首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 910 毫秒
1.
The microbiome in the rhizosphere–the region surrounding plant roots–plays a key role in plant growth and health, enhancing nutrient availability and protecting plants from biotic and abiotic stresses. To assess bacterial diversity in the tomato rhizosphere, we performed two contrasting approaches: culture-dependent and -independent. In the culture-dependent approach, two culture media (Reasoner’s 2A agar and soil extract agar) were supplemented with 12 antibiotics for isolating diverse bacteria from the tomato rhizosphere by inhibiting predominant bacteria. A total of 689 bacterial isolates were clustered into 164 operational taxonomic units (OTUs) at 97% sequence similarity, and these were found to belong to five bacterial phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria, and Firmicutes). Of these, 122 OTUs were retrieved from the antibiotic-containing media, and 80 OTUs were recovered by one specific antibiotic-containing medium. In the culture-independent approach, we conducted Illumina MiSeq amplicon sequencing of the 16S rRNA gene and obtained 19,215 high-quality sequences, which clustered into 478 OTUs belonging to 16 phyla. Among the total OTUs from the MiSeq dataset, 22% were recovered in the culture collection, whereas 41% of OTUs in the culture collection were not captured by MiSeq sequencing. These results showed that antibiotics were effective in isolating various taxa that were not readily isolated on antibiotic-free media, and that both contrasting approaches provided complementary information to characterize bacterial diversity in the tomato rhizosphere.  相似文献   

2.
Bacterial communities and chitinase gene diversity of vermicompost (VC) were investigated to clarify the influence of earthworms on the inhibition of plant pathogenic fungi in VC. The spore germination of Fusarium moniliforme was reduced in VC aqueous extracts prepared from paper sludge and dairy sludge (fresh sludge, FS). The bacterial communities were examined by culture-dependent and -independent analyses. Unique clones selected from 16S rRNA libraries of FS and VC on the basis of restriction fragment length polymorphism (RFLP) fell into the major lineages of the domain bacteria Proteobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria and Firmicutes. Among culture isolates, Actinobacteria dominated in VC, while almost equal numbers of Actinobacteria and Proteobacteria were present in FS. Analysis of chitinolytic isolates and chitinase gene diversity revealed that chitinolytic bacterial communities were enriched in VC. Populations of bacteria that inhibited plant fungal pathogens were higher in VC than in FS and particularly chitinolytic isolates were most active against the target fungi.  相似文献   

3.
The diversity and dynamics of bacterial populations in Saint-Nectaire, a raw-milk, semihard cheese, were investigated using a dual culture-dependent and direct molecular approach combining single-strand conformation polymorphism (SSCP) fingerprinting and sequencing of 16S rRNA genes. The dominant clones, among 125 16S rRNA genes isolated from milk, belonged to members of the Firmicutes (58% of the total clones) affiliated mainly with the orders Clostridiales and the Lactobacillales, followed by the phyla Proteobacteria (21.6%), Actinobacteria (16.8%), and Bacteroidetes (4%). Sequencing the 16S rRNA genes of 126 milk isolates collected from four culture media revealed the presence of 36 different species showing a wider diversity in the Gammaproteobacteria phylum and Staphylococcus genus than that found among clones. In cheese, a total of 21 species were obtained from 170 isolates, with dominant species belonging to the Lactobacillales and subdominant species affiliated with the Actinobacteria, Bacteroidetes (Chryseobacterium sp.), or Gammaproteobacteria (Stenotrophomonas sp.). Fingerprinting DNA isolated from milk by SSCP analysis yielded complex patterns, whereas analyzing DNA isolated from cheese resulted in patterns composed of a single peak which corresponded to that of lactic acid bacteria. SSCP fingerprinting of mixtures of all colonies harvested from plate count agar supplemented with crystal violet and vancomycin showed good potential for monitoring the subdominant Proteobacteria and Bacteroidetes (Flavobacteria) organisms in milk and cheese. Likewise, analyzing culturable subcommunities from cheese-ripening bacterial medium permitted assessment of the diversity of halotolerant Actinobacteria and Staphylococcus organisms. Direct and culture-dependent approaches produced complementary information, thus generating a more accurate view of milk and cheese microbial ecology.  相似文献   

