首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taxonomic compositions of epiphytic bacterial communities in water areas differing in levels of oil pollution were revealed. In total, 82 bacterial genera belonging to 16 classes and 11 phyla were detected. All detected representatives of epiphytic bacterial communities belonged to the phyla Actinobacteria, Bacteroidetes, Planctomycetes, Proteobacteria, Verrucomicrobia, Acidobacteria, Cyanobacteria, Firmicutes, and Fusobacteria and candidate division TM7. The ratio of the phyla in the communities varied depending on the levels of oil pollution. New data on taxonomic composition of uncultivated epiphytic bacterial communities of Fucus vesiculosus were obtained.  相似文献   

2.
Both Bacteria and Archaea might be involved in various biogeochemical processes in lacustrine sediment ecosystems. However, the factors governing the intra-lake distribution of sediment bacterial and archaeal communities in various freshwater lakes remain unclear. The present study investigated the sediment bacterial and archaeal communities in 13 freshwater lakes on the Yunnan Plateau. Quantitative PCR assay showed a large variation in bacterial and archaeal abundances. Illumina MiSeq sequencing illustrated high bacterial and archaeal diversities. Bacterial abundance was regulated by sediment total organic carbon and total nitrogen, and water depth, while nitrate nitrogen was an important determinant of bacterial diversity. Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, and Verrucomicrobia were the major components of sediment bacterial communities. Proteobacteria was the largest phylum, but its major classes and their proportions varied greatly among different lakes, affected by sediment nitrate nitrogen. In addition, both Euryarchaeota and Crenarchaeota were important members in sediment archaeal communities, while unclassified Archaea usually showed the dominance.  相似文献   

3.

Background

Glossina pallidipes is a haematophagous insect that serves as a cyclic transmitter of trypanosomes causing African Trypanosomiasis (AT). To fully assess the role of G. pallidipes in the epidemiology of AT, especially the human form of the disease (HAT), it is essential to know the microbial diversity inhabiting the gut of natural fly populations. This study aimed to examine the diversity of G. pallidipes fly gut bacteria by culture-dependent approaches.

Results

113 bacterial isolates were obtained from aerobic and anaerobic microorganisms originating from the gut of G. pallidipes. 16S rDNA of each isolate was PCR amplified and sequenced. The overall majority of identified bacteria belonged in descending order to the Firmicutes (86.6%), Actinobacteria (7.6%), Proteobacteria (5.5%)and Bacteroidetes (0.3%). Diversity of Firmicutes was found higher when enrichments and isolation were performed under anaerobic conditions than aerobic ones. Experiments conducted in the absence of oxygen (anaerobiosis) led to the isolation of bacteria pertaining to four phyla (83% Firmicutes, 15% Actinobacteria, 1% Proteobacteria and 0.5% Bacteroidetes, whereas those conducted in the presence of oxygen (aerobiosis) led to the isolation of bacteria affiliated to two phyla only (90% Firmicutes and 10% Proteobacteria). Phylogenetic analyses placed these isolates into 11 genera namely Bacillus, Acinetobacter, Mesorhizobium, Paracoccus, Microbacterium, Micrococcus, Arthrobacter, Corynobacterium, Curtobacterium, Vagococcus and Dietzia spp.which are known to be either facultative anaerobes, aerobes, or even microaerobes.

Conclusion

This study shows that G. pallidipes fly gut is an environmental reservoir for a vast number of bacterial species, which are likely to be important for ecological microbial well being of the fly and possibly on differing vectorial competence and refractoriness against AT epidemiology.
  相似文献   

4.
Intestinal microflora influences many essential metabolic functions, and is receiving increasing attention from the scientific community. However, information on intestinal microbiota, especially for large wild carnivores, is insufficient. In the present study, the bacterial community in the feces of snow leopards (Uncia uncia) was described based on 16S rRNA gene sequence analysis. A total of 339 near-full-length 16S rRNA gene sequences representing 46 non-redundant bacterial phylotypes (operational taxonomical units, OTUs) were identified in fecal samples from four healthy snow leopards. Four different bacterial phyla were identified: Firmicutes (56.5 %), Actinobacteria (17.5 %), Bacteroidetes (13 %), and Proteobacteria (13 %). The phylum Actinobacteria was the most abundant lineage, with 40.4 % of all identified clones, but Clostridiales, with 50 % of all OTUs, was the most diverse bacterial order. The order Clostridiales was affiliated with four families: Clostridiaceae I, Lachnospiraceae, Peptostreptococcaceae, and Ruminococcaceae. Lachnospiraceae was the most diverse family with 17 OTUs identified. These findings were basically consistent with previous reports on the bacterial diversity in feces from other mammals.  相似文献   

