首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Early stages of pseudothecium development consist of small pseudoparenchymatous stromata in which ascogonia differentiate. Deeply staining cells in the apical region of the young pseudothecium elongate to form pseudoparaphyses, which grow down to fill the centrum. Ascogenous hyphae grow out from ascogenous cells, located in the basal plectenchyma, and croziers arise and proliferate from the ascogenous hyphae. Bitunicate asci grow up among the pseudoparaphyses and forcibly discharge two-celled hyaline ascospores at maturity. Because centrum development in Didymella bryoniae (Auersw.) Rehm is pseudoparaphysate, the causal agent of gummy stem blight in watermelon is properly placed in the order Pleosporales. The placement of this species in Didymella on the basis of the Ascochyta cucumis Fautr. et Roum. anamorph is supported by centrum structure.  相似文献   

2.
Hanlin , Richabd T. (Georgia Expt. Sta., Experiment.) Morphology of Neuroneetria peziza . Amer. Jour. Bot. 60(1): 56–66. Illus. 1963.—Swollen tips of vegetative hyphae develop into multicellular, multinucleate ascogonia. Hyphae grow up to form a pseudoparenchymatous ascocarp wall. The ascogonia give rise to ascogenous cells from which croziers and asci form. As the ascocarp develops, an apical meristem produces many cells which are pushed downward and form a compact pseudoparenchyma in the centrum. As the asci form, the cells of the pseudoparenchyma elongate, forming central strands. These disintegrate as the asci grow up among them. Mature asci possess a thickened apical cap but no apical ring; the ascospores have longitudinal striations. The chromosome number is n = 5. The pattern of development resembles the Diapor the type of Luttrell but is unique in the formation of strands from the pseudoparenchyma. Other characters, however, indicate a closer affinity to Nectria.  相似文献   

3.
Large, spirally coiled initials embedded in a subiculum develop into multicellular, multinucleate ascogonia. Hyphae grow up around them to form a prosenchymatous perithecial wall. The ascogonia give rise to multinucleate ascogenous cells from which croziers and asci form. As the ascocarp develops, an apical meristem produces uninucleate cells that elongate downward into long, slender filaments, the apical paraphyses. From a basal layer of ascogenous cells, asci grow up among the apical paraphyses, which disintegrate as the ascocarp matures. Ascospores are verrucose, with obtuse apiculi. This pattern of development is typical of the Nectria-type of Luttrell.  相似文献   

4.
The development of the perithecium of Ceratocystis stenoceras was observed by a light microscope and by a scanning electron microscope.The fungus has developed dark brown perithecia on wheat agar medium in three days of incubation. Perithecial primordia appeared as tightly knotted coils. At the center of it an oval ascogonium was observed. The ascogonium was developed from a lateral wall of a hypha, and the hyphae covering the ascogonium branched at the basal part where the ascogonium was attached. These hyphae branched repeatedly in the developmental growth to cover the ascogonium, and it was finally covered tightly. The plasmogamy of this fungus is much probably performed by the gametangial contact. As the stage proceeded, the ascogonium elongated, the terminal and the basal portions of it swelled and cleavage of the ascogonium resulted. Each of the cleaved ascogonia germinated continuously and stretched out the ascogenous hyphae. About that time the cells consisting of perithecia were vacuolated from the center and successively dissolved, so that a space was formed in the center of the body. Ascogenous hyphae continued to develop downwards, and their end were fixed to the inner wall of the body.The upper portion of the hyphae converged to the center of the body and the ascogenous hyphae became the supporting tissue for ascus formation.Hook formation was observed prior to the ascus formation. After completion of karyogamy by hook formation, the fissure appeared on the ascus and the end portion was released. The released portion included eight ascospores. The ascus had a smooth surface and no special structure was seen on the top. As the asci were matured, they evanesced by themselves and concurrently ascospores came out. Finally the body was massively filled with ascospores.  相似文献   

5.
Ascocarp development in Nectria haematoccocca begins with the formation of deeply staining coils as lateral branches of the vegetative hyphae. As these coils develop into multicellular, multi-nucleate ascogonia, they are surrounded by a pseudoparenchymatous envelope. During ascocarp development an apical meristem produces cells that elongate downward into the centrum, forming long, filamentous, apical paraphyses. When fully developed the cells of the apical paraphyses swell, producing a tissue that is pseudoparenchymatous in appearance. The ascogonium proliferates to form a layer of multinucleate ascogenous cells across the base of the ascocarp. Asci form from the ascogenous cells by means of croziers. The asci grow up among the apical paraphyses, which disintegrate as the ascocarp matures. This pattern is typical of the Nectria-type of development, indicating that this species belongs in the Hypocreales.  相似文献   