4.
Bacterial community structures in two physicochemically different soils from the coastal region of Gujarat, India were investigated using PCR, 16S rRNA gene clone libraries and sequencing methods. The aim of the study was to determine the diversity of bacterial communities inhabiting haloalkaline soil from a semi-arid coastal region. The phylogenetic diversity of bacteria in a haloalkaline soil (EC 20 dS/m; pH 9.5) was compared with a normal soil (EC 0.93 dS/m; pH 7.2). Clones representing phyla Proteobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Actinobacteria, Acidobacteria and Planctomycetes were found in both soils. Cyanobacteria, Verrucomicrobia, OP10 and Bacteria incertae sedis were detected in normal soil whereas Nitrospira was found only in haloalkaline soil. The dominant phylum in the haloalkaline soil was Bacteroidetes followed by Proteobacteria whereas normal soil was dominated by Proteobacteria and Actinobacteria. About 82% of the sequences from the haloalkaline library were related to those previously retrieved from various saline, alkaline and oil-natural gas field ecosystems whereas 50% of the sequences from normal soil resembled sequences of bacteria retrieved from agriculture-related habitats viz. agriculture fields, rhizosphere and grasslands. One third of the total sequences from both soil samples showed low BLAST identities (<95%) suggesting that these soils may harbor unique, novel taxa. Further, the correlation analysis revealed negative correlations of Shannon diversity indices and species evenness with salinity (EC) and pH but positive correlations with total carbon and total nitrogen contents of the soil samples. The haloalkaline soil exhibited less bacterial diversity and communities were significantly different from those of normal soil. In this study, the haloalkaline soil from a semi-arid region supports oligotrophic microbes.

Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.  相似文献   

5.
Two 16S rRNA gene clone libraries Cores 1U and 2U were constructed using two ice core samples collected from Austre Lovénbreen glacier in Svalbard. The two libraries yielded a total of 262 clones belonging to 59 phylotypes. Sequences fell into 10 major lineages of the domain Bacteria, including Proteobacteria (alpha, beta, gamma and delta subdivisions), Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, Deinococcus-Thermus, Chloroflexi, Planctomycetes, Cyanobacteria and candidate division TM7. Among them, Bacteroidetes, Actinobacteria, Alphaproteobacteria and Cyanobacteria were most abundant. UniFrac data showed no significant differences in community composition between the two ice cores. A total of nineteen bacterial strains from the genera Pseudoalteromonas and Psychrobacter were isolated from the ice cores. Phylogenetic and phenotypic analyses revealed a close relationship between the ice core isolates and bacteria in marine environments, indicating a wide distribution of some bacterial phylotypes in both terrestrial and marine ecosystems.  相似文献   

6.
The diversity of 184 isolates from rhizosphere and bulk soil samples taken from the Ni hyperaccumulator Alyssum murale, grown in a Ni-rich serpentine soil, was determined by 16S rRNA gene analysis. Restriction digestion of the 16S rRNA gene was used to identify 44 groups. Representatives of each of these groups were placed within the phyla Proteobacteria, Firmicutes and Actinobacteria by 16S rRNA gene sequence analysis. By combining the 16S rRNA gene restriction data with the gene sequence analysis it was concluded that 44.6% (82/184) of the isolates were placed within the phylum Proteobacteria, among these 35.9% (66/184) were placed within the class α-Proteobacteria, and 20.7% (38/184) had 16S rRNA gene sequences indicative of bacteria within genera that form symbioses with legumes (rhizobia). Of the remaining isolates, 44.6% (82/184) and 5.4% (10/184) were placed within the phyla Actinobacteria and Firmicutes, respectively. No placement was obtained for a small number (10/184) of the isolates. Bacteria of the phyla Proteobacteria and Actinobacteria were the most numerous within the rhizosphere of A. murale and represented 32.1% (59/184) and 42.9% (79/184) of all isolates, respectively. The approach of using 16S rRNA gene sequence analysis in this study has enabled a comprehensive characterization of bacteria that predominate in the rhizosphere of A. murale growing in Ni-contaminated soil.  相似文献   

