首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in cell wall constituents during the cell cycle were investigated using a synchronous culture of Catharanthus roseus (L.) G. Don which was obtained by the double phosphate starvation method (S. Amino et al. 1983. Physiol. Plant. 59: 393–396). Cell walls isolated from the cells in each phase of the cell cycle were fractionated into EDTA-soluble (pectin), 5 and 24% KOH-soluble (hemicellulose) and 24% KOH-insoluble (cellulose) fractions. Their sugar compositions were investigated by gas chromatography and methylation analysis. The following changes were observed: (1) a significant increase in total cell walls in the G1 phase after cell division, (2) a temporary increase in the relative amount of the EDTA-soluble fraction during cytokinesis, (3) an increase in the relative amount of galactose, probably 4-linked galactose, in the EDTA-soluble fraction prior to cytokinesis, (4) a temporary increase in the relative amount of 3-linked glucose during cytokinesis, (5) little change in the composition of polysaccharides throughout the cell cycle in the 24% KOH-soluble fraction, which consisted mainly of xyloglucan. The changes observed are discussed in relation to the progression and physiological significance of each phase of the cell cycle.  相似文献   

2.
G. Franz 《Planta》1972,102(4):334-347
Summary Quantitative determinations of the cell wall constituents (pectin, hemicellulose and -cellulose) of growing Phaseolus aureus seedlings showed marked changes during early growth. The cell walls of the 2 to 4 days old seedlings were composed of approximately 30% -cellulose, 50% hemicelluloses and 20% pectin. After four weeks the proportion of the different fractions had changed to approximately 60% -cellulose, 30% hemicelluloses and 10% pectin. Quantitative sugar determinations on these polysaccharide fractions have shown that mainly the non-cellulosic fractions (hemicelluloses and pectin) underwent considerable changes in sugar composition during growth. The hemicelluloses contained non-cellulosic polysaccharides with a high glucose content, which were not starch. These were broken down in the cell walls during growth.In a series of experiments in which 14C-glucose was injected into the hypocotyls of four days old Phaseolus aureus seedlings, the transport of radioactivity to the different plant organs and its incorporation into the cell wall polysaccharides of the bean stem were studied. The major part of the radioactivity was incorporated into the cell wall of the stem tissue. Minor amounts were transported to the roots and leaves. Of the cell wall polysaccharides of the stem, the hemicellulosic fraction showed a higher rate of incorporation of the 14C-glucose than the -cellulose in the early stages of growth. With increasing age of the plant, radioactivity was transferred from the hemicellulosic fraction to the -cellulose, suggesting turnover of polysaccharides in the growing cell wall.  相似文献   

3.
1. Subcellular fractionation of maize roots resulted in the isolation of the following enriched fractions: cell wall, dictyosome, smooth-membrane and rough-microsomal fractions. In addition, extracellular polysaccharide of the root slime was isolated. 2. Maizeseedling roots were incubated in vivo with d-[U-(14)C]glucose, and the pattern of incorporation of radioactivity into the polysaccharides of each fraction was investigated. 3. The differentiation of maize-root cells with respect to the synthesis of specific extracellular polysaccharide directly relates to the polysaccharide synthesized and transported within the membrane system of the cell. A fucose-containing polysaccharide, characteristic only of root slime, was present only in the membrane system of the root-tip region of the root. Regions of typical secondary wall development within the root were characterized by an increased incorporation of radioactivity into xylose of polysaccharide within the membrane system. 4. The incorporation of radioactivity into glucan polymers in the membrane fractions was very low in all regions of the root. Since in regions of secondary wall development greater than 60% of all radioactive incorporation was into a glucan polymer, it can be inferred that this polymer, most probably cellulose, is not synthesized or transported within the compartments of the membrane system. It is suggested that synthesis of cellulose occurs at the surface of the plasmalemma. 5. Maize-root cells contained 40 times more rough endoplasmic reticulum than dictyosome membrane. The relative specific radioactivities of each fraction indicated that polysaccharide was concentrated in the region of the Golgi apparatus, which showed a 100% increase in specific radioactivity compared with the rough endoplasmic reticulum. The Golgi apparatus can thus be regarded as a localized focal point on the synthetic and transport system of polysaccharide by the intracellular membrane compartments.  相似文献   