5.
The pharynx is an important site of microbiota colonization, but the bacterial populations at this site have been relatively unexplored by culture-independent approaches. The aim of this study was to characterize the microbiota structure of the pharynx. Pyrosequencing of 16S rRNA gene libraries was used to characterize the pharyngeal microbiota using swab samples from 68 subjects with laryngeal cancer and 28 subjects with vocal cord polyps. Overall, the major phylum was Firmicutes, with Streptococcus as the predominant genus in the pharyngeal communities. Nine core operational taxonomic units detected from Streptococcus, Fusobacterium, Prevotella, Granulicatella, and Veillonella accounted for 21.3% of the total sequences detected. However, there was no difference in bacterial communities in the pharynx from patients with laryngeal cancer and vocal cord polyps. The relative abundance of Firmicutes was inversely correlated with Fusobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes. The correlation was evident at the genus level, and the relative abundance of Streptococcus was inversely associated with Fusobacterium, Leptotrichia, Neisseria, Actinomyces, and Prevotella. This study presented a profile for the overall structure of the microbiota in pharyngeal swab samples. Inverse correlations were found between Streptococcus and other bacterial communities, suggesting that potential antagonism may exist among pharyngeal microbiota.  相似文献   

6.
Paocai is a traditional Chinese fermented food and typically produced via spontaneous fermentation. We have investigated the microbial community utilized for the fermentation of industrialized Qingcai paocai using the combination of Illumina MiSeq sequencing, PCR-mediated denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative PCR (qPCR) assay. Three main phyla, namely Firmicutes, Proteobacteria and Bacteroidetes, were identified by both MiSeq sequencing and PCR-DGGE. The dominant genera observed in the fermentation were Lactobacillus, Pseudomonas, Vibrio and Halomonas. Most genera affiliated with Proteobacteria or Bacteroidetes were detected more often during the earlier part of the fermentation, while Lactobacillus (affiliated with Firmicutes) was dominant during the later fermentation stages. Fungal community analysis revealed that Debaryomyces, Pichia and Kazachstania were the main fungal genera present in industrialized Qingcai paocai, with Debaryomyces being the most dominant during the fermentation process. The quantities of dominant genera Lactobacillus and Debaryomyces were monitored using qPCR and shown to be 109–1012 and 106–1010 copies/mL, respectively. During the later fermentation process of industrialized Qingcai paocai, Lactobacillus and Debaryomyces were present at 1011 and 108 copies/mL, respectively. These results facilitate further understanding of the unique microbial ecosystem during the fermentation of industrialized Qingcai paocai and guide future improvement of the fermentation process.  相似文献   

7.
The bacterial diversity in a Brazilian non-disturbed mangrove sediment   总被引:1,自引:0,他引:1  
The bacterial diversity present in sediments of a well-preserved mangrove in Ilha do Cardoso, located in the extreme south of São Paulo State coastline, Brazil, was assessed using culture-independent molecular approaches (denaturing gradient gel electrophoresis (DGGE) and analysis of 166 sequences from a clone library). The data revealed a bacterial community dominated by Alphaproteobacteria (40.36% of clones), Gammaproteobacteria (19.28% of clones) and Acidobacteria (27.71% of clones), while minor components of the assemblage were affiliated to Betaproteobacteria, Deltaproteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. The clustering and redundancy analysis (RDA) based on DGGE were used to determine factors that modulate the diversity of bacterial communities in mangroves, such as depth, seasonal fluctuations, and locations over a transect area from the sea to the land. Profiles of specific DGGE gels showed that both dominant (‘universal’ Bacteria and Alphaproteobacteria) and low-density bacterial communities (Betaproteobacteria and Actinobacteria) are responsive to shifts in environmental factors. The location within the mangrove was determinant for all fractions of the community studied, whereas season was significant for Bacteria, Alphaproteobacteria, and Betaproteobacteria and sample depth determined the diversity of Alphaproteobacteria and Actinobacteria.  相似文献   

8.
We investigated the bacterial community structure of Soldhar hot spring with extreme high temperature 95°C located in Uttarakhand, India using high throughput sequencing. Bacterial phyla Proteobacteria (88.8%), Deinococcus-Thermus (7.5%), Actinobacteria (2.3%), and Firmicutes (1.07%) were predominated in the sequencing survey, whereas Bacteroidetes, Verrucomicrobia, Aquificae and Acidobacteria were detected in relatively lower abundance in Soldhar hot spring. At the family level, Comamonadaceae (52.5%), Alteromonadaceae (15.9%), and Thermaceae (7.5%) were mostly dominated in the ecosystem followed by Chromatiaceae, Microbacteriaceae, and Cyclobacteriaceae. Besides, members of Rhodobacteraceae, Moraxellaceae, Xanthomonadaceae, Aquificaceae, Enterobacteriaceae, Bacillaceae, Methylophilaceae, etc. were detected as a relatively lower abundance. In the present study we discuss the overall microbial community structure and their relevance to the ecology of the Soldhar hot spring environment.  相似文献   