6.
Ascocarps of Trichometasphaeria turcica Luttrell originated in culture as globose parenchymatous stromata within which ascogonia differentiated. As the ascostroma enlarged, stromal cells immediately above the ascogonium produced hyphal outgrowths whose tips grew downward and intertwined beneath the ascogonium. Intercalary growth of these hyphae formed a pseudoparaphysate centrum. Ascogenous hyphae near the base of the centrum produced bitunicate asci which grew upward among the persistent pseudoparaphyses. The ostiole was a broad pore resulting from dissolution of the peripheral stromal cells above the apex of the single locule. Spiny outgrowths from the peripheral cells surrounded the ostiole. The bitunicate asci and ascostromatic ascocarps place this fungus in the subclass Loculoascomycetidae. The pseudoparaphysate centrum and perithecioid ascostroma are characteristic of the Pleosporales. The apparently insignificant character of a protruding conidial hilum was the only essential feature distinguishing Helminthosporium turcicum Pass., the conidial stage of T. turcica, from H. maydis Nisik. & Miyake, a typical representative of species of Helminthosporium with perfect stages in Cochliobolus.  相似文献   

7.
Perithecium development in Podospora anserina begins with the formation of a coiled ascogonial initial that arises as a lateral branch from a vegetative hypha. Hyphae grow up around the initial, forming an envelope that will become the ascocarp wall. As the ascocarp increases in size, several layers of thin-walled pseudoparenchyma cells form inside the wall, especially at the apex of the ascocarp. Paraphyses arise both from the base of the ascocarp and from the innermost layer of pseudoparenchyma cells and grow inward and upward, completely filling the centrum with tightly packed filaments. During development of the ascocarp the ascogonium proliferates to form ascogenous hyphae along the base of the centrum. Asci arise from the ascogenous hyphae and grow up among the paraphyses. Meristematic growth at the ascocarp apex results in the formation of an ostiole lined with periphyses. Centrum structure in P. anserina could be interpreted as intermediate between the Xylaria and Diaporthe types.  相似文献   

8.
Abstract: The structure and development of the ascomata in Mycoporum elabens were studied. No pseudoparaphyses or para-physoids are developed but the asci grow into a network formed by stretched ascostromatic tissue which appears similar to pseudoparaphyses at the mature stage. The ascomata do not open regularly but burst open at several points, thus imitating plurilo-cularous stromata. This development agrees with that observed for the Dothideales sensu stricto and so it is proposed to place the Mycoporaceae here. Although algal cells were found in the surroundings of the ascomata, they did not have close contact with the fungal hyphae. Thus, Mycoporum elabens is interpreted as being non-lichenized.  相似文献   

9.
Thin sections taken from intact ascocarps were examined to trace the developmental sequence of ascocarp formation in Sporormia australis Speg. The ascocarp originated from a uninucleate vegetative hyphal cell which underwent repeated divisions and formed an ascostroma. In the center of the young ascostroma a cavity formed, apparently from cell disintegrations, and enlarged as the ascocarp enlarged. Within the cavity pseudoparaphyses developed from undifferentiated pseudoparenchymatous cells at the apex of the cavity and extended downward. Ascogenous hyphae arose from proliferating uninucleate cells at the base of the cavity. As the ascocarp matured, the pseudoparenchymatous cells differentiated into three layers, none of which were considered homologous to the perithecial wall lining the cavity of pyrenomycetes. The cells of the apex were not differentiated into layers and light microscopy revealed the presence of an ostiole through which bitunicate asci discharged their eight 4-celled ascospores.  相似文献   

10.
A new ascomycete species, Jahnula apiospora (Jahnulales, Dothideomycetes), collected from submerged wood in a freshwater creek on Prince Edward Island, Canada, is described and illustrated. The characteristic features of the new species are globose to subglobose, black, ostiolate, membranous ascomata with broad, brown, subtending hyphae; a peridial wall composed of an outer layer of thick-walled cells occluded by black, amorphous material along the upper two-thirds of the ascoma; trabeculate pseudoparaphyses; cylindrical to narrowly fusoid, fissitunicate asci; and brown, one-septate, apiosporous ascospores without a gelatinous sheath or appendages.  相似文献   