4.
Growth of the cell wall of Bacillus megaterium was studied by pulse-labeling the cell wall of a DAP- Lys- mutant for a very short time with tritium-labeled diaminopimelic acid. The distribution of radioactivity along the cell wall was examined by high-resolution autoradiography on isolated cell walls and thin sections of bacteria. The results indicate that cell wall elongation occurs by diffuse intercalation of newly synthesized murein into the expanding cell wall during exponential growth, as well as during germination, and that the only zone of highly localized diaminopimelic acid incorporation is found at the cross wall during its synthesis. This zone contains about 30% of the radioactivity incorporated into the cell wall. Analysis of autoradiographs of thin sections of bacteria shows that the total radioactivity incorporated per bacterium doubles during the life cycle. This doubling occurs in the cylindrical part of the cell wall but not in the polar caps. This seems to indicate that elongation of the bacterium is not constant during the life cycle but increases with the length of the cell.  相似文献   

5.
Qualitative sugar flux into cell wall polysaccharides has been determined for two model systems. The first, treatment of suspension-cultured French bean (Phaseolus vulgaris L.) cells with an increase in the cytokinin/auxin ratio and in the concentration of sucrose, models some aspects of differentiation. Wall changes are characterised by up to a five-fold increase in thickness due to the laying down of extra wall material. Sugar flux following labelling of cells with [14C]-sucrose was examined during the period of maximum extractable catalytic activities of the enzymes of sugar nucleotide conversion determined previously. Increased secretion was observed in all major groups of polysaccharides, particularly the cellulosic fraction. Analysis of the sugars in the hemicellulosic fraction indicated that the newly synthesised polysaccharide was most probably xylan. It was confirmed by immunolocalisation of xylan in these walls. This treatment thus increases incorporation into the wall of components characteristic of secondary wall. In the second system, which models the defence response, suspension cultures were treated with an elicitor from the walls of Colletotrichum lindemuthianum. Again, sugar flux was determined by labelling cells with [14C]-sucrose and examined during the period determined previously of maximum extractable catalytic activities of the enzymes of sugar nucleotide conversion. Increased secretion into unextractable polymers was the major change and was consistent with the occurrence of oxidative processes leading to immobilisation of some wall components. Callose, a polysaccharide characteristic of the defence response was immunolocalised in these walls but not in those of control cells.  相似文献   

6.
Auxin induced growth and decreased the hexosamine content ofthe cell walls of rice coleoptile sections. Indole-3-aceticacid (IAA) at 10–5 M inhibited the incorporation of 14C-glucosamineinto the cell walls. IAA did not affect the 14C-incorporationinto the cytoplasm, while inhibitors of glycoprotein synthesis,unicamycin and monensin, suppressed the incorporation into boththe cytoplasm and the cell walls. The radioactivity due to labeledglucosamine in the cell walls increased during the chase, butthis increase was inhibited by IAA. Among the cell wall fractions,the increase in radioactivity and its inhibition by IAA wereconspicuous in the hemicellulose I fraction. The inhibitoryeffect of IAA on glucosamine incorporation into the cell wallswas observed even in the presence of 0.15 M mannitol solutionwhich completely suppressed the IAA-induced growth. These resultssuggest that auxin induces growth at least partly by inhibitingthe transport of asparagine-linked glycoproteins from the cytoplasmto the cell walls. 1 Present address: Department of Biology, Faculty of Science,Osaka City University, Sumiyoshi-ku, Osaka 558, Japan (Received July 23, 1986; Accepted December 22, 1986)  相似文献   