9.
Da-jiang is the traditional soybean fermented food which is popular in the world for a long time. In order to improve the quality and nutritional value of da-jiang, structure and diversity of bacterial communities in the fermentation of da-jiang were analyzed. Illumina MiSeq platforms coupled with bioinformatics approach were used in this study. In the first 28 days, the trends of bacterial abundance were similar in different regions which are increasing firstly, decreasing secondly, and rising again. The quantity of bacteria in post-fermentation is lower than pre-fermentation. In the fermentation of da-jiang, Firmicutes and Proteobacteria are the dominant phyla. The dominant genera in da-jiang from different regions are different: Tetragenococcus (58.1–73.0%) is the dominant genus in da-jiang from Xinmin; Leuconostoc (9.2–25.7%) is the dominant genus in da-jiang from Tieling; Acinetobacter (8.7–25.1%) and Leuconostoc (12.4–22.0%) are the dominant genera in da-jiang from Shenyang. Additionally, Weissella, Lactobacillus, Staphylococcus, Erwinia, and Pseudomonas also were found in da-jiang. It is identified that Leuconostoc steadily existed in all da-jiang samples. These results demonstrate the diversity of microbes in traditional fermented da-jiang, which will probably provide a data basis for choosing starter culture for da-jiang industrial fermentation.  相似文献   

10.
Massive parallel sequencing (the Roche 454 platform) of the 16S rRNA gene fragments was used to investigate microbial diversity in the sediments of the Posolsk Bank cold methane seep. Bacterial communities from all sediment horizons were found to contain members of the phyla Actinobacteria, Bacteroidetes, Deinococcus-Thermus, Firmicutes, Nitrospirae, Chloroflexi, Proteobacteria, and the candidate phyla Aminicenantes (OP8) and Atribacteria (OP9). Among Bacteria, members of the Chloroflexi and Proteobacteria were the most numerous (42 and 46%, respectively). Among archaea, the Thaumarchaeota predominated in the upper sediment layer (40.1%), while Bathyarchaeota (54.2%) and Euryarchaeota (95%) were predominant at 70 and 140 cm, respectively. Specific migration pathways of fluid flows circulating in the zone of gas hydrate stability (400 m) may be responsible for considerable numbers of the sequences of Chloroflexi, Acidobacteria, and the candidate phyla Aminicenantes and Atribacteria in the upper sediment layers and of the Deinococcus-Thermus phylum in deep bottom sediments.  相似文献   

11.
12.
The gut bacterial community of wood-feeding beetles has been examined for its role on plant digestion and biocontrol method development. Monochamus alternatus and Psacothea hilaris, both belonging to the subfamily Lamiinae, are woodfeeding beetles found in eastern Asia and Europe and generally considered as destructive pests for pine and mulberry trees, respectively. However, limited reports exist on the gut bacterial communities in these species. Here, we characterized gut bacterial community compositions in larva and imago of each insect species reared with host tree logs and artificial diets as food sources. High-throughput 454 pyrosequencing of bacterial 16S rRNA gene revealed 225 operational taxonomic units (OTUs) based on a 97% sequences similarity cutoff from 138,279 sequence reads, the majority of which were derived from Proteobacteria (48.2%), Firmicutes (45.5%), and Actinobacteria (5.2%). The OTU network analysis revealed 7 modules with densely connected OTUs in specific gut samples, in which the distributions of Lactococcus-, Kluyvera-, Serratia-, and Enterococcus-related OTUs were distinct between diet types or developmental stages of the host insects. The gut bacterial communities were separated on a detrended correspondence analysis (DCA) plot and by c-means fuzzy clustering analysis, according to diet type. The results from this study suggest that diet was the main determinant for gut bacterial community composition in the two beetles.  相似文献   

