首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large, spirally coiled initials embedded in a subiculum develop into multicellular, multinucleate ascogonia. Hyphae grow up around them to form a prosenchymatous perithecial wall. The ascogonia give rise to multinucleate ascogenous cells from which croziers and asci form. As the ascocarp develops, an apical meristem produces uninucleate cells that elongate downward into long, slender filaments, the apical paraphyses. From a basal layer of ascogenous cells, asci grow up among the apical paraphyses, which disintegrate as the ascocarp matures. Ascospores are verrucose, with obtuse apiculi. This pattern of development is typical of the Nectria-type of Luttrell.  相似文献   

2.
Ascocarp development in Nectria haematoccocca begins with the formation of deeply staining coils as lateral branches of the vegetative hyphae. As these coils develop into multicellular, multi-nucleate ascogonia, they are surrounded by a pseudoparenchymatous envelope. During ascocarp development an apical meristem produces cells that elongate downward into the centrum, forming long, filamentous, apical paraphyses. When fully developed the cells of the apical paraphyses swell, producing a tissue that is pseudoparenchymatous in appearance. The ascogonium proliferates to form a layer of multinucleate ascogenous cells across the base of the ascocarp. Asci form from the ascogenous cells by means of croziers. The asci grow up among the apical paraphyses, which disintegrate as the ascocarp matures. This pattern is typical of the Nectria-type of development, indicating that this species belongs in the Hypocreales.  相似文献   

3.
Hanlin , Richard T. (Georgia Experiment Station, Experiment.) Studies in the genus Nectria. II. Morphology of N. gliocladioides. Amer. Jour. Bot. 48(10): 900–908. Illus. 1961.—Swollen tips of vegetative hyphae develop into multicellular archicarps from which multinucleate ascogonia form. From basal cells of each archicarp arise hyphae which grow up into a prosenchymatous, true perithecial wall; around this wall is formed a thin pseudoparenchymatous stroma of compacted hyphae. The ascogonia give rise to ascogenous cells from which croziers and asci form directly. At the same time, an apical meristem forms cells that grow downward into the centrum. These are pseudoparaphyses. Asci grow up among the pseudoparaphyses, which deliquesce as the ascocarp matures. The ascus tip contains a thick ring with a pore and lateral thickening of the ascus wall. Ascospores are forcibly ejected. The chromosome number is 4. This species conforms to the Nectria Developmental Type of Luttrell.  相似文献   

4.
Perithecium development in Podospora anserina begins with the formation of a coiled ascogonial initial that arises as a lateral branch from a vegetative hypha. Hyphae grow up around the initial, forming an envelope that will become the ascocarp wall. As the ascocarp increases in size, several layers of thin-walled pseudoparenchyma cells form inside the wall, especially at the apex of the ascocarp. Paraphyses arise both from the base of the ascocarp and from the innermost layer of pseudoparenchyma cells and grow inward and upward, completely filling the centrum with tightly packed filaments. During development of the ascocarp the ascogonium proliferates to form ascogenous hyphae along the base of the centrum. Asci arise from the ascogenous hyphae and grow up among the paraphyses. Meristematic growth at the ascocarp apex results in the formation of an ostiole lined with periphyses. Centrum structure in P. anserina could be interpreted as intermediate between the Xylaria and Diaporthe types.  相似文献   

5.
Early stages of pseudothecium development consist of small pseudoparenchymatous stromata in which ascogonia differentiate. Deeply staining cells in the apical region of the young pseudothecium elongate to form pseudoparaphyses, which grow down to fill the centrum. Ascogenous hyphae grow out from ascogenous cells, located in the basal plectenchyma, and croziers arise and proliferate from the ascogenous hyphae. Bitunicate asci grow up among the pseudoparaphyses and forcibly discharge two-celled hyaline ascospores at maturity. Because centrum development in Didymella bryoniae (Auersw.) Rehm is pseudoparaphysate, the causal agent of gummy stem blight in watermelon is properly placed in the order Pleosporales. The placement of this species in Didymella on the basis of the Ascochyta cucumis Fautr. et Roum. anamorph is supported by centrum structure.  相似文献   