11.
Based on corresponding ascocarp ontogeny and thallus structure, the genera Euopsis and Harpidium are included in the family Lichinaceae. In the two species of Euopsis, E. granatina and E. pulvinata, the apothecia develop from ascogonia in generative tissue, while in H. rutilans they are pycnoascocarps. In thallus anatomy, the species of Euopsis resemble Pyrenopsis haematopsis and allied species, while H. rutilans corresponds in structure and development of the thallus and apothecia to Pyrenopsis haemaleella (syn. P. sphinctotricha). H. rutilans is the first member of Lichinaceae known to have only a green algal symbiont. In E. granatina, two phycobionts are always present, a species of Gloeocapsa and a chlorococcalean alga. In Euopsis and Harpidium, the ascus wall is composed of an outer, non-expansible and an inner, expansible layer; the latter surrounds the protoplast as an amyloid collar, which expands during spore release into a long, tapering rostrum. In Euopsis, the outer wall layer is strongly amyloid and the upper part separated from the expanded amyloid rostrum by a non-amyloid zone, appearing like a slit in LM studies. The ultrastructure and function of the ascus in E. granatina has been studied in TEM and is interpreted as functionally unitunicate-rostrate. Unitunicate asci with short rostrum are described for P. haemaleella and P. haematopsis.  相似文献   

12.
Cleistoiodophanus represents a new coprophilous genus of the tribe Iodophaneae in the Ascobolaceae (Pezizales). The only species thus far discovered, C. conglutinatus, is described and illustrated. Aspects of its cytological development are described from cultures obtained from apothecia found on sheep dung near Gainesville, Florida. Plasmogamy occurs in acogonial coils, two or three cells of which give rise to ascogenous hyphae. Ascogonia are quickly enclosed by vegetative hyphae and the ascocarp continues in a cleistohymenial development. Unlike Iodophanus and related genera, the excipulum remains intact even after spore maturation and the asci push through the epihymenial regions to release spores. The asci are characteristically thickened at their apices, diffusely amyloid, and somewhat saccate. The asci are predominantly 8-spored, but have been found with four or 16 spores per ascus. A previously undescribed Oedocephalum imperfect stage was induced in culture.  相似文献   

13.
Two water molds can grow without measurable turgor pressure   总被引:1,自引:0,他引:1  
The water molds Achlya bisexualis Coker and Saprolegnia ferax (Gruithuisen) Thuret (Class: Oomycetes) normally grow in the form of slender hyphae with up to 0.8 MPa (8 bar) of internal pressure. Models of plant cell growth indicate that this turgor pressure drives the expansion of the cell wall. However, under conditions of prolonged osmotic stress, these species were able to grow in the absence of measurable turgor. Unpressurized cells of A. bisexualis grew in the form of a plasmodium-like colony on solid media, and produced a multinucleate yeast-like phase in liquid. By contrast, the morphology of S. ferax was unaffected by the loss of turgor, and the mold continued to generate tip-growing hyphae. Measurements of cell wall strength indicate that these microorganisms produce a very fluid wall in the region of surface growth, circumventing the usual requirement for turgor.Abbreviations DAPI 4,6-diamidino-2-phenylindole - PEG polyethylene glycol This work was supported by National Science Foundation grant DCB 90-17130.  相似文献   

14.
Morphology, development and nuclear behavior of the ascogenous stroma and asci in the infection spots have been described inTaphrina maculans Butler. The fungus forms subcuticular and intercellular mycelium in the leaf tissues and the ascogenous layers originate through division of the subcuticular hyphal cells in the infection sites. Germination of ascogenous cells starts with their elongation in the uppermost layer forming asci and ascospores without formation of stalk cells. Meiosis of the fusion (diploid) nucleus occurs in the young ascus as in otherTaphrina species devoid of stalk cells. The haploid chromosome complement in this species consists of 3 chromosomes (n=3). All the cells in the stromatic layer are potential ascogenous cells and ascus formation continues, until all of them are exhausted in the infection spot. Eight ascospores are normally formed in each ascus, but multi-plication of ascospores may occurin situ later. Three morphologically distinct types of ascus opening are encountered, which are apparently not correlated with prevalent environment. Multiplication of ascospores after their discharge from mature asci occurs by budding proceded by a mitotic division of the spore nucleus. Blastospores (budded cells) germinate into short hyphae and binucleate condition of cells originates by mitotic division of the nucleus. Occurrence of giant cells containing 2 nuclei is often observed. Possible origin of Uredinales fromTaphrina-like ancestors has been indicated due to their close resemblance.  相似文献   

