首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Four co-solvents (dimethylformamide [DMF], formamide, dimethyl sulfoxide [DMSO], and pyridine) were tested with tert-butanol (tBut) to optimize the initial rate (v?) and yield of mannosyl myristate synthesis by esterification catalyzed by immobilized lipase B from Candida antarctica. Ten percent by volume of DMSO resulted in the best improvement of v? and 48-hr yield (respectively 115% and 13% relative gain compared to pure tBut). Use of molecular sieve (5% w/v) enhances the 48-hr yield (55% in tBut/DMSO [9:1, v/v]). Transesterification in tBut/DMSO (9:1, v/v) with vinyl myristate leads to further improvement of v? and 48-hr yield: a relative gain of 85% and 65%, respectively, without sieve and 25% and 10%, respectively, with sieve, compared to esterification. No difference in v? and 48-hr yield is observed when transesterification is carried out with or without sieve.  相似文献   

2.
The transesterification of divinyladipate with adenosine in DMF containing 20% (v/v) DMSO was catalyzed by Streptomyces sp. alkaline protease and esterification occurred exclusively at the 3-position of hydroxyl group of ribofuranose in adenosine to give 3-O-vinyladipoyl adenosine without other products.  相似文献   

3.
Acylation of Pseudomonas cepacia lipase with Pyromellitic dianhydride to modify 72% of total amino groups was carried out. Different organic solvents were screened for precipitation of modified lipase. It was found that 1,2-dimethoxyethane was the best precipitant which precipitated 97% protein and complete activity. PCMC (protein coated microcrystals), CLPCMC (crosslinked protein coated microcrystals), EPROS (enzyme precipitated and rinsed with organic solvents) and pH tuned preparations of modified and unmodified lipase were prepared and used for carrying out transesterification reaction with n-octane and dimethyl formamide (DMF) as reaction medium. In n-octane, among all the preparations, CLPCMC of modified lipase gave highest rate (1970 nmol min−1 mg−1) as compared to unmodified pH tuned lipase (128 nmol min−1 mg−1). In DMF, with both 1% (v/v) and 5% (v/v) water content, CLPCMC showed highest initial rate of 0.72 and 7.2 nmol min−1 mg−1, respectively. Unmodified pH tuned lipase showed no activity at all in DMF with both 1% and 5% (v/v) water content.  相似文献   

4.
Two different immobilized chymotrypsin derivatives were used to synthesize kyotorphin, using N-benzoyl-L-tyrosine ethyl ester and L-arginine ethyl ester as substrates, in water-DMF media. The first was adsorbed onto Celite particles and the second was multipoint covalently attached into polyacrylamide gel. In all cases, the conversion of the carboxyl substrate was carried out in first-order reaction conditions. For the adsorbed enzyme, the reaction kinetics deviated from first-order likely due to a fast irreversible inactivation of enzyme during the reaction time even at low DMF concentration (15-20% v/v). The covalent attachment of enzyme resulted in elimination of irreversible activity loss by organic solvent up to 60% (v/v) of DMF. The catalytic activity of the covalent derivative was conserved as appropriate for performing a synthetic reaction up to 60% v/v of DMF (in comparison to 30% v/v for the adsorbed derivative), showing a clear improvement in its stability against reversible denaturation by this solvent. The selectivity of the synthetic reaction was slightly enhanced (from 40-50%) with the increase in DMF concentration to 80% v/v, but it was significantly improved (to 80%) when L-argininamide was used as nucleophile.  相似文献   

5.
The initial synthetic rates of peptide Cbz-Arg-Leu-NH(2) from Cbz-Arg and Leu-NH(2) using PST-01 protease in the presence and absence of organic solvents were investigated under various conditions. The synthetic rates of Cbz-Arg-Leu-NH(2) in the presence of 50% (v/v) methanol, 50% (v/v) N,N-dimethylformamide (DMF) and 60% (v/v) dimethyl sulfoxide (DMSO) were 1.6-, 2.4-, and 5.1-times higher than that in the absence of organic solvent, respectively. The PST-01 protease was not only stable in the presence of organic solvents but also exhibited high reaction rates in the presence of methanol, DMF, and DMSO. When the Cbz-Arg concentration was lower than 60mM or the Leu-NH(2) concentration was lower than 400mM, the initial rates increased lineally with increase in their concentrations. However, the rates did not increase when the Leu-NH(2) concentration was more than 500mM. The optimum temperature and pH of the reaction were 40 degrees C and 7.0, respectively.  相似文献   