7.
Changes in the composition of cell walls and extracellular polysaccharides (ECP) were studied during the growth of suspension-cultured Populus alba cells. Three growth phases, namely the cell division phase, cell elongation phase and stationary phase, were distinguished. The active deposition of polysaccharides in cell wall fractions (50 m M Na2CO3-, 1 M KOH-, 4 M KOH-soluble and 4 M KOH-insoluble) was observed during the elongation phase. A 50 m M Na2CO3-soluble pectic fraction mainly composed of 1,4-linked galactan and arabinan except acidic sugars. The 1,4-linked galactan decreased markedly during elongation. In 1 and 4 M KOH-soluble hemicellulosic fractions, non-cellulosic 1,4-glucan and xyloglucan were observed as major components, respectively. These polysaccharides also decreased during elongation. A large amount of polysaccharides was secreted into the medium as ECP. Neutral sugars were detected predominantly by sugar composition analysis. Acidic sugars, such as galacturonic acid, were less than 12% of total. In this study, active metabolism of pectic polysaccharides in addition to hemicellulosic polysaccharides, especially neutral side chains of pectin, during cell growth, was clarified.  相似文献   

8.
Three-day-cultured cells of Vinca rosea L. (in the cell division phase) and 5-day-cultured cells (in the cell expansion phase) prelabelled with d -[U-14C] glucose were incubated in a medium containing unlabelled glucose. After various periods of chase, extra-cellular polysaccharides (ECP) and cell walls were isolated, and cell walls were fractionated into pectic substances, hemicellulose, and cellulose fractions. After acid hydrolysis, the radioactive constituents in the pectic substances and hemicellulose fractions were analyzed. Active turnover was observed in arabinose and galactose in the hemicellulose fraction of cell walls, while the constituents of the pectic substances, and xylose and glucose in the hemicellulose fraction did not undergo active turnover. The proportion of radioactivities of arabinose and galactose in total radioactivity of ECP increased markedly after chasing. These results indicate that arabinogalactan was synthesized, deposited in the cell wall, degraded rapidly, and made soluble in the medium as a part of ECP.  相似文献   

9.
The cellular site of initial glycosylation of proteins from Saccharomyces cerevisiae has been studied. Short pulses of [U-14C]mannose label the ribosomal fraction of the yeast. Most of the label was associated with polysomes; monosomes contained only a small amount of radioactivity. All of the radioactivity present in the polysomal fraction was accounted by mannose and smaller amounts of glucose and glucosamine. Puromycin treatment detached more than 50% of the radioactivity from the polysomes; treatment of polysomes at pH 10.0 also caused the release of radioactivity. These results indicate that initial sugar binding occurs while the nascent polypeptide chains are still growing on the ribosomes. When the cells were preincubated with 2-deoxy-D-glucose, incorporation of [U-14C]mannose into the polysomes and the cell wall was inhibited, whereas its incorporation into membrane fractions was unimpaired. It was concluded that 2-deoxy-D-glucose inhibited the synthesis of glycoproteins by interference with the initial glycosylation steps at the ribosomal level.  相似文献   

10.
There are two peaks of 3H-leucine incorporation in the cell cycle of L5178Y cells. The first, during S stage, corresponds to a peak of 3H-leucine incorporation into the nuclear fraction. The second, during S or early G2, corresponds to a peak of 3H-leucine incorporation into the mitochondrial fraction. The rate of protein synthesis is unique for the proteins from each of the four fractions, nuclear, mitochondrial, microsomal, and soluble.The SDS polyacrylamide-gel electrophoretic patterns of 3H-leucine incorporation were different among three subcellular fractions: nuclear, mitochondrial, and microsomal + soluble. However, the incorporation pattern for each fraction remains qualitatively the same throughout the cell cycle.  相似文献   

11.
When white light irradiation inhibits shoot growth in derooted pea ( Pisum sativum L. cv. Alaska) cuttings, it decreases tissue tension, a driving force for shoot growth, by making the cell wall of the inner tissues mechanically rigid. To elucidate the mechanism by which light affects the mechanical properties of the cell wall in the inner tissues, its effect on the chemical properties of the cell walls was studied by analyzing qualitatively and quantitatively cell wall polysaccharides in the epdidermis and inner tissue of pea epicotyls grown in both dark and light. The amount of polysaccharides per subhook in the cell walls of both tissues increased during a 4-h dark incubation. Light suppressed the increase in hemicellulosic (HC)-II and cellulosic polysaccharides in the inner tissues, while it did not affect the increase in other wall fractions in either the epidermal or subepidermal tissues. No light effect was observed on the neutral sugar compositions of pectin, HC-I or HC-II fractions in either of the tissues. Light increased the mass-average molecular mass of xyloglucan and rhamnoarabinogalactan in HC-II fractions in the inner tissues, while such an effect was not observed in the epidermis. These facts suggest that the light-induced decrease in the tissue tension in pea epicotyls is caused by an increase in the molecular size of xyloglucan, rhamnoarabinogalactan in the HC-II fraction and/or the suppression of the synthesis of HC-II and cellulosic polysaccharides in the inner tissues.  相似文献   