7.
The aim of this study was to describe the microbial communities in the distal gut of wild wolves (Canis lupus). Fecal samples were collected from three healthy unrelated adult wolves captured at the nearby of Dalai Lake Nature Reserve in Inner Mongolia of China. The diversity of fecal bacteria was investigated by constructing PCR-amplified 16S rRNA gene clone libraries using the universal bacterial primers 27 F and 1493 R. A total of 307 non-chimeric near-full-length 16S rRNA gene sequences were analyzed and 65 non-redundant bacteria phylotypes (operational taxonomical units, OTUs) were identified. Seventeen OTUs (26%) showed less than 98% sequence similarity to 16S rRNA gene sequences were reported previously. Five different bacterial phyla were identified, with the majority of OTUs being classified within the phylum Firmicutes (60%), followed by Bacteroidetes (16.9%), Proteobacteria (9.2%), Fusobacteria (9.2%) and Actinobacteria (4.6%). The majority of clones fell within the order Clostridiales (53.8% of OTUs). It was predominantly affiliated with five families: Lachnospiraceae was the most diverse bacterial family in this order, followed by Ruminococcaceae, Clostridiaceae, Peptococcaceae and Peptostreptococcaceae.  相似文献   

8.
Population indices of bacteria and archaea were investigated from saline–alkaline soil and a possible microbe–environment pattern was established using gene targeted metagenomics. Clone libraries were constructed using 16S rRNA and functional gene(s) involved in carbon fixation (cbbL), nitrogen fixation (nifH), ammonia oxidation (amoA) and sulfur metabolism (apsA). Molecular phylogeny revealed the dominance of Actinobacteria, Firmicutes and Proteobacteria along with archaeal members of Halobacteraceae. The library consisted of novel bacterial (20%) and archaeal (38%) genera showing ≤95% similarity to previously retrieved sequences. Phylogenetic analysis indicated ability of inhabitant to survive in stress condition. The 16S rRNA gene libraries contained novel gene sequences and were distantly homologous with cultured bacteria. Functional gene libraries were found unique and most of the clones were distantly related to Proteobacteria, while clones of nifH gene library also showed homology with Cyanobacteria and Firmicutes. Quantitative real-time PCR exhibited that bacterial abundance was two orders of magnitude higher than archaeal. The gene(s) quantification indicated the size of the functional guilds harboring relevant key genes. The study provides insights on microbial ecology and different metabolic interactions occurring in saline–alkaline soil, possessing phylogenetically diverse groups of bacteria and archaea, which may be explored further for gene cataloging and metabolic profiling.  相似文献   

9.
The interaction between termites and their gut symbionts has continued to attract the curiosity of researchers over time. The aim of this study was to characterize and compare the bacterial diversity and community structure in the guts of three termites (Odontotermes somaliensis, Odontotermes sp. and Microtermes sp.) using 16S rRNA gene sequencing of clone libraries. Clone libraries were screened by restriction fragment length polymorphism and representative clones from O. somaliensis (100 out of 330 clones), Odontotermes sp. (100 out of 359 clones) and Microtermes sp. (96 out 336 clones) were sequenced. Phylogenetic analysis indicated seven bacterial phyla were represented: Bacteroidetes, Spirochaetes, Firmicutes, Proteobacteria, Synergistetes, Planctomycetes and Actinobacteria. Sequences representing the phylum Bacteroidetes (>60 %) were the most abundant group in Odontotermes while those of Spirochaetes (29 %) and Firmicutes (23 %) were the abundant groups in Microtermes. The gut bacterial community structure within the two Odontotermes species investigated here was almost identical at the phylum level, but the Microtermes sp. had a unique bacterial community structure. Bacterial diversity was higher in Odontotermes than in Microtermes. The affiliation and clustering of the sequences, often with those from other termites’ guts, indicate a majority of the gut bacteria are autochthonous having mutualistic relationships with their hosts. The findings underscore the presence of termite-specific bacterial lineages, the majority of which are still uncultured.  相似文献   

