首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
As a critical tumor suppressor, p53 is inactivated in human cancer cells by somatic gene mutation or disruption of pathways required for its activation. Therefore, it is critical to elucidate the mechanism underlying p53 activation after genotoxic and cellular stresses. Accumulating evidence has indicated the importance of posttranslational modifications such as acetylation in regulating p53 stability and activity. However, the physiological roles of the eight identified acetylation events in regulating p53 responses remain to be fully understood. By employing homologous recombination, we introduced various combinations of missense mutations (lysine to arginine) into eight acetylation sites of the endogenous p53 gene in human embryonic stem cells (hESCs). By determining the p53 responses to DNA damage in the p53 knock-in mutant hESCs and their derivatives, we demonstrate physiological importance of the acetylation events within the core domain (K120 and K164) and at the C-terminus (K370/372/373/381/382/ 386) in regulating human p53 responses to DNA damage.  相似文献   

6.
Tang Y  Luo J  Zhang W  Gu W 《Molecular cell》2006,24(6):827-839
Upon DNA damage and other types of stress, p53 induces either cell-cycle arrest or apoptosis depending on the cellular context. However, the molecular mechanisms that govern the choice between cell-cycle arrest and apoptosis are not well understood. Here, we show that Tip60 is required for both cell growth arrest and apoptosis mediated by p53 and also induces its acetylation specifically at lysine 120 (K120) within the DNA-binding domain. Interestingly, this modification is crucial for p53-dependent apoptosis but is dispensable for its mediated growth arrest. K120 is a recurrent site for p53 mutation in human cancer, and the corresponding acetylation-defective tumor mutant (K120R) abrogates p53-mediated apoptosis, but not growth arrest. Thus, our study demonstrates that Tip60-dependent acetylation of p53 at K120 modulates the decision between cell-cycle arrest and apoptosis, and it reveals that the DNA-binding core domain is an important target for p53 regulation by posttranslational modifications.  相似文献   

7.
8.
9.
10.
Human SIRT1 is an enzyme that deacetylates the p53 tumor suppressor protein and has been suggested to modulate p53-dependent functions including DNA damage-induced cell death. In this report, we used EX-527, a novel, potent, and specific small-molecule inhibitor of SIRT1 catalytic activity to examine the role of SIRT1 in p53 acetylation and cell survival after DNA damage. Treatment with EX-527 dramatically increased acetylation at lysine 382 of p53 after different types of DNA damage in primary human mammary epithelial cells and several cell lines. Significantly, inhibition of SIRT1 catalytic activity by EX-527 had no effect on cell growth, viability, or p53-controlled gene expression in cells treated with etoposide. Acetyl-p53 was also increased by the histone deacetylase (HDAC) class I/II inhibitor trichostatin A (TSA). EX-527 and TSA acted synergistically to increase acetyl-p53 levels, confirming that p53 acetylation is regulated by both SIRT1 and HDACs. While TSA alone reduced cell survival after DNA damage, the combination of EX-527 and TSA had no further effect on cell viability and growth. These results show that, although SIRT1 deacetylates p53, this does not play a role in cell survival following DNA damage in certain cell lines and primary human mammary epithelial cells.  相似文献   

11.
Genotoxic stress triggers the p53 tumor suppressor network to activate cellular responses that lead to cell cycle arrest, DNA repair, apoptosis or senescence. This network functions mainly through transactivation of different downstream targets, including cell cycle inhibitor p21, which is required for short-term cell cycle arrest or long-term cellular senescence, or proapoptotic genes such as p53 upregulated modulator of apoptosis (PUMA) and Noxa. However, the mechanism that switches from cell cycle arrest to apoptosis is still unknown. In this study, we found that mice harboring a hypomorphic mutant p53, R172P, a mutation that abrogates p53-mediated apoptosis while keeping cell cycle control mostly intact, are more susceptible to ultraviolet-B (UVB)-induced skin damage, inflammation and immunosuppression than wild-type mice. p53R172P embryonic fibroblasts (MEFs) are hypersensitive to UVB and prematurely senesce after UVB exposure, in stark contrast to wild-type MEFs, which undergo apoptosis. However, these mutant cells are able to repair UV-induced DNA lesions, indicating that the UV-hypersensitive phenotype results from the subsequent damage response. Mutant MEFs show an induction of p53 and p21 after UVR, while wild-type MEFs additionally induce PUMA and Noxa. Importantly, p53R172P MEFs failed to downregulate anti-apoptotic protein Bcl-2, which has been shown to play an important role in p53-dependent apoptosis. Taken together, these data demonstrate that in the absence of p53-mediated apoptosis, cells undergo cellular senescence to prevent genomic instability. Our results also indicate that p53-dependent apoptosis may play an active role in balancing cellular growth.Key words: UVB irradiation, p53, DNA damage, DNA damage responses, apoptosis, senescence  相似文献   