6.
Centrum development in the sooty mold Ascomycete Limacinula samoensis von Hoehnel emend. Reynolds proceeds in an ascostroma which begins as a small cushion of somatic tissue and enlarges by multiplication of cells in an apical region and by cell enlargement. A two-layered ascocarp wall initially surrounds a pseudoparenchymatous core into which the bitunicate asci protrude. Interascal strands of pseudoparenchymatous tissue disintegrate at maturity of the ascocarp. An apical meristem eventually culminates activity with formation of a short ostiolate neck. Centrum development is homologous to the Dothidea type. The centrum development of other capnodiaceous fungi is reviewed.  相似文献   

7.
TIM  S. K-M. 《Annals of botany》1971,35(3):713-720
The development of the stroma, microconidial locule, and ascigerouslocule of Tripospora tripos are described. The first structureto appear on the leaf after infection is a stromal mass composedof mainly fungal pseudoparenchyma. Within this is differentiateda microconidial locule Bulges of purely stromal tissue appearon this original stromal mass and these ultimately form theascigerous locules A wall, separately formed in the stroma,is not produced around the asci; the ascocarp arises as a loculein a stroma. There is a disintegration of tissue within thelocule into which a number of fascicles of unitunicate ascigrow. As such a combination of unitunicate asci with an ascostromaticascocarp is unusual, and since other related species share thesame developmental characteristics, a new developmental typeis proposed.  相似文献   

8.
Development of perithecia from single, uninucleate ascospores disclosed a homothallic condition for Chaetomium erraticum. This species was found to produce sessile ascogonial coil initials from uninucleate vegetative cells that become enveloped by hyphae formed at the base of the ascogonium. The ascogonium consists of several cells that are uninucleate or binucleate. A perithecium forms from numerous divisions and enlargement of the surrounding uninucleate cells. Differentiation of the perithecial cells results in the formation of a carbonaceous wall, perithecial hairs, and an ostiole lined with periphyses. A convex hymenial cluster of ascogenous cells forms in the lower half of the centrum from which typical croziers develop. Asci push up into the pseudoparenchyma cells of the centrum. The growth of the ascogenous system is in part responsible for increase in perithecial size. The breakdown of the pseudoparenchyma cells around the developing asci results in the formation of a central cavity in which ascospores are released when the asci deliquesce. No paraphyses are present. The type of development and features of the centrum of C. erraticum and other species of Chaetomium indicate a distinct Xylaria-type centrum.  相似文献   

9.
Thin sections taken from intact ascocarps were examined to trace the developmental sequence of ascocarp formation in Sporormia australis Speg. The ascocarp originated from a uninucleate vegetative hyphal cell which underwent repeated divisions and formed an ascostroma. In the center of the young ascostroma a cavity formed, apparently from cell disintegrations, and enlarged as the ascocarp enlarged. Within the cavity pseudoparaphyses developed from undifferentiated pseudoparenchymatous cells at the apex of the cavity and extended downward. Ascogenous hyphae arose from proliferating uninucleate cells at the base of the cavity. As the ascocarp matured, the pseudoparenchymatous cells differentiated into three layers, none of which were considered homologous to the perithecial wall lining the cavity of pyrenomycetes. The cells of the apex were not differentiated into layers and light microscopy revealed the presence of an ostiole through which bitunicate asci discharged their eight 4-celled ascospores.  相似文献   

10.
Perithecia of Gnomonia comari (Ascomycetes) mature within 14 days on cornmeal agar under continuous fluorescent light at 25 C. The perithecium is initiated by a coiled, multicellular ascogonium. Branches from somatic hyphae surround the ascogonium. This hyphal envelope early differentiates into two regions: a centrum of pseudoparenchymatous cells and a peripheral wall of more elongated, flattened cells. The wall produces a long, ostiolate beak by eruption of a column of hyphae from the inner layers at the apex; the cells gradually become thick-walled and brown from the peripheral layers inward. Proliferations from the ascogonial cells near the center of the perithecium form a bowl-shaped mass of ascogenous hyphae which expands centrifugally until it appears in section as a crescentic layer across the middle of the centrum. The centrum pseudoparenchyma above this incipient hymenium disintegrates, and short abortive paraphyses extend upward from the subhymenial pseudoparenchyma into the resulting cavity. The paraphyses disintegrate as the asci develop among them. The hymenium gradually pushes downward into the disintegrating subhymenial pseudoparenchyma until it rests on the perithecial wall. Maturing asci become detached from the hymenium, fill the perithecial cavity, and pass through the ostiole. At the tip of the beak they discharge their ascospores forcibly. Diaporthaceae with abortive paraphyses may occupy an intermediate position in a series leading from forms (Gaeumannomyces graminis) with long delicate paraphyses resembling those in the Sordariaceae to forms (Stegophora ulmea) in which the centrum is entirely pseudoparenchymatous.  相似文献   