15.
Vaughn KC 《Protoplasma》2003,220(3-4):189-200
Summary.  Dodder (Cuscuta pentagona) hyphae are unique amongst the parasitic weeds for their ability to apparently grow through the walls of the host plant. Closer examination reveals, however, that the hyphae do not grow through the host but rather induce the host to form a new cell wall (or extend the existing wall) to coat the growing hypha. This chimeric wall composed of walls from two species is even traversed by plasmodesmata that connect the two cytoplasms. Compositionally, the chimeric wall is quite different from the walls of either the host or in other cells of the dodder plant, on the basis of immunocytochemical labeling. The most striking differences were in the pectins, with much stronger labeling present in the chimeric wall than in either the host or other dodder walls. Interestingly, labeling with monoclonal antibodies specific to arabinan side chains of rhamnogalacturonan I pectin fraction was highly enriched in the chimeric wall, but antibodies to galactan side chains revealed no labeling. Arabinogalactan protein antibodies labeled the plasma membrane and vesicles at the tips of the hyphae and the complementary host wall, although the JIM8-reactive epitope, associated with very lipophilic arabinogalactan proteins, was found only in dodder cells and not the host. Callose was found in the plasmodesmata and along the forming hyphal wall but was found at low levels in the host wall. The low level of host wall labeling with anticallose indicates that a typical woundlike response was not induced by the dodder. When dodder infects leaf lamina, which have more abundant intercellular spaces than petioles or shoots, the hyphae grew both intra- and extracellularly. In the latter condition, a host wall did not ensheath the parasite and there was clear degradation of the host middle lamellae by the growing hyphae, allowing the dodder to pass between cells. These data indicate that the chimeric walls formed from the growth of the host cell wall in concert with the developing hyphae are unique in composition and structure and represent an induction of a wall type in the host that is not noted in surrounding walls. Received February 1, 2002; accepted July 8, 2002; published online November 29, 2002  相似文献   

16.
Summary Observations of ascospore fromation in KMnO4-fixed Saccobolus kerverni apothecia with the electron microscope reveal the following sequence. Ascus formation is preceded by the development of croziers whose fine structure differs little from that of vegetative hyphae. Following fusion of the two nuclei in the ascus mother cell, the resultant ascus elongates, and two large vacuoles appear, first below and later above the fusion nucleus. These vacuoles soon occupy dominant positions at the tip and bottom of the ascus and assume a flocculent appearance. Nuclear blebbing occurs during meiosis, mitosis, and the subsequent spore delimitation process in the central cytoplasmic portion of the ascus. Each spore initial is surrounded by two membranes, the plasma and investing membranes, between which the spore wall is deposited in two layers, an inner primary wall and an outer secondary wall. Following primary wall deposition the spores clump; secondary wall deposition begins outside the primary wall at the places where the spores are contiguous. Interdigitation of these walls and disappearance of the investing membranes in the sutures lead to the envelopment of all eight ascospores in a common secondary wall. A flocculent material in the epiplasmic vacuoles aggregates around the mature spore balls.Based on a portion of a dissertation presented to the Faculty of the Graduate School of the University of Texas in partial fulfillment of the requirements for the degree of Doctor of Philosophy.  相似文献   

17.
Uchida W  Matsunaga S  Kawano S 《Protoplasma》2005,226(3-4):207-216
Summary. The development of male organs is induced in female flowers of the dioecious plant Silene latifolia by infection with the fungus Microbotryum violaceum. Stamens in a healthy female flower grow only to stage 6, whereas those in an infected female flower develop to the mature stage (stage 12), at which the stamens are filled with fungal teliospores instead of pollen grains. To investigate these host–parasite interactions, young floral buds and fungus-induced anthers of infected female flowers were examined by electron microscopy following fixation by a high-pressure freezing method. Using this approach, we found that parasitic hyphae of this fungus contain several extracellular vesicles and have a consistent appearance up to stage 8. At that stage, parasitic hyphae are observed adjacent to dying sporogenous cells in the infected female anther. At stage 9, an increased number of dead and dying sporogenous cells is observed, among which the sporogenous hyphae of the fungus develop and form initial teliospores. Several types of electron-dense material are present in proximity to some fungi at this stage. The initial teliospores contain two types of vacuoles, and the fungus cell wall contains abundant carbohydrate, as revealed by silver protein staining. The sporogenous cell is probably sensitive to infection by the fungus, resulting in disruption. In addition, the fungus accelerates cell death in the anther and utilizes constituents of the dead host cell to form the mature teliospore. Correspondence and reprints (present address): Molecular Membrane Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.  相似文献   

