriction fragment length polymorphisms (RFLP) following EcoRI digestion produced band patterns that readily distinguished between the plant pathogen Erwinia amylovora (causal agent of fire blight in pear and apple) and the orchard epiphyte Pantoea agglomerans (formerly E. herbicola). The amplified DNA patterns of 16S-23S spacer regions may be used to differentiate E. amylovora at the intraspecies level. Isolates of E. amylovora obtained from raspberries exhibited two major fragments while those obtained from apples showed three distinct amplified DNA bands. In addition, the size of the 16S-23S spacer region differs between Pseudomonas syringae and Pseudomonas fluorescens. The RFLP pattern generated by HaeIII digestion may be used to provide a rapid and accurate identification of these two common orchard epiphytes.  相似文献   

11.
Sequences of 16S rDNAs and the intergenic spacer (IGS) regions between the 16S and 23S rDNA of bacterial strains from genus Erwinia were determined. Comparison of 16S rDNA sequences from different species and subspecies clearly revealed intraspecies-subspecies homology and interspecies heterogeneity. Phylogenetic analyses of 16S rDNA sequence data revealed that Erwinia spp. formed a discrete monophyletic clade with moderate to high bootstrap values. PCR amplification of the 16S-23S rDNA regions using primers complementary to the 3' end of 16S and 5' end of 23S rRNA genes generated two DNA fragments. The small 16S-23S rDNA IGS regions of Erwinia spp. examined in this study varied considerably in size and nucleotide sequence. Multiple sequence alignment and phylogenetic analysis of small IGS sequence data showed a consistent relationship among the test strains that was roughly in agreement with the 16S rDNA data that reflected the accepted species and subspecies structure of the taxon. Sequence data derived from the large IGS resolved the strains into coherent groups; however, the sequence information would not allow any phylogenetic conclusion, because it failed to reflect the accepted species structure of the test strains.  相似文献   

12.
The genus Carnobacterium is currently divided into the following eight species: Carnobacterium piscicola, C. divergens, C. gallinarum, C. mobile, C. funditum, C. alterfunditum, C. inhibens, and C. viridans. An identification tool for the rapid differentiation of these eight Carnobacterium species was developed, based on the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR). PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of this 16S-23S rDNA ISR was performed in order to obtain restriction profiles for all of the species. Three PCR amplicons, which were designated small ISR (S-ISR), medium ISR (M-ISR), and large ISR (L-ISR), were obtained for all Carnobacterium species. The L-ISR sequence revealed the presence of two tRNA genes, tRNA(Ala) and tRNA(Ile), which were separated by a spacer region that varied from 24 to 38 bp long. This region was variable among the species, allowing the design of species-specific primers. These primers were tested and proved to be species specific. The identification method based on the 16S-23S rDNA ISR, using PCR-RFLP and specific primers, is very suitable for the rapid low-cost identification and discrimination of all of the Carnobacterium species from other phylogenetically related lactic acid bacteria.  相似文献   

13.
Mycoplasma arginini, M. fermentans, M. hyorhinis, M. orale, and Acholeplasma laidlawii are the members of the class Mollicutes most commonly found in contaminated cell cultures. Previous studies have shown that the published PCR primer pairs designed to detect mollicutes in cell cultures are not entirely specific. The 16S rRNA gene, the 16S-23S rRNA intergenic spacer region, and the 5' end of the 23S rRNA gene, as a whole, are promising targets for design of mollicute species-specific primer pairs. We analyzed the 16S rRNA genes, the 16S-23S rRNA intergenic spacer regions, and the 5' end of the 23S rRNA genes of these mollicutes and developed PCR methods for species identification based on these regions. Using high melting temperatures, we developed a rapid-cycle PCR for detection and identification of contaminant mollicutes. Previously published, putative mollicute-specific primers amplified DNA from 73 contaminated cell lines, but the presence of mollicutes was confirmed by species-specific PCR in only 60. Sequences of the remaining 13 amplicons were identified as those of gram-positive bacterial species. Species-specific PCR primers are needed to confirm the presence of mollicutes in specimens and for identification, if required.  相似文献   

14.
With the aim of detecting Rhizobium species directly in the environment, specific PCR primers for Rh. tropici and Rh. leguminosarum were designed on the basis of sequence analysis of 16S-23S rDNA spacer regions of several Rh. tropici, Rh. leguminosarum and Agrobacterium rhizogenes strains. Primer specificity was checked by comparison with available rDNA spacer sequences in databases, and by PCR using DNA from target and reference strains. Sequence polymorphisms of rDNA spacer fragments among strains of the same species were detected by denaturing gradient gel electrophoresis (DGGE). The specific PCR primers designed in this study could be applied to evaluate the diversity of Rh. tropici and Rh. leguminosarum by analysing the polymorphisms of 16S-23S spacer rDNA amplified from either whole-cell or soil-extracted DNA.  相似文献   