12.
The carbon metabolism in cell walls of Chlorella ellipsoideawas studied by following 14C incorporation into cell wall constituentsin photosynthesizing, synchronously growing cells. The rateof incorporation was higher at an early growth phase of thecell cycle. The 14C was incorporated into both the major cellwall constituents, hemicellulose and ‘rigid wall’,and the radioactivity in the latter was distributed into itstwo components, glucosamine and amino acids. In pulse-chaseexperiments, the 14C fixed photosynthetically in the precedingcell cycle was rapidly transferred into the cell wall constituentsat the early growth phase of the ongoing cell cycle, and thereafterwas gradually released from the cell walls, although the totalamount of 14C in the cells remained constant. It was concludedthat the cell wall constituents are turned over during the growthphase of the algal cell cycle, and that the cell wall metabolismin the ongoing cell cycle is closely connected with the carbonmetabolism in the preceding cell cycle. (Received February 3, 1982; Accepted June 21, 1982)  相似文献   

13.
Asporogenic and sporogenic strains ofBacillus megaterium KM release during growth heterogeneous fragments of the cell wall into the medium the non-dialyzable fraction representing 50–90% by the total. During lysis of sporangia the non-dialyzable fraction represents only 30% of the soluble fraction of autolyzed walls. Gel filtration on Sephadex permits to separate the non-dialyzable fragments of the cell wall released during growth into two fractions contaning simultaneously peptidoglycan and phosphorus. The two fractions contain peptidoglycan components in the same ratio as in the cell wall. Only one peptidoglycan macromolecular fraction, smaller than the fractions released during growth, was detected by gel filtration in the material released during lysis of sporangia.  相似文献   

14.
The effect of a synthetic glucose analogue, 2-deoxy-2-fluoro-d-glucose (FG) on growth and glucose metabolism of Saccharomyces cerevisiae was studied. The addition of FG (0.005-0.05%) to a 2% glucose medium resulted in reduction of the initial growth rate and, after several hours, in a complete cessation of the culture growth. These two events were due to extensive lysis of the population which continued long after the period when no more growth was recorded. Electron microscope examination of lysed cells showed that the lysis was a consequence of a dissolution of the cell walls. FG inhibited to a similar extent the initial growth rate and the incorporation of radioactivity from labeled glucose into growing population. The inhibition of radioactivity incorporation from glucose by growing protoplasts was much less. The yeast was found to be extremely FG sensitive whenever the synthesis of new cell wall material was involved. All observations imply that FG interferes mainly with the cell wall formation of S. cerevisiae. A comparison of the FG effects on metabolic activity of protoplasts, simultaneous secretion of mannan-proteins into the growth medium, and the formation of glucan fibrils on the surface of protoplasts demonstrated that the cell wall glucan synthesis is the most FG-sensitive process and evidently the growth-limiting factor in intact cells. FG-resistant cells were selected during growth experiments. They exhibited an altered mode of cell division when grown in the presence of FG.  相似文献   

15.
Confluent cultures of rat muscle fibroblastic cells respond by increased glycosaminoglycan (GAG) synthesis when cultured in medium containing a solubilized bone matrix fraction (SBM) at a concentration of 100 micrograms/ml. The metabolism of the GAG associated with the cell pellet, the cell surface and the tissue culture medium fractions was studied, in the presence and absence of SBM, by measuring the incorporation of radioactivity from [3H]glucosamine and [35S]SO4 into the isolated GAG. Net synthesis of hyaluronic acid and of chondroitin sulfate in the medium fraction increased more rapidly in cultures containing SBM compared to controls, and the accumulation of labelled GAG in the medium of the treated cultures was approximately linear with respect to the length of incubation. The addition of SBM also resulted in increased incorporation of 3H and of 35S into the GAG of the cell surface and cell pellet fractions. In these fractions, stimulation of incorporation of radioactivity occurred in two waves: an early, relatively minor increase and a later relatively major increase. The relatively major stimulation of radioactivity into the GAG of the cell surface fraction occurred between 24 and 48 h and was independent of any apparent effect of serum.  相似文献   