6.
Transesterification of arbutin and undecylenic acid vinyl ester was catalyzed by alkaline protease, Bioprase, in dimethylformamide to get arbutin derivative having undecylenic acid at 6-position of glucose moiety, 6-O-undecylenoyl p-hydroxyphenyl beta-D-glucopyranoside. The reaction rate increased with increase of arbutin concentration, and when its concentration was 0.9 M, the conversion rate was more than 90% under addition of 2 M undecylenic acid vinyl ester. The obtained arbutin ester significantly suppressed melanin production in murine B16 melanoma cells.  相似文献   

7.
Summary The synthesis of L-tyrosine glyceryl ester, from glycerol and L-tyrosine methyl ester, was carried out by a transesterification reaction catalyzed by -chymotrypsin. Values of 60 % (v/v) for glycerol and 200 mM for L-tyrosine methyl ester were optimal for the transesterification reaction. Additionally to glycerol, several other water miscible cosolvents (acetonitrile, N,N'-dimetyl formamide and tetrahydrofurane) were tested in the reaction media, but their presence did not give an enhancement on the transesterification activity with respect to the glycerol/water medium. However, increasing the hydrophobicity of the cosolvent resulted in a reduction of the enzyme activity, the water:glycerol mixture being the best reaction media.  相似文献   

8.
Effect of penetration enhancers were studied on the permeation of antihypertensive drugs prazosin hydrochloride and atenolol through full thickness skin of swiss albino mice. Atenolol was delivered to skin from saturated alcoholic solution containing 5% of 1-decanol and alcohol alone, while prazosin hydrochloride was saturated in dimethyl formamide(DMF, 5% v/v in water) and dimethyl sulfoxide(DMSO, 5% v/v in water). Atenolol permeation was augmented significantly in decanolic solution and also in pure alcohol. In case of prazosin hydrochloride, significant enhancement of permeation was shown by DMSO but not by DMF.  相似文献   

9.
10.
对有机相中酶法催化合成乙酸肉桂酯的转酯化反应进行研究。结果发现:Candida anatarctic脂肪酶(Novozyme435)、根霉脂肪酶(Rhizopus niveus lipase)和荧光假单胞菌脂肪酶(Pseudomonas fluore lipase)均有较好的催化活性。同时考察各反应参数(温度、反应溶剂、体系水活度、酰化剂类型、肉桂醇与酰化剂摩尔比、肉桂醇浓度等)对脂肪酶Novozyme435合成乙酸肉桂酯反应的影响,确定了反应体系最优工艺条件:在10 mL甲基叔丁基醚中,肉桂醇200 mmol/L,n(肉桂醇)∶n(乙酸乙烯酯)=1∶1.5,初始水活度αw=0.84,温度35℃,酶加量0.02 g,反应3 h后肉桂醇转化率可达到99%,产物经质谱(MS)鉴定。固定化酶经过10个批次反应,反应转化率都保持在90%以上。  相似文献   

11.
Partially purified Trichoderma reesei RUT-C30 acetyl esterase preparation was found to catalyze acyl transfer reactions in organic solvents, mixtures of organic solvents with water and even in water. Using different acyl donors, the best results for acetyl transfer in water were obtained using vinyl acetate. As acetyl acceptors, a variety of hydroxyl bearing compounds in aqueous solutions were used. Degree of conversion and the number of newly formed acetates varied according to the acceptor used. Conversions over 50% were observed for the majority of several common monosaccharides, their methyl and deoxy derivatives and oligosaccharides. In several cases, the transesterification reaction exhibited strict regioselectivity, leading to only one acetyl derivative. Preparative potential of the transesterification in water was demonstrated by acetylation of methyl β- -glucopyranoside, 4-nitrophenyl β- -glucopyranoside and kojic acid, yielding 56.4% of methyl 3-O-acetyl β- -glucopyranoside, 70.2% of 4-nitrophenyl 3-O-acetyl β- -glucopyranoside and 30.9% of 7-O-acetyl-kojic acid as the only reaction products.