13.
Poly- and perfluoroalkyl compounds (PFASs) are ubiquitous in the environment, but their influences on microbial community remain poorly known. The present study investigated the depth-related changes of archaeal and bacterial communities in PFAS-contaminated soils. The abundance and structure of microbial community were characterized using quantitative PCR and high-throughput sequencing, respectively. Microbial abundance changed considerably with soil depth. The richness and diversity of both bacterial and archaeal communities increased with soil depth. At each depth, bacterial community was more abundant and had higher richness and diversity than archaeal community. The structure of either bacterial or archaeal community displayed distinct vertical variations. Moreover, a higher content of perfluorooctane sulfonate (PFOS) could have a negative impact on bacterial richness and diversity. The rise of soil organic carbon content could increase bacterial abundance but lower the richness and diversity of both bacterial and archaeal communities. In addition, Proteobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, and Acidobacteria were the major bacterial groups, while Thaumarchaeota, Euryarchaeota, and unclassified Archaea dominated in soil archaeal communities. PFASs could influence soil microbial community.  相似文献   

14.
Fertilization and the response of the soil microbial community to the process significantly affect crop yield and the environment. In this study, the seasonal variation in the bacterial communities in rice field soil subjected to different fertilization treatments for more than 50 years was investigated using 16S rRNA sequencing. The simultaneous application of inorganic fertilizers and rice straw compost (CAPK) maintained the species richness of the bacterial communities at levels higher than that in the case of non-fertilization (NF) and application of inorganic fertilizers only (APK) in the initial period of rice growth. The seasonal variation in the bacterial community structure in the NF and APK plots showed cyclic behavior, suggesting that the effect of season was important; however, no such trend was observed in the CAPK plot. In the CAPK plot, the relative abundances of putative copiotrophs such as Bacteroidetes, Firmicutes, and Proteobacteria were higher and those of putative oligotrophs such as Acidobacteria and Plactomycetes were lower than those in the other plots. The relative abundances of organotrophs with respiratory metabolism, such as Actinobacteria, were lower and those of chemoautotrophs that oxidize reduced iron and sulfur compounds were higher in the CAPK plot, suggesting greater carbon storage in this plot. Increased methane emission and nitrogen deficiency, which were inferred from the higher abundances of Methylocystis and Bradyrhizobium in the CAPK plot, may be a negative effect of rice straw application; thus, a solution for these should be considered to increase the use of renewable resources in agricultural lands.  相似文献   

15.
The microbiome in the rhizosphere–the region surrounding plant roots–plays a key role in plant growth and health, enhancing nutrient availability and protecting plants from biotic and abiotic stresses. To assess bacterial diversity in the tomato rhizosphere, we performed two contrasting approaches: culture-dependent and -independent. In the culture-dependent approach, two culture media (Reasoner’s 2A agar and soil extract agar) were supplemented with 12 antibiotics for isolating diverse bacteria from the tomato rhizosphere by inhibiting predominant bacteria. A total of 689 bacterial isolates were clustered into 164 operational taxonomic units (OTUs) at 97% sequence similarity, and these were found to belong to five bacterial phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria, and Firmicutes). Of these, 122 OTUs were retrieved from the antibiotic-containing media, and 80 OTUs were recovered by one specific antibiotic-containing medium. In the culture-independent approach, we conducted Illumina MiSeq amplicon sequencing of the 16S rRNA gene and obtained 19,215 high-quality sequences, which clustered into 478 OTUs belonging to 16 phyla. Among the total OTUs from the MiSeq dataset, 22% were recovered in the culture collection, whereas 41% of OTUs in the culture collection were not captured by MiSeq sequencing. These results showed that antibiotics were effective in isolating various taxa that were not readily isolated on antibiotic-free media, and that both contrasting approaches provided complementary information to characterize bacterial diversity in the tomato rhizosphere.  相似文献   

16.
Dynamics of the composition of the microbial community was studied during start-up of a single-stage completely mixed constant flow laboratory setup for ammonium removal by the nitritation/anammox process from the filtrate of digested sludge of the Kuryanovo wastewater treatment plant (KWTP), Moscow. To decrease the period of the start-up, the setup was initially inoculated with two types of activated sludge (nitrifying sludge from a KWTP aeration tank and sludge from a sequencing batch reactor enriched with anammox bacteria). The start-up and adjustment stage was therefore decreased to 35–40 days, and nitrogen removal efficiency reached 80% after 120 days of the setup operation. Taxonomic analysis of the composition of the microbial community was carried out by pyrosequencing of the 16S rRNA fragments obtained using the universal and planctomycetes-specific primers. In the course of adaptation of activated sludge to increasing nitrogen load, microbial community of the setup became less diverse and more specialized. The contribution of anammox bacteria of the family Brocadiaceae, closely related to Candidatus “Brocadia caroliniensis,” increased gradually. Members of the order Nitrosomonadales were involved in ammonium oxidation to nitrite. While nitrite-oxidizing bacteria of the genus Nitrospira were also detected, their share decreased with accumulation of the activated sludge. The contribution of other bacteria varied as well: the shares of the phyla Ignavibacteria, Chloroflexi, and Acidobacteria increased significantly (up to 13, 12, and 10%, respectively of the total number of reads), while relative abundance of the Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Synergistetes, Aminicenantes, Thermotogae, and Cloacimonetes decreased. Thus, application of pyrosequencing made it possible to monitor succession of the bacterial community involved in nitrogen removal by nitritation/anammox process.  相似文献   