16.
Beginning 10 hours after fertilization, zygotes of Fucus distichus L. Powell incorporate (35)S into polysaccharides as a sulfate ester of fucose. These sulfated polysaccharides are sequestered in only the rhizoid cell of the two-celled embryo and can serve as a marker of cellular differentiation. Zygotes were pulsed at different times after fertilization with Na(2) (35)SO(4) to identify and isolate the fucans localized within the region of cytoplasm destined to become the rhizoid cell. Low molecular weight pools of (35)S were saturated within 60 minutes, with the greatest incorporation into ethanol-soluble and insoluble fractions occurring with 0.1 mm Na(2)SO(4) in the artificial sea water medium. At the time of rhizoid formation, four fucose-containing polysaccharide fractions incorporated (35)S. When each fraction was subjected to diethylaminoethyl chromatography, two components were eluted with KCl that contained over 84% of the fucose and 93% of the (35)S of the particular fraction. Highvoltage paper electrophoresis of each fraction also resulted in the separation of these two major components. Both components from each of the four fractions behaved identically when separated by diethylaminoethyl chromatography and paper electrophoresis. By comparing the incorporation of (35)S into the polysaccharide fractions at 4 and 16 hours after fertilization, the fucan-sulfate components that are localized in the cytoplasm at the time of rhizoid formation were isolated. Although sulfated polysaccharides in brown algae are reported to be very heterogeneous in terms of their sugar composition and complexes with other heteropolymers, we propose that there are two major components that are sulfated during early embryogenesis in Fucus. The location of these two sulfated polysaccharides in different chemical fractions may reflect their subcellular localization (e.g., cytoplasmic vesicles or cell walls), or their association with other heteropolymers.  相似文献   

17.
The inhibition of growth by polyethlene glycol (PEG)-induced osmotic stress led to modifications in the changes taking place in cell wall composition during normal growth of epicotyls of Cicer arietinum L. cv. Castellana. Epicotyls growing under normal conditions showed a decrease in the amount of pectic fractions and an increase in the hemicellulosic fractions and α-cellulose that led to an increase in the rigidity and a loss in growth capacity. Among the hemicellulosic fractions, the KI-2 fraction (insoluble fraction of 10% KOH-extracted hemicelluloses) seemed to be the only one related to the elongation process and subsequent rigidity. During normal growth a decrease was observed in the total amount of galactose, mainly from the pectic fractions. The inhibition of elongation led to an increase in the amount of the cell walls, due to inhibition of cellular elongation. PEG prevented the increase in the hemicelluloses and the α-cellulose, indicating that these changes were related to elongation. Thus, during the inhibition of elongation there is probably an inhibition of new synthesis that prevents cell wall rigidity and maintains cell wall growth capacity. Changes in the pectic fractions during growth were not affected by the inhibition of elongation, showing that these fractions are related to cell wall loosening rather than to elongation. Study of the cell wall composition confirms the idea that the autolytic process is regulated by changes in the cell wall structure during epicotyl growth  相似文献   

18.
Cell wall structure of wheat coleoptiles grown under continuous hypergravity (300 g) conditions was investigated. Length of coleoptiles exposed to hypergravity for 2-4 days from germination stage was 60-70% of that of 1 g control. The amounts of cell wall polysaccharides substantially increased during the incubation period both in 1 g control and hypergravity-treated coleoptiles. As a results, the levels of cell wall polysaccharides per unit length of coleoptile, which mean the thickness of cell walls, largely increased under hypergravity conditions. The major sugar components of the hemicellulose fraction, a polymer fraction extracted from cell walls with strong alkali, were arabinose (Ara), xylose (Xyl) and glucose (Glc). The molar ratios of Ara and Xyl to Glc in hypergravity-treated coleoptiles were higher than those in control coleoptiles. Furthermore, the fractionation of hemicellulosic polymers into the neutral and acidic polymers by the anion-exchange column showed that the levels of acidic polymers in cell walls of hypergravity-treated coleoptiles were higher than those of control coleoptiles. These results suggest that hypergravity stimuli bias the synthesis of hemicellulosic polysaccharides and increase the proportion of acidic polymers, such as arabinoxylans, in cell walls of wheat coleoptiles. These structural changes in cell walls may contribute to plant resistance to hypergravity stimuli.  相似文献   