This enzymatically catalyzed transacetylation in water, which is applied to transformation of saccharides for the first time, opens a new area in chemoenzymatic synthesis. Its major advantages are simplicity, highly regioselective esterification of polar compounds, high yields, low enzyme consumption and elimination of the need to use toxic organic solvents.  相似文献   


12.
The stability of almond β-glucosidase in five different organic media was evaluated. After 1 hour of incubation at 30°C, the enzyme retained 95, 91, 81, 74 and 56% relative activity in aqueous solutions [30% (v/v)] of dioxane, DMSO, DMF, acetone and acetonitrile, respectively. Transglucosylation involving p-nitrophenyl β-D-glucopyranoside as donor and β-1-N-acetamido-D-glucopyranose, which is a glycosylasparagine mimic, as acceptor was explored under different reaction conditions using almond βglucosidase and cloned Pichia etchellsii β-glucosidase II. The yield of disaccharides obtained in both reactions turned out to be 3%. Both enzymes catalyzed the formation of (1→3)- as well as (1→6)- regioisomeric disaccharides, the former being the major product in cloned β-glucosidase II reaction while the latter predominated in the almond enzyme catalyzed reaction. Use of β-1-N-acetamido-D-mannopyranose and β-1-N-acetamido-2-acetamido-2-deoxy-D-glucopyranose as acceptors in almond β-glucosidase catalyzed reactions, however, did not afford any disaccharide products revealing the high acceptor specificity of this enzyme.  相似文献   

13.
The protease-catalyzed, kinetically controlled synthesis of a precursor dipeptide of RGDS, Z-Asp-Ser-NH2 in organic solvents was studied. Alcalase, an industrial alkaline protease, was used to catalyze the synthesis of the target dipeptide in water-organic cosolvents systems with Z-Asp-OMe as the acyl donor and Ser-NH2 as the nucleophile. Acetonitrile was selected as the organic solvent from acetonitrile, ethanol, methanol, DMF, DMSO, ethyl acetate, 2-methyl-2-propanol, and chloroform tested under the experimental conditions. The conditions of the synthesis reaction were optimized by examining the effects of several factors, including water content, temperature, pH, and reaction time on the Z-Asp-Ser-NH2 yields. The optimum conditions are pH 10.0, 35 degrees C, in acetonitrile/Na2CO3-NaHCO3 buffer system (85:15, v/v), 6 h, with a dipeptide yield of 75.5%.  相似文献   

14.
Recently, with the global shortage of fossil fuels, excessive increase in the price of crude oil and increased environmental concerns have resulted in the rapid growth in biodiesel production. The central reaction in the biodiesel production is the transesterification reaction which could be catalyzed either chemically or enzymatically. Enzymatic transesterification has certain advantages over the chemical catalysis of transesterification, as it is less energy intensive, allows easy recovery of glycerol and the transesterification of glycerides with high free fatty acid contents. Limitations of the enzyme catalyzed reactions include high cost of enzyme, low yield, high reaction time and the amount of water and organic solvents in the reaction mixture. Researchers have been trying to overcome these limitations in the enzyme catalyzed transesterification reaction. This paper is meant to review the latest development in the field of lipase catalyzed transesterification of biologically derived oil to produce biodiesel.  相似文献   

15.
Biocatalytic peptide synthesis will benefit from enzymes that are active at low water levels in organic solvent compositions that allow good substrate and product solubility. To explore the use of proteases from thermophiles for peptide synthesis under such conditions, putative protease genes of the subtilase class were cloned from Thermus aquaticus and Deinococcus geothermalis and expressed in Escherichia coli. The purified enzymes were highly thermostable and catalyzed efficient peptide bond synthesis at 80 °C and 60 °C in neat acetonitrile with excellent conversion (>90%). The enzymes tolerated high levels of N,N-dimethylformamide (DMF) as a cosolvent (40–50% v/v), which improved substrate solubility and gave good conversion in 5+3 peptide condensation reactions. The results suggest that proteases from thermophiles can be used for peptide synthesis under harsh reaction conditions.  相似文献   