11.
Perithecia of Hypomyces aurantius are initiated by solitary, symmetrical, hyphal coils. During development of the ascocarp, a locule forms concomitantly with centripetal paraphyses, the uppermost of which elongate downward as a palisade of narrow, septate filaments, the apical paraphyses. The initiating coil retains its integrity in the middle of the primordium and becomes the ascogenous system. Uninucleate, diploid cells are part of the ascogenous system. The ascogenous system proliferates through croziers from which asci develop. The haploid chromosome number is 4. The perithecial papillae are formed of spherical cells. This pattern of development is a modification of the Nectria-type of development and characterizes the genus Hypomyces.  相似文献   

12.
Ascocarps of Trichometasphaeria turcica Luttrell originated in culture as globose parenchymatous stromata within which ascogonia differentiated. As the ascostroma enlarged, stromal cells immediately above the ascogonium produced hyphal outgrowths whose tips grew downward and intertwined beneath the ascogonium. Intercalary growth of these hyphae formed a pseudoparaphysate centrum. Ascogenous hyphae near the base of the centrum produced bitunicate asci which grew upward among the persistent pseudoparaphyses. The ostiole was a broad pore resulting from dissolution of the peripheral stromal cells above the apex of the single locule. Spiny outgrowths from the peripheral cells surrounded the ostiole. The bitunicate asci and ascostromatic ascocarps place this fungus in the subclass Loculoascomycetidae. The pseudoparaphysate centrum and perithecioid ascostroma are characteristic of the Pleosporales. The apparently insignificant character of a protruding conidial hilum was the only essential feature distinguishing Helminthosporium turcicum Pass., the conidial stage of T. turcica, from H. maydis Nisik. & Miyake, a typical representative of species of Helminthosporium with perfect stages in Cochliobolus.  相似文献   

13.
Cleistoiodophanus represents a new coprophilous genus of the tribe Iodophaneae in the Ascobolaceae (Pezizales). The only species thus far discovered, C. conglutinatus, is described and illustrated. Aspects of its cytological development are described from cultures obtained from apothecia found on sheep dung near Gainesville, Florida. Plasmogamy occurs in acogonial coils, two or three cells of which give rise to ascogenous hyphae. Ascogonia are quickly enclosed by vegetative hyphae and the ascocarp continues in a cleistohymenial development. Unlike Iodophanus and related genera, the excipulum remains intact even after spore maturation and the asci push through the epihymenial regions to release spores. The asci are characteristically thickened at their apices, diffusely amyloid, and somewhat saccate. The asci are predominantly 8-spored, but have been found with four or 16 spores per ascus. A previously undescribed Oedocephalum imperfect stage was induced in culture.  相似文献   

14.
A study of four species of Erysiphaceae (Uncinula salicis, Podosphaera leucotricha, Erysiphe cichoracearum, and Microsphaera diffusa) revealed that the binucleate stages of the ascocarp are initiated in a similar manner to those of Diporotheca rhizophila Gordon & Shaw. The “appendages” developing on immature ascocarps are considered to be receptive hyphae. Appendages characteristic of mature ascocarps are produced much later. Lysis of certain centrum cells occurs, and asci are initiated from some of the remaining binucleate centrum cells. Resorption of centrum cells by the asci is supported by this investigation, corroborating Björling's earlier studies on Erysiphe graminis.  相似文献   

15.
Development of a typical pseudoparaphysate centrum in Didymosphaeria sadasivanii Ramachandra-Reddy indicates that this ascomycete is properly placed in the Pleosporaceae despite the fact that forcible discharge of ascospores from bitunicate asci has not been demonstrated. The relatively thin-walled asci releasing ascospores within the ascocarp in D. sadasivanii, as in Cochliobolus spp., probably were derived by reduction from the bitunicate type. Ascocarps matured on malt agar slants but developed more rapidly and normally on autoclaved alfalfa stems inoculated in medicine bottles and transferred to moist filter paper in large petri dishes when covered by mycelium.  相似文献   