12.
13.
The activity of the p53 gene product is regulated by a plethora of posttranslational modifications. An open question is whether such posttranslational changes act redundantly or dependently upon one another. We show that a functional interference between specific acetylated and phosphorylated residues of p53 influences cell fate. Acetylation of lysine 320 (K320) prevents phosphorylation of crucial serines in the NH(2)-terminal region of p53; only allows activation of genes containing high-affinity p53 binding sites, such as p21/WAF; and promotes cell survival after DNA damage. In contrast, acetylation of K373 leads to hyperphosphorylation of p53 NH(2)-terminal residues and enhances the interaction with promoters for which p53 possesses low DNA binding affinity, such as those contained in proapoptotic genes, leading to cell death. Further, acetylation of each of these two lysine clusters differentially regulates the interaction of p53 with coactivators and corepressors and produces distinct gene-expression profiles. By analogy with the "histone code" hypothesis, we propose that the multiple biological activities of p53 are orchestrated and deciphered by different "p53 cassettes," each containing combination patterns of posttranslational modifications and protein-protein interactions.  相似文献   

14.
Genotoxic stress triggers the p53 tumor suppressor network to activate cellular responses that lead to cell cycle arrest, DNA repair, apoptosis or senescence. This network functions mainly through transactivation of different downstream targets, including cell cycle inhibitor p21, which is required for short-term cell cycle arrest or long-term cellular senescence, or proapoptotic genes such as p53 upregulated modulator of apoptosis (PUMA) and Noxa. However, the mechanism that switches from cell cycle arrest to apoptosis is still unknown. In this study, we found that mice harboring a hypomorphic mutant p53, R172P, a mutation that abrogates p53-mediated apoptosis while keeping cell cycle control mostly intact, are more susceptible to ultraviolet-B (UVB)-induced skin damage, inflammation, and immunosuppression than wild-type mice. p53R172P embryonic fibroblasts (MEFs) are hypersensitive to UVB and prematurely senesce after UVB exposure, in stark contrast to wild-type MEFs, which undergo apoptosis. However, these mutant cells are able to repair UV-induced DNA lesions, indicating that the UV hypersensitive phenotype results from the subsequent damage response. Mutant MEFs show an induction of p53 and p21 after UVR, while wild-type MEFs additionally induce PUMA and Noxa. Importantly, p53R172P MEFs failed to downregulate anti-apoptotic protein Bcl-2, which has been shown to play an important role in p53-dependent apoptosis. Taken together, these data demonstrate that in the absence of p53-mediated apoptosis, cells undergo cellular senescence to prevent genomic instability. Our results also indicate that p53-dependent apoptosis may play an active role in balancing cellular growth.  相似文献   

15.
Chao C  Herr D  Chun J  Xu Y 《The EMBO journal》2006,25(11):2615-2622
Mouse p53 is phosphorylated at Ser18 and Ser23 after DNA damage. To determine whether these two phosphorylation events have synergistic functions in activating p53 responses, we simultaneously introduced Ser18/23 to Ala mutations into the endogenous p53 locus in mice. While partial defects in apoptosis are observed in p53S18A and p53S23A thymocytes exposed to IR, p53-dependent apoptosis is essentially abolished in p53S18/23A thymocytes, indicating that these two events have critical and synergistic roles in activating p53-dependent apoptosis. In addition, p53S18/23A, but not p53S18A, could completely rescue embryonic lethality of Xrcc4(-/-) mice that is caused by massive p53-dependent neuronal apoptosis. However, certain p53-dependent functions, including G1/S checkpoint and cellular senescence, are partially retained in p53(S18/23A) cells. While p53(S18A) mice are not cancer prone, p53S18/23A mice developed a spectrum of malignancies distinct from p53S23A and p53(-/-) mice. Interestingly, Xrcc4(-/-)p53S18/23A mice fail to develop tumors like the pro-B cell lymphomas uniformly developed in Xrcc4(-/-) p53(-/-) animals, but exhibit developmental defects typical of accelerated ageing. Therefore, Ser18 and Ser23 phosphorylation is important for p53-dependent suppression of tumorigenesis in certain physiological context.  相似文献   

