首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The distribution of nerve cells and fibres with immunoreactivity for the calcium-binding protein, calretinin, was studied in the distal colon of the guinea-pig. The projections of the neurons were determined by examining the consequences of lesioning the myenteric plexus. Calretinin-immunoreactive neurons comprised 17% of myenteric nerve cells and 6% of submucous nerve cells. Numerous calretinin-immunoreactive nerve fibres were located in the longitudinal and circular muscle, and within the ganglia of the myenteric and submucous plexuses. Occasional fibres were found in the muscularis mucosae, but they were very rare in the lamina propria of the mucosa. Lesion studies revealed that myenteric neurons innervated the underlying circular muscle and provided both ascending and descending processes that gave rise to varicose branches in myenteric ganglia. Calretinin-immunoreactive fibres also projected to the tertiary component of the myenteric plexus, and are therefore likely to be motor neurons to the longitudinal muscle. Varicose fibres that supplied the submucous ganglia appear to arise from submucous nerve cells. Arterioles of the submucous plexus were sparsely innervated by calretinin-immunoreactive fibres. The submucous plexus was the principal source of immunoreactive nerve fibres in the muscularis mucosae. This work shows that calretinin-IR reveals different neuronal populations in the large intestine to those previously reported in the small intestine.  相似文献   

2.
We have investigated indirectly the presence of nitric oxide in the enteric nervous system of the digestive tract of human fetuses and newborns by nitric oxide synthase (NOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry. In the stomach, NOS immunoactivity was confined to the myenteric plexus and nerve fibres in the outer smooth musculature; few immunoreactive nerve cell bodies were found in ganglia of the outer submucous plexus. In the pyloric region, a few nitrergic perikarya were seen in the inner submucous plexus and some immunoreactive fibres were found in the muscularis mucosae. In the small intestine, nitrergic neurons clustered just underneath or above the topographical plane formed by the primary nerve strands of the myenteric plexus up to the 26th week of gestation, after which stage, they occurred throughout the ganglia. Many of their processes contributed to the dense fine-meshed tertiary nerve network of the myenteric plexus and the circular smooth muscle layer. NOS-immunoreactive fibres directed to the circular smooth muscle layer originated from a few NOS-containing perikarya located in the outer submucous plexus. In the colon, caecum and rectum, labelled nerve cells and fibres were numerous in the myenteric plexus; they were also found in the outer submucous plexus. The circular muscle layer had a much denser NOS-immunoreactive innervation than the longitudinally oriented taenia. The marked morphological differences observed between nitrergic neurons within the developing human gastrointestinal tract, together with the typical innervation pattern in the ganglionic and aganglionic nerve networks, support the existenc of distinct subpopulations of NOS-containing enterice neurons acting as interneurons or (inhibitory) motor neurons.  相似文献   

3.
Summary The localization of catecholamines has been investigated in the extrahepatic biliary duct system of cats, guinea-pigs and rhesus monkeys. In fluorimetric determinations noradrenaline was found to be the main primary catecholamine present in the biliary tract of rhesus monkeys. There exist regional differences in the noradrenaline content: Fairly low amounts were detected in the lower fundus of the gall-bladder (0.28 g/g). Increasing concentrations were measured in the corpus vesicae felleae (0.35 g/g), reaching a maximum level in the collum vesicae (0.49 g/g) and the ductus cysticus (0.50 g/g). The noradrenaline content of the choledochus and the choledocho-duodenal junction including Oddi's sphincter was much lower: 0,27 and 0,25 g/g respectively. The noradrenaline level in the small intestine of the rhesus monkey amounted to less than half the concentration found in the biliary ducts. Neither dopamine nor adrenaline have been detected. Fluorescence microscopical analysis reveals the presence of adrenergic nerves in the bile ducts which correspond to the measured noradrenaline concentrations: All parts of the biliary duct system in the different species investigated contain an elaborate perivascular adventitial plexus and adrenergic fibres confined to adventitial non-adrenergic ganglia. In guinea-pigs adrenergically innervated ganglia extend into the smooth muscle layer. The smooth muscle layer of the gall-bladder and the terminal choledochus in cats and rhesus monkeys is penetrated by a wide-meshed adrenergic ground plexus. This plexus was absent in guinea-pigs. The smooth musculature of the sphincter Oddi lacks a specialized adrenergic nerve supply in all species investigated. Finally, bound to the arterial vascular bed inside the propria in all parts of the biliary tract from all species investigated a prominent perivascular plexus is present. It is concluded that the smooth musculature of the gall-bladder and the terminal choledochus (the sphincter region excluded) in cats and monkeys receives 1. a direct sympathetic noradrenergic inhibitory innervation and 2. an indirect sympathetic noradrenergic inhibitory innervation which acts on intrinsic excitatory neurons and is present in all species investigated. The functional significance of the direct and indirect inhibitory innervation to the smooth musculature of the gall-bladder is discussed in detail.Dedicated to Professor Bengt Falck.Supported by the Deutsche Forschungsgemeinschaft and Joachim-Jungius-Gesellschaft zur Förderung der Wissenschaften, Hamburg.  相似文献   