18.
WILSON  IRENE M. 《Annals of botany》1952,16(3):321-339
The ascogenous hyphae arise from the oogonium, opposite groupsof nuclei, as minute, enucleate papillae. Nuclei pass into themsingly, rarely two at a time, and a knob-like swelling is formed,containing several nuclei and later growing out into one ormore branches. The nuclei are in single file in the branchesand irregularly arranged in the bulbous base. There are frequentlytwo nuclei in a leading position at the tip of the young branch,but the nuclei may become more evenly spaced as the hypha elongates.The nuclei undergo a simultaneous mitosis. The spindles of thedividing nuclei in the branches are not parallel and this is,therefore, not a conjugate division. Walls are formed as ingrowingrings across the spindles so that the ascogenous hypha, whenseptate, has a uninucleate end cell followed by one, or usuallymore, binucleate cells and a basal bulb containing a variablenumber of nuclei. Croziers are formed as lateral, hooked outgrowths from the binucleatecells. After a simultaneous mitosis of the two nuclei a uninucleateend cell, a binucleate penultimate cell, and a uninucleate stalkcell are formed. Thus, the division in the crozier and thatin the ascogenous hypha are alike. The binucleate cell of the crozier may proliferate to form anothercrozier, or it may form an ascus after the fusion of its twonuclei. The stalk and terminal cell of the crozier may anastomoseand grow out to form a lateral crozier. The chromosome number in the mitosis in the ascogenous hyphais twelve and there are twelve bivalents at the first divisionof meiosis in the ascus. The effect of increasing the illumination of the cultures withan electric lamp in addition to diffuse daylight is to ensurethe further development of all early formed sexual organs, tomake the ascogenous hyphae develop rapidly, to make the lattershort and curved in form with few binucleate cells, and to increasethe tendency towards a period of erect proliferation beforethe formation of the asci and lateral proliferation begin. The bearing of the results on current theories of sexualityin the Ascomycetes is discussed.  相似文献   

19.
R. H. Berg  L. McDowell 《Protoplasma》1987,136(2-3):104-117
Summary This is an ultrastructural study of development of infected cells in nitrogen fixing root nodules ofCasuarina spp. While several aspects of development are similar to those found in many other actinorhizae, unusual aspects of development of the host cell and differentiation of the endophyte inCasuarina are correlated with unusual changes in the wall of the infected cell. Instead of vesicles the endophyte forms atypical hyphae in mature infected cells. These unusual hyphal forms are termed intracellular hyphae. Intracellular hyphae are nonseptate hyphae which originate and terminate within the same host cell, and have a varying diameter and a multidirectional growth and branching pattern. A laminate surface layer previously undescribed on hyphae ofFrankia is a feature common to mostCasuarina endophytic hyphae and is probably similar chemically to the laminae comprising the multilamellate envelope of endophytic vesicles in other actinorhizae.This paper is Florida Agricultural Experiment Station Journal Series No. 7350.  相似文献   

20.
The cytology of ascus development in Nectria cinnabarina was investigated with the orceinsmear technique, from crozier formation to ascospore maturation. At prophase I synapsis occurs while the chromosomes are still contracted, and the nucleus passes through dictyotene, a diffuse stage rarely seen in plants. A haploid complement of five chromosomes has been precisely determined. The first two divisions in the ascus constitute meiosis, and the third (mitotic) is followed by ascospore delimitation. A fourth division takes place in the ascospore, which is subsequently divided by a septum into two uninucleate cells. Of all species of Nectria thus far investigated N. cinnabarina is the only species in which additional nuclear divisions in the ascus do occur, accounting for the multinucleate condition in the ascospore cells. The bearing that this distinctive nuclear condition has on phylogeny and evolution in the Hypocreales is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号