10.
Two 16S rRNA gene clone libraries (KF and KS) were constructed using two soil samples (K7s and K8s) collected near Kafni Glacier, Himalayas. The two libraries yielded a total of 648 clones. Phyla Actinobacteria, Bacteroidetes, Chloroflexi Firmicutes, Proteobacteria, Spirochaetae, Tenericutes and Verrucomicrobia were common to the two libraries. Phyla Acidobacteria, Chlamydiae and Nitrospirae were present only in KF library, whereas Lentisphaerae and TM7 were detected only in KS. In the two libraries, clones belonging to phyla Bacteroidetes and Proteobacteria were the most predominant. Principal component analysis (PCA) revealed that KF and KS were different and arsenic content influenced the differences in the percentage of OTUs. PCA indicated that high water content in the K8s sample results in high total bacterial count. PCA also indicated that bacterial diversity of KF and KS was similar to soils from the Pindari Glacier, Himalayas; Samoylov Island, Siberia; Schrimacher Oasis, Antarctica and Siberian tundra. The eleven bacterial strains isolated from the above two soil samples were phylogenetically related to six different genera. All the isolates were psychro-, halo- and alkalitolerant. Amylase, lipase and urease activities were detected in the majority of the strains. Long chain, saturated, unsaturated and branched fatty acids were predominant in the psychrotolerant bacteria.  相似文献   

11.
Rhizosphere microorganisms in soils are important for plant growth. However, the importance of rhizosphere microorganisms is still underestimated since many microorganisms associated with plant roots cannot be cultured and since the microbial diversity in the rhizosphere can be influenced by several factors, such as the cropping history, biogeography, and agricultural practice. Here, we characterized the rhizosphere bacterial diversity of cucumber plants grown in soils covering a wide range of cucumber cropping histories and environmental conditions by using pyrosequencing of bacterial 16S rRNA genes. We also tested the effects of compost addition and/or bacterial inoculation on the bacterial diversity in the rhizosphere. We identified an average of approximately 8,883 reads per sample, corresponding to around 4,993 molecular operational taxonomic units per sample. The Proteobacteria was the most abundant phylum in almost all soils. The abundances of the phyla Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, and Verrucomicrobia varied among the samples, and together with Proteobacteria, these phyla were the six most abundant phyla in almost all analyzed samples. Analyzing all the sample libraries together, the predominant genera found were Flavobacterium, Ohtaekwangia, Opitutus, Gp6, Steroidobacter, and Acidovorax. Overall, compost and microbial amendments increased shoot biomass when compared to untreated soils. However, compost addition decreased the bacterial α-diversity in most soils (but for three soils compost increased diversity), and no statistical effect of microbial amendment on the bacterial α-diversity was found. Moreover, soil amendments did not significantly influence the bacterial β-diversity. Soil organic content appeared more important than compost and microbial amendments in shaping the structure of bacterial communities in the rhizosphere of cucumber.  相似文献   

12.
Overproduction of livestock manures with unpleasant odors causes significant environmental problems. The microbial fermentation bed (MFB) system is considered an effective approach to recycling utilization of agricultural byproducts and pig manure (PM). To gain a better understanding of bacterial communities present during the degradation of PM in MFB, the PM bacterial community was evaluated at different fermentation stages using 16S rRNA high throughput sequencing technology. The heatmap plot clustered five samples into short-term fermentation stage of 0–10 days and long-term fermentation stage of 15–20 days. The most abundant OTUs at the phylum level were Firmicutes, Actinobacteria and Proteobacteria in the long-term fermentation stage of PM, whereas Firmicutes, Bacteroidetes, and Proteobacteria predominated in the short-term fermentation stage of PM. At the genus level, organic degradation strains, such as Corynebacterium, Bacillus, Virgibacillus, Pseudomonas, Actinobacteria, Lactobacillus, Pediococcus were the predominate genera at the long-term fermentation stage, but were found only rarely in the short-term fermentation stage. C/N ratios increased and the concentration of the unpleasant odor substance 3-hydroxy-5-methylisoxazole (3-MI) decreased with prolonged period of fermentation. Redundancy analysis (RDA) demonstrated that the relative abundance of Firmicutes, Actinobacteria, Acidobacteria and Proteobacteria had a close relationship with degradation of 3-MI and increasing C/N ratio. These results provide valuable additional information about bacterial community composition during PM biodegradation in animal husbandry.  相似文献   