4.
The presence of 5-hydroxytryptamine in enteric neurons of the guinea-pig distal colon was demonstrated by immunohistochemistry and the projections of the neurons were determined. 5-Hydroxytryptamine-containing nerve cells were observed in the myenteric plexus but no reactive nerve cells were found in submucous ganglia. Varicose reactive nerve fibres were numerous in the ganglia of both the myenteric and submucous plexuses, but were infrequent in the longitudinal muscle, circular muscle, muscularis mucosae and mucosa. Reactivity also occurred in enterochromaffin cells. Lesion studies showed that the axons of myenteric neurons projected anally to provide innervation to the circular muscle and submucosa and to other more anally located myenteric ganglia. The results suggest that a major population of 5-hydroxytryptamine neurons in the colon is descending interneurons, most of which extend for 10 to 15 mm in the myenteric plexus and innervate both 5-hydroxytryptamine and non-5-hydroxytryptamine neurons.  相似文献   

5.
Summary The distribution of nerve cell bodies and fibres in the canine stomach was investigated using antibodies to the general neuronal marker, neuron-specific enolase. Prominent ganglia containing many reactive nerve cells were found in the myenteric plexus of the gastric corpus and antrum. Nerve cells were absent from the submucosa of the corpus and were extremely rare in the antrum. Renoval of areas of longitudinal muscle and myenteric plexus from the corpus (myectomy), with 7 days allowed for axon degeneration, resulted in the loss of fibres reactive for galanin, gastrin-releasing peptide, substance P and vasoactive intestinal peptide from both the circular muscle and mucosa in the area covered by the lesion. Combined vagotomy and sympathetic denervation did not significantly affect these fibres, but did cause fibres reactive for calcitonin gene-related peptide to degenerate. It is concluded that the myenteric plexus of the gastric corpus, like the myenteric plexus of the small intestine and colon, is the source of nerve fibres innervating the circular muscle, but, in contrast to other regions of the gastrointestinal tract, myenteric ganglia, not submucous ganglia, are the major, or sole, source of the intrinsic innervation of the mucosa.  相似文献   

6.
The neuronal form of the enzyme nitric oxide synthase, which is an obligatory constituent of neurons that utilise nitric oxide as a transmitter, was revealed histochemically in this study by its ability to transfer a proton from reduced nicotinamide adenine dinucleotide phosphate to nitro-blue tetrazolium. In the guinea-pig colon, nitric oxide synthase was located in numerous irregularly-shaped myenteric neurons with single axons. In the submucosa, a small number of neurons had strong enzyme activity, whereas many were weakly stained. Nerve fibres were found in the longitudinal muscle, circular muscle, muscularis mucosae and ganglia of the two plexuses. No nerve fibres were found in the lamina propria of the mucosa. The same distribution of nerve cells and fibres was revealed using immunohistochemistry for nitric oxide synthase. Lesion studies showed that the axons of myenteric neurons all projected anally. Myenteric cells were the source of nerve fibres in the circular muscle and in more anally located myenteric ganglia. The sparse innervation of submucous ganglia was intrinsic to the submucous plexus. It is suggested that nitric oxide synthase is one of the transmitters of inhibitory neurons to the muscle and is also utilized by descending interneurons of the myenteric plexus.  相似文献   