19.
The growth kinetics and variations in cell wall matrix polysaccharides and glycoside hydrolases during seedling development of the drought-tolerant wheat cultivar (cv. Hong Mang Mai) were compared with the drought-sensitive cultivar (cv. Shirasagikomugi). After 15d of culture in water at 22 degrees C under constant irradiance of 98mumolm(-2)s(-1), the length of the coleoptile and leaf sheath of Hong Mang Mai seedlings was 1.7 times longer than those of Shirasagikomugi seedlings. In the cell walls isolated from coleoptiles and leaf sheaths of the seedling of the two cultivars, the contents of arabinose, xylose, and glucose changed during development. The cell walls were fractionated progressively with 50mM CDTA, 50mM Na(2)CO(3), 1M KOH and 4M KOH, and sugar composition was determined. The amount of CDTA-soluble fraction from the Hong Mang Mai cell walls was 2.4-fold higher than that from the Shirasagikomugi cell walls at 6d of culture, and a considerable decrease was observed during development. The ratio of arabinose to xylose in 1M KOH-soluble fraction from the two cultivars decreased. The amount of 4M KOH-soluble fraction from the Shirasagikomugi cell walls was affected much more than those of the Hong Mang Mai cell walls. Many glycoside hydrolase activities were detected in the protein fractions from coleoptiles and leaf sheaths of the two cultivars, and the activities of licheninase, 1,3-1,4-beta-glucanase, and 1,3-beta-glucanase in the LiCl-soluble protein fraction increased drastically during development of the Shirasagikomugi seedlings. These findings suggest that the metabolism of the cell wall matrix polysaccharides of the drought-tolerant wheat cultivar is far different from that of the drought-sensitive wheat cultivar during seedling development.  相似文献   

20.
Cell Wall Metabolism in Developing Strawberry Fruits   总被引:11,自引:5,他引:6  
Cell wall metabolism was studied in strawberry receptacles (Fragariaananassa, Duchesne) of known age in relation to petal fall (PF).Polysaccharide and protein composition, incorporation of [14C]glucoseand [14C]proline by excised tissue, and the fate of 14CO2 fixedby young, attached fruits were followed in relation to celldivision, cell expansion, fine structure, and ethylene synthesis. Cell division continued for about 7 d after PF although vacuolationof cells was already beginning at PF and the subsequent cellexpansion was logarithmic. There was an associated logarithmicincrease in sugar content per cell and a decreasing rate ofethylene production per unit fresh weight. During cell expansion radioactivity from [14C]glucose was incorporatedinto fractions identified as starch and soluble polyuronideand into glucose and galactose residues in the cell wall. Radioactivityfrom [14C]proline was also incorporated into the cell wall,but only 10 per cent of this activity was found in hydroxyproline.Correspondingly wall protein contained a low proportion of hydroxyprolineresidues. The proportion of radioactivity from 14CO2 fixed byfruitlets remained constant in most sugar residues in the cellwall. The proportion of radioactivity in galactose fell, indicatingturnover of these residues. Between 21 and 28 d after PF receptacles became red and softenedbut there was no change in the rate of ethylene production.Cell expansion continued for at least 28 d. Tubular proliferationof the tonoplast and hydration of middle lamella and wall matrixmaterial had begun 7–14 d after PF but became extremeduring ripening. Associated with the hydration of the wall,over 70 per cent of the polyuronide in the wall became freelysoluble, and arabinose and galactose residues lost from thewall appeared in soluble fractions. There was no increase intotal polysaccharide during ripening and incorporation of [14C]glucoseinto polysaccharides ceased, although protein increased andincorporation of [14C]proline into wall protein continued.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号