13.
Phylogenetic analysis of the nucleotide sequences of 16S rRNA genes in the metagenomic community of Lubomirskia baicalensis has revealed taxonomic diversity of bacteria associated with the endemic freshwater sponge. Fifty-four operational taxonomic units (OTUs) belonging to six bacterial phyla (Actinobacteria, Proteobacteria (class ??-Proteobacteria and ??-Proteobacteria) Verrucomicrobia, Bacteroidetes, Cyanobacteria, and Nitrospira) have been identified. Actinobacteria, whose representatives are known as antibiotic producers, is the dominant phylum of the community (37%, 20 OTUs). All sequences detected shared the maximal homology with unculturable microorganisms from freshwater habitats. The wide diversity of bacteria closely coexisting with the Baikal sponge indicate the complex ecological relationships in the community formed under the unique conditions of Lake Baikal.  相似文献   

14.
A diverse array of bacteria that inhabit the rhizosphere and different plant organs play a crucial role in plant health and growth. Therefore, a general understanding of these bacterial communities and their diversity is necessary. Using the 16S rRNA gene clone library technique, the bacterial community structure and diversity of the rhizosphere and endophytic bacteria in Stellera chamaejasme compartments were compared and clarified for the first time. Grouping of the sequences obtained showed that members of the Proteobacteria (43.2%), Firmicutes (36.5%) and Actinobacteria (14.1%) were dominant in both samples. Other groups that were consistently found, albeit at lower abundance, were Bacteroidetes (2.1%), Chloroflexi (1.9%), and Cyanobacteria (1.7%). The habitats (rhizosphere vs endophytes) and organs (leaf, stem and root) structured the community, since the Wilcoxon signed rank test indicated that more varied bacteria inhabited the rhizosphere compared to the organs of the plant. In addition, correspondence analysis also showed that differences were apparent in the bacterial communities associated with these distinct habitats. Moreover, principal component analysis revealed that the profiles obtained from the rhizosphere and roots were similar, whereas leaf and stem samples clustered together on the opposite side of the plot from the rhizosphere and roots. Taken together, these results suggested that, although the communities associated with the rhizosphere and organs shared some bacterial species, the associated communities differed in structure and diversity.  相似文献   

15.
The bacterial phylogenetic diversities of the bacterial communities in the salt marsh colonized by Spartina alterniflora (SA) and uncultured marsh (UM) along the Yellow Sea of China were analyzed based on the 16S rDNA PCR techniques. Two libraries containing 251 clones of 16S rRNA genes from the Spartina colonized marsh and 283 from UM were constructed by PCR using a bacteria-specific primer 8f and the common primer 1542r. Forty-seven clones from SA and 55 from UM were selected for partial sequencing. A phylogenetic tree was constructed by the alignment analysis of the total environmental DNA sequences. Clones were clustered into 8 divisions of bacteria: (1) Proteobacteria containing 12 genera in beta, gamma, delta and epsilon subdivision; (2) Bacteroidetes containing 7 genera; (3) Planctomycetes containing 2 genera; (4) Firmicutes containing 1 genus; (5) Spirochaetes containing 1 genus; (6) Acidobacteria containing 1 genus; (7) Actinobacteria containing 1 genus; and (8) BRC1 containing 1 genus, as well as 3 groups of bacteria that could not be clustered into any recognized bacterial divisions or candidate divisions. BLAST searches of the GenBank database confirmed that 79.7% of the clones in the two libraries were closely related to the 16S rDNA sequences of the uncultured bacteria with the similarity ≥90%. Among them, Proteobacteria (36.7% and 54.4% of the total clones from the SA and UM libraries, respectively) and Bacteroidetes (30.0% and 18.3%, respectively) are two dominant groups in both the sites. However, some phyla, such as Firmicutes and Actinobacteria, were found at SA site but not at UM site, and vice versa, some phyla, such as Spirochaetes and BRC1, were found at UM, but not at SA. Moreover, the dominant species in each phylum were varied, dependent on whether or not the marsh was colonized by Spartina. For instance, in Bacteroidete, 44.4% clones at SA library were affiliated to Gelidibacter, but 32.7% clones were affiliated to Flexibacter at UM library. In Proteobacteria, the clones at UM library affiliated to δ, γ, ? and β-subdivisions were 38.8%, 34.7%, 23.5% and 3.1%, respectively, but at SA library were 30.3%, 47.0%, 13.6% and 9.1%, correspondingly. These results indicated that the bacterial diversity in the salt marsh along the Yellow Sea of China was greatly changed after Spartina colonization.  相似文献   