7.
Summary Bombesin-like and gastrin-releasing peptide (GRP)-like immunoreactivities were localized in nerves of the guinea-pig small intestine and celiac ganglion with the use of antibodies raised against the synthetic peptides. The anti-bombesin serum (preincubated to avoid cross reactivity with substance P) and the anti-GRP serum revealed the same population of neurons. Preincubation of the antibombesin serum with bombesin abolished the immunoreactivity in nerves while absorption of the anti-GRP serum with either bombesin or the 14–27 C-terminal of GRP only reduced the immunoreactivity. The immunoreactivity was abolished by incubation with GRP 1–27.Immunoreactive nerves were found in the myenteric plexus, circular muscle, submucous plexus and in the celiac ganglion. Faintly reactive nerve cell bodies were found in the myenteric ganglia (3.2% of all neurons) but not in submucous ganglia. After all ascending and descending pathways in the myenteric plexus had been cut, reactive terminals disappeared in the myenteric plexus, circular muscle (including the deep muscular plexus) and the submucous plexus on the anal side. After the mesenteric nerves were cut no changes were observed in the intestinal wall but the reactive fibres in celiac ganglia disappeared. It is deduced that GRP/bombesin-immunoreactive nerve cell bodies in myenteric ganglia project from the myenteric plexus to other myenteric ganglia situated further anally (average length 12 mm), anally to the circular muscle (average length 9 mm), anally to submucous ganglia (average length 13 mm) and external to the intestine to the celiac ganglia.It is concluded that the GRP/bombesin-reactive neurons in the intestinal wall represent a distinct population of enteric neurons likely to be involved in controlling motility and in the coordination of other intestinal functions.  相似文献   

8.
Summary The distribution of nerve cells with immunoreactivity for the calcium-binding protein, calbindin, has been studied in the small intestine of the guinea-pig, and the projections of these neurons have been analysed by tracing their processes and by examining the consequences of nerve lesions. The immunoreactive neurons were numerous in the myenteric ganglia; there were 3500±100 reactive nerve cells per cm2 of undistended intestine, which is 30% of all nerve cells. In contrast, reactive nerve cells were extremely rare in submucous ganglia. The myenteric nerve cells were oval in outline and gave rise to several long processes; this morphology corresponds to Dogiel's type-II classification. Processes from the cell bodies were traced through the circular muscle in perforating nerve fibre bundles. Other processes ran circumferentially in the myenteric plexus. Removal of the myenteric plexus, allowing time for subsequent fibre degeneration, showed that reactive nerve fibres in the submucous ganglia and mucosa came from the myenteric cell bodies. Operations to sever longitudinal or circumferential pathways in the myenteric plexus indicated that most reactive nerve terminals in myenteric ganglia arise from myenteric cell bodies whose processes run circumferentially for 1.5 mm, on average. It is deduced that the calbindin-reactive neurons are multipolar sensory neurons, with the sensitive processes in the mucosa and with other processes innervating neurons of the myenteric plexus.  相似文献   

9.
Gastrointestinal symptoms in diabetic patients are commonplace, and are believed to be due, at least partly, to neuropathy of the gut. In the present study, therefore, some important neurotransmitters in the myenteric plexus were investigated in non-obese diabetic mice, an animal model of human type 1 diabetes. For this purpose, immunocytochemistry was applied on sections from antrum, duodenum and colon, subsequently quantified by computerized image analysis. Whereas the number of vasoactive intestinal peptide (VIP)-positive neurons was increased in antral myenteric ganglia of diabetic mice, there was a decreased density of nerve fibres in muscularis propria. No difference was seen in the VIP of duodenum and colon. Acetylcholine-containing nerve fibres showed an increased volume density in muscularis propria of antrum and duodenum, but a decreased density in colon of diabetic mice, as compared with controls. There was a decreased number of neurons containing nitric oxide synthase (NOS) in myenteric ganglia of antrum and duodenum. No difference was seen in density of NOS-containing nerve fibres in muscularis propria. There was no difference regarding neuropeptide Y (NPY) and galanin between diabetic and control mice; nor was there any difference between pre-diabetic NOD mice and controls regarding all bioactive substances investigated. It is concluded that the diabetic state affects the innervation of gut in this animal model. The present findings may be of some relevance to the gastrointestinal symptoms seen in patients with diabetes.  相似文献   