15.
Denaturing gradient gel electrophoresis (DGGE) of DNA fragments obtained by PCR amplification of the V2-V3 region of the 16S rRNA gene was used to detect the presence of Lactobacillus species in the stomach contents of mice. Lactobacillus isolates cultured from human and porcine gastrointestinal samples were identified to the species level by using a combination of DGGE and species-specific PCR primers that targeted 16S-23S rRNA intergenic spacer region or 16S rRNA gene sequences. The identifications obtained by this approach were confirmed by sequencing the V2-V3 region of the 16S rRNA gene and by a BLAST search of the GenBank database.  相似文献   

16.
An oligonucleotide-microarray method was developed for the detection of Kitasatospora species in soil samples. The 16S-23S rDNA internal transcribed spacer (ITS) sequence of these antibiotics-producing actinomycetes was applied to design short oligonucleotide probes. Two different 26-mers were synthesized, specific to each species used. Additionally, four oligonucleotide probes were designed to evaluate the system. The oligonucleotides were spotted onto slides of the ArrayTube microarray system and examined with a new silver-labeling detection technique. Prior to hybridization analysis, the 16S-23S rDNA were amplified by polymerase chain reaction both from bacterial cells and environmental samples using two actinomycetes specific primers containing a 5' biotin labeling. The type strains of eight Kitasatospora species included in this study were K. phosalacinea DSM 43860, K. setae DSM 43861, K. cochleata DSM 41652, K. cystarginea DSM 41680, K. azatica DSM 41650, K. mediocidica DSM 43929, K. paracochleata DSM 41656, and K. griseola DSM 43859. The actinomycetes-specific primers were shown to amplify the entire 16S-23S rDNA ITS region from all tested strains. More importantly, the described technique allows the detection of Kitasatospora strains from soil samples by extracting metagenomic DNA followed by a PCR amplification step. This indicates that the oligonucleotide-microarray method developed in this study is a reliable tool for the detection of Kitasatospora species in environmental samples.  相似文献   

17.
Streptococcus phocae, a bacterial pathogen of seals, could reliably be identified by PCR amplification using oligonucleotide primers designed according to species specific segments of the previously sequenced 16S rRNA gene and the 16S-23S rDNA intergenic spacer region of this species. The PCR mediated assay allowed an identification of S. phocae isolated from harbor and gray seals and from Atlantic salmons. No cross-reaction could be observed with 13 different other streptococcal species and subspecies and with Lactococcus garvieae strains investigated for control purposes.  相似文献   

18.
The 16S-23S ribosomal DNA spacer region of selected cyanobacterial strains was amplified by the polymerase chain reaction using primers to conserved flanking sequences. Single or multiple rDNA amplification products were generated depending on the strain and primer pair. Species could generally be distinguished on the basis of size heterogeneity of the products. Analysis of restriction digests of the amplified rDNAs indicated polymorphisms useful in identification. Four enzymes (HinfI, DdeI, AluI, TaqI) generated restriction fragment length patterns that could discriminate between the cyanobacteria to the taxonomic levels of genus and species. This approach should prove useful in the rapid identification of cyanobacteria.  相似文献   

19.
The genus Legionella is represented by 48 species and Legionella pneumophila includes 15 serogroups. In this work, we have studied the intergenic 16S-23S spacer region (ITS) in L. pneumophila to determine the feasability of using amplification polymorphisms in this region, to establish intraspecies differences and to discriminate Legionella species. The amplification of this region, using 16S14F and 23S0R primers, and the analysis of amplicons by the analysis of fragments technique showed that all the L. pneumophila serogroups studied presented the same electrophoretic pattern. Moreover, the analysis of different Legionella species showed that the amplification polymorphisms obtained were species-specific. In order to study the sequence variability of this region, the existence in L. pneumophila of three ribosomal operons was determined by pulsed field gel eletrophoresis (PFGE). Two of the 16S-23S rRNA ITS presented a tRNA Ala and the third one a tRNA Ile. Nevertheless, the variability expected in this region of the operon was not found and the rest of the ITS contained only punctual mutations.  相似文献   

20.
Published bacterial 23S ribosomal RNA sequences were aligned, and universally conserved regions flanking highly variable regions were looked for. In strategically positioned conserved regions, six oligonucleotides suitable for polymerase chain reaction (PCR) and sequencing were designed, allowing fast sequencing of four of the most variable 23S rRNA regions. Two other primers were designed for PCR amplification of nearly complete 23S rRNA genes. All these primers successfully amplified fragments of 23S rRNA genes from seven unrelated bacteria. Four primers were used to determine 938 bp of sequence forCampylobacter jejuni subsp.jejuni. These results indicate that the oligonucleotide sequences presented here are useful for PCR amplification and sequence determination of variable 23S rRNA regions for a broad variety of eubacterial species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号