16.
One of the functions of the mammalian large intestinal microbiota is the fermentation of plant cell wall components. In ruminant animals, the majority of their nutrients are obtained via pregastric fermentation; however, up to 20% can be recovered from microbial fermentation in the large intestine. Eight-week continuous culture enrichments of cattle feces with cellulose and xylan-pectin were used to isolate bacteria from this community. A total of 459 bacterial isolates were classified phylogenetically using 16S rRNA gene sequencing. Six phyla were represented: Firmicutes (51.9%), Bacteroidetes (30.9%), Proteobacteria (11.1%), Actinobacteria (3.5%), Synergistetes (1.5%), and Fusobacteria (1.1%). The majority of bacterial isolates had <98.5% identity to cultured bacteria with sequences in the Ribosomal Database Project and thus represent new species and/or genera. Within the Firmicutes isolates, most were classified in the families Lachnospiraceae, Ruminococcaceae, Erysipelotrichaceae, and Clostridiaceae I. The majority of the Bacteroidetes were most closely related to Bacteroides thetaiotaomicron, B. ovatus, and B. xylanisolvens and members of the Porphyromonadaceae family. Many of the Firmicutes and Bacteroidetes isolates were related to species demonstrated to possess enzymes which ferment plant cell wall components; the others were hypothesized to cross-feed these bacteria. The microbial communities that arose in these enrichment cultures had broad bacterial diversity. With over 98% of the isolates not represented as previously cultured, there are new opportunities to study the genomic and metabolic capacities of these members of the complex intestinal microbiota.  相似文献   

17.
Planktonic bacteria are abundant in the Bering Sea. However, very little is known about their diversity and the roles of various bacteria in the ocean. Bacterioplankton diversity in the northern Bering Sea was investigated using a combination of molecular and cultivation-based methods. Community fingerprint analysis using polymerase chain reaction-denaturing gradient gel electrophoresis revealed an apparent difference in the bacterioplankton community composition between sampling locations in the area. The bacterial communities were characterized by two 16S rRNA gene clone libraries for surface and bottom water at shallow station NEC5 (<60 m in depth) on the continental shelf. Sequences fell into 21 major lineages of the domain Bacteria, including Proteobacteria (Alpha, Beta, Gamma, and Delta), Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, Planctomycetes, Verrucomicrobia, Fusobacteria, Chlamydiae, Chloroflexi, Chlorobi, Spirochaetes, Cyanobacteria (or algal chloroplasts), and candidate divisions OP8, OP11, TM6, TM7, and WS3. Significant differences were found between the two clone libraries. Actinobacteria formed the dominant bacterial lineage in both surface and bottom water, and the Alphaproteobacteria was another dominant fraction in surface water. A total of 232 heterotrophic bacterial strains were isolated and 81% showed extracellular proteolytic activity. Phylogenetic analysis revealed that the isolates fell into three bacterial groups, including the Gammaproteobacteria, Actinobacteria, and Firmicutes. The most common genus in both the bacterial isolates and protease-producing bacteria was Pseudoalteromonas. Divergence of bacterial community composition in the northern Bering Sea was mainly characterized by the dominance of Actinobacteria and reflected a bacterial community different from that currently known for marine bacterioplankton communities in other polar regions.  相似文献   