10.
The distribution of neurokinin-2 (NK2) tachykinin receptors was investigated by immunohistochemistry in the guinea-pig oesophagus, stomach, small and large intestine. Receptor immunoreactivity occurred at the surfaces of smooth muscle cells throughout the digestive tract. Nerve fibre varicosities in enteric ganglia were also immunoreactive. In myenteric ganglia, these varicosities were most numerous in the ileum, frequent, but less dense, in the proximal colon and caecum, rare in the distal colon, extremely infrequent in the rectum and duodenum, and absent from the stomach and oesophagus. Reactive varicosities were rare in the submucous ganglia. Reactive nerve fibres in the mucosa were only found in the caecum and proximal colon. Strong NK2 receptor immunoreactivity was also found on the surfaces of enterocytes at the bases of mucosal glands in the proximal colon. Receptors were not detectable on the surfaces of nerve cells or on non-terminal axons. Reactivity did not occur on nerve fibres innervating the muscle. Denervation studies showed that the immunoreactive varicosities in the myenteric plexus of the ileum were the terminals of descending interneurons. Immunoreactivity for nitric oxide synthase was colocalised with NK2 receptor (NK-R) immunoreactivity in about 70% of the myenteric varicosities in the small intestine. Bombesin immunoreactivity occurred in about 30% of NK2-R immunoreactive varicosities in the small intestine. Received: 10 April 1996 / Accepted: 13 May 1996  相似文献   

11.
By the use of well-characterized antibodies against porcine dynorphin-A(1-8), an endogenous opioid peptide, and the use of a modified immunofluorescence microscopic technique, dynorphin-A(1-8) stained perikarya, nerve fibres, and nerve terminals were visualized in the rat duodenum. Dynorphin-A(1-8) immunoreactive perikarya were revealed with certainty only in the myenteric plexus, while dynorphinergic nerve fibres could bee seen in the myenteric plexus and circular muscle layer, but not in the longitudinal muscle layer and submucous plexus. Dynorphin-A(1-8) immunofluorescent nerve endings were in close contacts with submucosal blood vessels, probably arterioles, and Brunner's gland cells. These findings suggest that the opioid peptide dynorphin-A(1-8) might be synthetized within myenteric plexus perikarya of the rat duodenum and that it might modulate the peristaltic activity, intestinal blood pressure, and production of mucopeptides synthetized within Brunner's gland cells.  相似文献   

12.
The distribution of catecholamines in the small and large intestine of flying foxes (Pteropus spp.) was investigated using glyoxylic-acid-induced fluorescence and immunohistochemical staining of tyrosine hydroxylase and dopamine--hydroxylase. Dense networks of varicose axons stained by each of these methods supplied blood vessels, the mucosa and both submucous and myenteric ganglia, but were scarce in the circular and longitudinal muscle. The majority (>90%) of submucous neuronal perikarya contained both enzymes and most of these also exhibited catecholamine fluorescence. Somata of similar staining characteristics were less common in the myenteric plexus, where single cells were found in only the minority of ganglia. All of the stained submucosal somata and mucosal axons contained vasoactive intestinal peptide, whereas catecholamine-containing axons that supplied the ganglia, external muscle and blood vessels did not. It is concluded that (1) there is dense catecholamine innervation of most tissues in the flyingfox intestine, similar to many other mammals, (2) mucosal axons originate from enteric catecholamine neurons, not found in other mammals, and (3) axons supplying the blood vessels and enteric ganglia are probably of sympathetic origin and can be distinguished from the intrinsic catecholamine-containing axons by their lack of vasoactive intestinal peptide. The roles and interactions of these two types of catecholamine innervation in the control of secretion and motility remain to be identified.  相似文献   