16.
Occurrence of DNA damage in a cell activates the DNA damage response, a survival mechanism that ensures genomics stability. Two key members of the DNA damage response are the tumor suppressor p53, which is the most frequently mutated gene in cancers, and MDC1, which is a central adaptor that recruits many proteins to sites of DNA damage. Here we characterize the in vitro interaction between p53 and MDC1 and demonstrate that p53 and MDC1 directly interact. The p53-MDC1 interaction is mediated by the tandem BRCT domain of MDC1 and the C-terminal domain of p53. We further show that both acetylation of lysine 382 and phosphorylation of serine 392 in p53 enhance the interaction between p53 and MDC1. Additionally, we demonstrate that the p53-MDC1 interaction is augmented upon the induction of DNA damage in human cells. Our data suggests a new role for acetylation of lysine 382 and phosphorylation of serine 392 in p53 in the cellular stress response and offers the first evidence for an interaction involving MDC1 that is modulated by acetylation.  相似文献   

17.
Recent studies have suggested that phosphorylation of human p53 at Ser20 is important for stabilizing p53 in response to DNA damage through disruption of the interaction between MDM2 and p53. To examine the requirement for this DNA damage-induced phosphorylation event in a more physiological setting, we introduced a missense mutation into the endogenous p53 gene of mouse embryonic stem (ES) cells that changes serine 23 (S23), the murine equivalent of human serine 20, to alanine (A). Murine embryonic fibroblasts harboring the p53(S23A) mutation accumulate p53 as well as p21 and Mdm2 proteins to normal levels after DNA damage. Furthermore, ES cells and thymocytes harboring the p53(S23A) mutation also accumulate p53 protein to wild-type levels and undergo p53-dependent apoptosis similarly to wild-type cells after DNA damage. Therefore, phosphorylation of murine p53 at Ser23 is not required for p53 responses to DNA damage induced by UV and ionizing radiation treatment.  相似文献   

18.
A human fibroblast cell line with conditional p53 expression displayed a p53-dependent increase in both the protein and mRNA levels of proliferating cell nuclear antigen (PCNA) after exposure to ionizing radiation (IR). The combination of p53 induction and IR cooperated to activate a transiently expressed human PCNA promoter-reporter gene via a p53-responsive element. Chromatin immunoprecipitation assays with antibodies specific for p53 or p300/CREB-binding protein revealed specific p53-dependent enrichment of PCNA promoter sequences in immunoprecipitates of sheared chromatin prepared from irradiated cells. Maximal and specific association of acetylated histone H4 with the PCNA promoter also depended on p53 induction and exposure to IR. These data demonstrate p53 binding to a target site in the PCNA promoter, recruitment of p300/CREB-binding protein, and localized acetylation of histone H4 in an IR-dependent manner. These molecular events are likely to play a role in mediating activation of PCNA gene expression by p53 during the cellular response to DNA damage. The analyses indicate that the combination of p53 induction and IR activate the PCNA gene via mechanisms similar to that of p21/wild-type p53-activated factor but to a lesser extent. This differential regulation of PCNA and p21/wild-type p53-activated factor may establish the proper ratio of the two proteins to coordinate DNA repair with cell cycle arrest.  相似文献   

19.
20.
p53 is the central regulator of cell fate following genotoxic stress and oncogene activation. Its activity is controlled by several posttranslational modifications. Originally defined as a critical layer of p53 regulation in human cell lines, p53 lysine methylation by Set7/9 (also called Setd7) was proposed to fulfill a similar function in?vivo in the mouse, promoting p53 acetylation, stabilization, and activation upon DNA damage (Kurash et?al., 2008). We tested the physiological relevance of this circuit in an independent Set7/9 knockout mouse strain. Deletion of Set7/9 had no effect on p53-dependent cell-cycle arrest or apoptosis following sublethal or lethal DNA damage induced by radiation or genotoxic agents. Set7/9 was also dispensable for p53 acetylation following irradiation. c-myc oncogene-induced apoptosis was also independent of Set7/9, and analysis of p53 target genes showed that Set7/9 is not required for the p53-dependent gene expression program. Our data indicate that Set7/9 is dispensable for p53 function in the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号