17.
DNA isolated from a greenhouse soil (Nanjing, Jiangsu Province, China) was suitable for PCR amplification of gene segment coding for the 16S rRNA. Diverse PCR products were characterized by cloning and sequencing, and analysis of bacterial colonies showed the presence over 26 phyla. The most bacteria belonged to Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria and Planctomycetes. Furthermore, after the enrichment procedure of DBP-degrading microorganisms, 4 strains were isolated from the soil sample with di-n-butyl phthalate (DBP) biodegradability, and they were identified to be Rhizobium sp., Streptomyces sp., Pseudomonas sp. and Acinetobacter sp. Analysis of the degradation products by LC-MS led to identification of metabolites of DBP in strain LMB-1 (identified as Rhizobium sp.) which suggests that DBP was degraded through β-oxidation, demethylation, de-esterification and cleavage of aromatic ring.  相似文献   

18.
Understanding the dynamics of performance and bacterial community of biofilm under oligotrophic stress is necessary for the process optimization and risk management in biofilm systems for raw water pretreatment. In this study, biofilm obtained from a pilot-scale biofilm reactor was inoculated into a pilot-scale experimental tank for the treatment of oligotrophic raw water. Results showed that the removal of NH4 +–N was impaired in biofilm systems when influent NH4 +–N was less than 0.35 mg L?1 or NH4 +–N loading rate of less than 7.51 mg L?1 day?1. The dominant bacteria detected in biofilm of different carrier were obvious distinct from phylum to genus level under oligotrophic stress. The dominant bacteria in elastic stereo media carrier changed from Proteobacteria (51.1%) to Firmicutes (32.7%), while Proteobacteria was always dominant in suspended ball carrier after long-term operation under oligotrophic conditions. Oligotrophic stress largely decreased the functional bacteria for the removal of nitrogen and organics including many genera in Proteobacteria and Nitrospirae, but increased several genera with spore forming organisms or potential bacterial pathogens in ESM carrier mainly including Bacillus, Mycobacterium, Pseudomonas, etc.  相似文献   

19.
Slow degradation of organic matter in acidic Sphagnum peat bogs suggests a limited activity of organotrophic microorganisms. Monitoring of the Sphagnum debris decomposition in a laboratory simulation experiment showed that this process was accompanied by a shift in the water color to brownish due to accumulation of humic substances and by the development of a specific bacterial community with a density of 2.4 × 107 cells ml?1. About half of these organisms are metabolically active and detectable with rRNA-specific oligonucleotide probes. Molecular identification of the components of this microbial community showed the numerical dominance of bacteria affiliated with the phyla Alphaproteobacteria, Actinobacteria, and Planctomycetes. The population sizes of the Firmicutes and Bacteroidetes, which are believed to be the main agents of bacterially-mediated decomposition in eutrophic wetlands, were low. The numbers of planctomycetes increased at the final stage of Sphagnum decomposition. The representative isolates of the Alphaproteobacteria were able to utilize galacturonic acid, the only low-molecular-weight organic compound detected in the water samples; the representatives of the Planctomycetes were able to decompose some heteropolysaccharides, which points to the possible functional role of these groups of microorganisms in the community under study. Thus, the composition of the bacterial community responsible for Sphagnum decomposition in acidic and low-mineral oligotrophic conditions seems to be fundamentally different from that of the bacterial community which decomposes plant debris in eutrophic ecosystems at neutral pH.  相似文献   

20.
Taxonomic diversity of Lake Baikal bacteria during the period of massive under-ice development of dinoflagellate Gymnodinium baicalense was studied. During the ice-covered period in 2013, both the abundance and biomass of G. baicalense were several orders of magnitude higher than the values for previous years, the maximum values were 8.9 × 106 cells/L and 405 g/m3, respectively. The taxonomic structure of bacterial communities was determined using the data obtained by 454 pyrosequencing (Roche) with Mothur 1.19.0. Predominance of three phyla was revealed: Bacteroidetes, Proteobacteria, and Actinobacteria. Massive dinoflagellate development resulted in a considerable decrease in the richness and diversity of bacterial communities compared to the results of the earlier long-term studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号