18.
Diversity of bacterial community in freshwater of Woopo wetland   总被引:1,自引:0,他引:1  
Diversity of bacterial community in water layer of Woopo wetland was investigated. Cultivable bacterial strains were isolated by the standard dilution plating technique and culture-independent 16S rRNA gene clones were obtained directly from DNA extracts of a water sample. Amplified rDNA restriction analysis (ARDRA) was applied onto both of the isolates and 16S rRNA gene clones. Rarefaction curves, coverage rate and diversity indices of ARDRA patterns were calculated. Representative isolates and clones of all the single isolate/clone phylotype were partially sequenced and analyzed phylogenetically. Sixty-four and 125 phylotypes were obtained from 203 bacterial isolates and 235 culture-independent 16S rRNA gene clones, respectively. Bacterial isolates were composed of 4 phyla, of which Firmicutes (49.8%) and Actinobacteria (32.0%) were predominant. Isolates were affiliated with 58 species. Culture-independent 16S rRNA gene clones were composed of 8 phyla, of which Proteobacteria (62.2%), Actinobacteria (15.5%), and Bacteroidetes (13.7%) were predominant. Diversity of 16S rRNA gene clones originated from cultivation-independent DNA extracts was higher than that of isolated bacteria.  相似文献   

19.
Background

Glossina pallidipes is a haematophagous insect that serves as a cyclic transmitter of trypanosomes causing African Trypanosomiasis (AT). To fully assess the role of G. pallidipes in the epidemiology of AT, especially the human form of the disease (HAT), it is essential to know the microbial diversity inhabiting the gut of natural fly populations. This study aimed to examine the diversity of G. pallidipes fly gut bacteria by culture-dependent approaches.

Results

113 bacterial isolates were obtained from aerobic and anaerobic microorganisms originating from the gut of G. pallidipes. 16S rDNA of each isolate was PCR amplified and sequenced. The overall majority of identified bacteria belonged in descending order to the Firmicutes (86.6%), Actinobacteria (7.6%), Proteobacteria (5.5%)and Bacteroidetes (0.3%). Diversity of Firmicutes was found higher when enrichments and isolation were performed under anaerobic conditions than aerobic ones. Experiments conducted in the absence of oxygen (anaerobiosis) led to the isolation of bacteria pertaining to four phyla (83% Firmicutes, 15% Actinobacteria, 1% Proteobacteria and 0.5% Bacteroidetes, whereas those conducted in the presence of oxygen (aerobiosis) led to the isolation of bacteria affiliated to two phyla only (90% Firmicutes and 10% Proteobacteria). Phylogenetic analyses placed these isolates into 11 genera namely Bacillus, Acinetobacter, Mesorhizobium, Paracoccus, Microbacterium, Micrococcus, Arthrobacter, Corynobacterium, Curtobacterium, Vagococcus and Dietzia spp.which are known to be either facultative anaerobes, aerobes, or even microaerobes.

Conclusion

This study shows that G. pallidipes fly gut is an environmental reservoir for a vast number of bacterial species, which are likely to be important for ecological microbial well being of the fly and possibly on differing vectorial competence and refractoriness against AT epidemiology.

  相似文献   

20.
Culture-dependent and -independent approaches were employed to identify the bacterial community structure from olive-mill wastewater produced from three olive-fruit varieties. The 233 bacterial isolates recovered were phylogenetically related to 38 members of Firmicutes, Actinobacteria, α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, and Bacteroidetes. Employing a novel microarray-based approach (PhyloChip) a high bacterial diversity was revealed consisting of 18 different phyla with representatives from 99 different families. The bacterial diversity in olive-mill wastewater from the three olive tree varieties was dominated by α-, β-, γ-, δ-, ε-Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Cyanobacteria, and Actinobacteria. This in-depth analysis of the indigenous microbiota indicated a cultivar-specific bacterial profile. Interestingly, the common bacterial taxa present in all three varieties examined were restricted indicating that the bacterial communities present in the olive-mill wastewater are greatly influenced by the olive-fruit variety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号