16.
Based on corresponding ascocarp ontogeny and thallus structure, the genera Euopsis and Harpidium are included in the family Lichinaceae. In the two species of Euopsis, E. granatina and E. pulvinata, the apothecia develop from ascogonia in generative tissue, while in H. rutilans they are pycnoascocarps. In thallus anatomy, the species of Euopsis resemble Pyrenopsis haematopsis and allied species, while H. rutilans corresponds in structure and development of the thallus and apothecia to Pyrenopsis haemaleella (syn. P. sphinctotricha). H. rutilans is the first member of Lichinaceae known to have only a green algal symbiont. In E. granatina, two phycobionts are always present, a species of Gloeocapsa and a chlorococcalean alga. In Euopsis and Harpidium, the ascus wall is composed of an outer, non-expansible and an inner, expansible layer; the latter surrounds the protoplast as an amyloid collar, which expands during spore release into a long, tapering rostrum. In Euopsis, the outer wall layer is strongly amyloid and the upper part separated from the expanded amyloid rostrum by a non-amyloid zone, appearing like a slit in LM studies. The ultrastructure and function of the ascus in E. granatina has been studied in TEM and is interpreted as functionally unitunicate-rostrate. Unitunicate asci with short rostrum are described for P. haemaleella and P. haematopsis.  相似文献   

17.
Pododimeria, containing the brown-spored species P. gallica and P. andina, is expanded to include species with hyaline as well as brown ascospores. Two new hyalodidymous taxa, P. juniperi and P. gelatinosa, are added to the genus. Species of Pododimeria occur as ectocommensals on living shoots of Cupressaceae or Podocarpaceae. Although the superficial mycelium may extend into the labyrinthine chambers enclosed by the imbricated scale leaves of the host, it does not penetrate the cuticle. The tiny, black, subglobose, uniloculate ascocarps taper basally to stromatic stipes. The bitunicate asci are interspersed with pseudoparaphyses composed of broad, irregularly shaped cells that readily break apart. The thick, brown to bluish-green ascocarp wall of P. juniperi has a broad equatorial band of prosenchymatous cells. The ascocarp wall of P. gelatinosa is composed uniformly of subhyaline, gelatinous pseudoparenchymatous cells covered by a dark, amorphous crust.  相似文献   

18.
Rosinski , Martin A. (U. Maine, Orono.) Development of the ascocarp of Ceratocystis ulmi. Amer. Jour. Bot. 48(4): 285–293. Illus. 1961.—A study of the development of the perithecium of Ceratocystis ulmi was conducted using classic histological techniques. This study revealed the presence of a singular combination of primitive and advanced characteristics. The perithecium possesses a simple centrum made up only of ascogenous hyphae and small, spherical asci, but croziers are formed prior to ascus formation, and the ascogenous hyphae are arranged in a hymenium. Since development of C. ulmi compares closely with most other accounts of development in other members of the genus Ceratocystis, it appears that Ceratocystis is a good taxon. In addition, because of its intermediate nature and because Ceratocystis is the type genus of the family Ophiostomataceae, this family should be placed in a separate order, the Ophiostomatales.  相似文献   

19.
Summary We have isolated a novel gene (NUM1) with unusual internal periodicity. The NUM1 gene encodes a 313 kDa protein with a potential Ca2+ binding site and a central domain containing 12 almost identical tandem repeats of a 64 amino acid polypeptide. num1-disrupted strains grow normally, but contain many budded cells with two nuclei in the mother cell instead of a single nucleus at the bud neck, while all unbudded cells are uninucleate: This indicates that most G2 nuclei divide in the mother before migrating to the neck, followed by the migration of one of the two daughter nuclei into the bud. Furthermore, haploid num1 strains tend to diploidize during mitosis, and homozygous num1 diploid or tetraploid cells sporulate to form many budded asci with up to eight haploid or diploid spores, respectively, indicating that meiosis starts before nuclear redistribution and cytokinesis. Our data suggest that the NUM1 protein is involved in the interaction of the G2 nucleus with the bud neck.  相似文献   

20.
Ascocarp development in Pycnidiophora dispersa is similar to that in Phaeotrichum. A stroma originates in an intercalary position on a hypha. It increases in size, and the outer cell layer differentiates to form the wall. The ascogenous system forms from a mass of fertile cells in the center of the centrum. These become enlarged and multinucleate and give rise to ascogenous hyphae which form asci at their tips by means of croziers. In time, most of the cells of the centrum become fertile and give rise to ascogenous hyphae. There are no sterile threads in the centrum and no hymenium is present, the asci being scattered throughout the locule. The haploid chromosome number is n = 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号