13.
Summary Galanin immunoreactivity was observed in nerve cell bodies and nerve fibres, but not in enteroendocrine cells, in the small intestine of the guinea-pig. Nerve terminals were found in the myenteric plexus, in the circular muscle, in submucous ganglia, around submucous arterioles, and in the mucosa. Lesion studies showed that all terminals were intrinsic to the intestine; those in myenteric ganglia arose from cell bodies in more orally placed ganglia. Myenteric nerve cells were also the source of terminals in the circular muscle. Galanin (GAL) was located in a population of submucous nerve cell bodies that also showed immunoreactivity for vasoactive intestinal peptide (VIP) and in a separate population that was immunoreactive for neuropeptide Y (NPY). Processes of the GAL/VIP neurons supplied submucous arterioles and the mucosal epithelium. Processes of GAL/NPY neurons ran to the mucosa. It is concluded that galanin immunoreactivity occurs in several functionally distinct classes of enteric neurons, amongst which are neurons controlling (i) motility, (ii) intestinal blood flow, and (iii) mucosal water and electrolyte transport.  相似文献   

14.
Liver tissue from 12 different mammalian species was studied with a fluorescence histochemical technique for the cellular localization of amines (Falck-Hillarp technique) and with a chemical method for the determination of norepinephrine (HPLC-technique). Adrenergic nerve plexus were found in interlobular blood vessels derived from the portal vein and hepatic artery. Varicose adrenergic nerve fibres were, generally, seen to branch from the fibres around the blood vessels and to enter the liver parenchyma, where they formed a randomly distributed intralobular network. The density of these intralobular fibres showed marked species variation. Human liver and liver from the rhesus monkey, baboon, cynomolgus monkey and guinea pig showed a high density of parenchymal adrenergic nerves. Rabbit, cat, pig, cow and horse liver formed an intermediate group, having fewer varicose adrenergic nerve fibres but an unequivocal distribution of these nerves to the liver parenchyma. In rat and mouse liver no parenchymal innervation could be demonstrated. The density of the parenchymal innervation generally correlated with the concentration of norepinephrine in the liver tissue.  相似文献   

15.
采用免疫组织化学ABC染色方法研究了神经激肽B受体(NK3r)在小鼠消化道的分布。MK3r样阳性的神经无胞体及神经纤维主要分布在十二指肠,空肠,回肠及结肠的粘膜下层神经丛和肌间神经丛,NK3r样阳性产物在食管,胃和直肠的神经丛中未见分布;NK3r样阳性产物大部分避限于神经细胞表面,也存在于胞和一些轴突内部,并在胞质中较细胞表面染色浅。。统计结果表明NK3r样免疫阳性神经元占肠神经系统神经元总数的0.5-1%,提示小鼠消化道内NK3r样阳性神经元可能参与消化功能的调节。  相似文献   

16.
Summary Substance P-like immunoreactivity in the alimentary canal of the frogRana esculenta L. was studied by means of the indirect immunoperoxidase method. In all segments of the gastrointestinal tract, immunoreactivity was revealed in both the myenteric and the submucosa plexus. Stained nerve cells were observed in the myenteric plexus but not in the submucous plexus. The proximal part of the oesophagus and hindgut were free of immunoreactive perkarya. The stained nerve cells were of the Dogiel type I category in the foregut, and type II in the midgut. Both the musculature and gastrointestinal glands were supplied with immune-positive fibres. These results indicate that substance P may play similar roles in the frog gut, as described previously in mammals and fish.  相似文献   

17.
VIP-like immunoreactivity was found in nerve fibres in all layers of the gut wall in both stomach and intestine, and was abundant in the myenteric and submucous plexuses. A few fibres were associated with blood vessels. Nerve cells showing VIP-like immunoreactivity were found in the myenteric plexus. Neurotensin-like immunoreactivity was found in nerve cells and numerous nerve fibres in the myenteric plexus of both stomach and intestine and in nerve fibres of the circular muscle layer, while bombesin-like immunoreactivity was confined to a low number of nerve fibres in the myenteric plexus of the stomach. The results indicate that a VIP-like, a neurotensin-like and a bombesin-like peptide are present in neurons of the gut of Lepisosteus.  相似文献   

18.
Summary Neuromedin U immunoreactivity was located histochemically in the guinea-pig small intestine. Projections of immunoreactive neurons were determined by analysing patterns of degeneration following nerve lesions. The co-localization of neuromedin U immunoreactivity with immunoreactivity for substance P, neuropeptide Y, vasoactive intestinal peptide and calbindin was also investigated. Neuromedin U immunoreactivity was found in nerve cells in the myenteric and submucous plexuses and in nerve fibres in these ganglionated plexuses, around submucous arterioles and in the mucosa. Reactive fibres did not supply the muscle layers. Most reactive nerve cells in the myenteric ganglia had Dogiel type-II morphology and in many there was co-localization of calbindin, although some Dogiel type-II neuromedin U neurons were calbindin negative. Lesion studies suggest that these myenteric neurons project circumferentially to local myenteric ganglia. Projections from myenteric neurons also run anally in the myenteric plexus, while other projections extend to submucous ganglia, and still further projections run from the intestine to provide terminals in the coeliac ganglia. In the submucous ganglia neuromedin U was co-localized in three populations of nerve cells: (i) those with vasoactive intestinal peptide immunoreactivity, (ii) neurons containing neuropeptide Y, and (iii) neurons containing substance P. Each of these populations sends nerve fibres to the mucosa. Neuromedin U immunoreactivity is thus located in a variety of neurons serving different functions in the intestine and therefore probably does not have a single role in intestinal physiology.  相似文献   

19.
The purpose of this study was to describe the autonomic innervation of the carotid sinus and heart in the rhesus monkey. Nine male rhesus monkeys (Macaca mulatta) and one male crab-eating macaque (M. fascicularis) were carefully dissected from the origin of the vagus nerves and superior cervical ganglia to the level of the fourth thoracic ganglion. The specimens were either freshly killed or obtained no later than 24 hours post mortem. The macaque monkeys were found to possess an innervation pattern that displayed features common to dog (connections between the vagus nerves and middle cervical ganglia), baboon (distinct cervical sympathetic and cervical vagal nerve trunks), and man (nerves projecting from the middle cervical and stellate ganglia to the heart). Distinct inferior cervical and first thoracic ganglia were never seen, but rather, large and well defined stellate ganglia were found. The macaque innervation pattern, when considered as a whole, most closely resembled the baboon.  相似文献   

20.
The small and large intestine of adult horses were histochemically and immunohistochemically investigated in order to evidence components of the intramural nervous system. The general structural organization of the intramural nervous system was examined by using Nissl-thionin staining as well as the anti-neurofilament 200 (NF200) immunoreaction, which demonstrated the presence of neurons in the submucous as well as myenteric plexuses. The additional presence of subserosal ganglia was shown in the large intestine. Acetylcholinesterase (AChEase) activity was observed in both the submucous and myenteric plexuses. Localization of acetylcholine-utilizing neurons was also evidenced by immunohistochemical reactions for choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT). With both histochemistry and immunohistochemistry possible cholinergic nerve fibres were detected in the inner musculature. The two possible cholinergic co-mediators Calcitonin Gene-Related Peptide (CGRP) and Substance P (SP) have been investigated by an immunohistochemical approach. CGRP immunoreactivity was detected in roundish nerve cell bodies as well as in nerve fibres of the submucous plexus, whereas SP immunoreactivity was evidenced in nerve fibres of the tunica mucosa, in nerve cell bodies and fibres of the submucous plexus and in nerve fibres of the myenteric plexus. NADPH-diaphorase reactivity, which is linked to the synthesis and release of nitric oxide, was detected in nerve cell bodies and nerve fibres of both the submucous and myenteric plexuses as well as in a subserosal localization of the large intestine. The nitrergic components were confirmed by the anti-NOS (nitric oxide synthase) immunoreaction. Results are compared with those of other mammals and related to the complex intestinal horse physiology and pathophysiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号