16.
The alkaline protease from Bacillus pseudofirmus strain AL-89 used vinyl fatty acid esters of increasing chain length from C10 to C18 equally well as substrates for esterification of sucrose in a reaction mixture of DMF and DMSO (1:1, v/v). The synthesized esters were purified and characterized by NMR and nano-electron spray MS. As evaluated by the initial reaction rates, the primary site of substitution of sucrose was at the C-2 position with the C-3 and C-3′ as secondary substitution sites. The enzyme catalysed the formation of 3-O-acyl sucrose from 2-O-acyl sucrose. The investigation did not reveal if the 3′-O-acyl sucrose was formed the same way. The synthesis of the 2-O-esters showed the characteristics of kinetically controlled reactions, whereas the formation of the 3-O- and 3′-O-esters showed the characteristics of equilibrium controlled reactions. The enzyme catalysed process was effected by initial water content, substrate molar ratio and reaction temperature. Under the reaction conditions of 0% initial water content, a molar ratio of sucrose to vinyl stearate of 1:1.5 and 70 °C an initial formation rate of 13.5, 2.9 and 2.1 μmol min−1 was achieved for 2-O-, 3-O- and 3′-O-stearoyl sucrose respectively with a specific initial synthesis rate of 2-O-stearoyl sucrose of 0.27 μmol min−1 mg−1 biocatalyst. In the absence of substrates the enzyme proved to be more stable in DMF than in water and DMSO at 50 °C. Mixing DMF with DMSO 1:1 (v/v) increased the stability and the half-life was found equal to that in water. In the presence of substrates a residual activity of 40% was observed after 24 h of incubation in the 1:1 (v/v) mixture of DMF and DMSO at 70 °C.  相似文献   

17.
The reaction conditions towards the preferential action of either nitrile hydratase or amidase in the harvested whole cells of Rhodococcus rhodochrous IFO 15564 were elaborated. The amidase showed higher heat tolerance than the nitrile hydratase and, at 45 °C the amidase worked exclusively. DMSO assisted the preferential action of nitrile hydratase, however, at more than 30% (v/v) addition of DMF, the nitrile hydratase activity was completely lost and only amidase worked. A one-pot chemo-enzymatic conversion of aldehydes to amides [(1) aq. NH3, I2, DMSO; (2) Na2S2O3; (3) harvested cells of R. rhodochrous] was established. Under these reaction conditions, most of the amidase was lost, and the incubation of the firstly formed intermediates, nitriles in aq. NH3 was responsible for the selective inhibition of amidase. The freezing of harvested cells in an exhaustively deionized environment provided a long-term preservable “ready to use” for the organic chemist.  相似文献   

18.
Ribonuclease T1 contains a subsite which by interacting with the leaving nucleoside N of GpN dinucleoside phosphate substrates, contributes to catalysis [Steyaert, J., Wyns, L. & Stanssens, P. (1991) Biochemistry 30, 8661-8665]. The Asn36Ala and Asn98Ala mutations reduce the transesterification rates of GpA, GpC and GpU considerably whereas they have virtually no effect on the transesterification kinetics of the synthetic substrate guanosine 3'-(methyl phosphate) (GpMe) (in which the leaving nucleoside is replaced by methanol), indicating that the Asn36 and Asn98 side chains are part of the RNase T1 subsite [Steyaert, J., Haikal, A. F., Wyns, L. & Stanssens, P. (1991) Biochemistry 30, 8666-8670]. The kinetics of the Asn36Ala, Asn98Ala and wild-type catalyzed transesterification of guanosine 3'-(5'-D-ribosyl phosphate) (GpRib), another GpN analog in which the leaving groups is replaced by D-ribose, enables the mapping of the subsite interactions provided by Asn36 and Asn98. We find that the Asn36 amide function contributes 4.6 kJ/mol to catalysis through interactions with the ribose moiety of the leaving nucleoside. Asn98 is at least in part responsible for the subsite preference for cytidine; the Asn98 side chain preferentially binds cytosine as the leaving nucleoside base.  相似文献   

19.
In drug discovery programs, dimethyl sulfoxide (DMSO) is a standard solvent widely used in biochemical assays. Despite the extensive use and study of enzymes in the presence of organic solvents, for some enzymes the effect of organic solvent is unknown. Macromolecular targets may be affected by the presence of different solvents in such a way that conformational changes perturb their active site structure accompanied by dramatic variations in activity when performing biochemical screenings. To address this issue, in this work we studied the effects of two organic solvents, DMSO and methanol (MeOH), in the isothermal titration calorimetry (ITC) kinetic assays for the catalyzed reaction of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Trypanosoma cruzi. The solvent effects on T. cruzi GAPDH had not yet been studied. This enzyme was shown here to be affected by the organic solvents content up to 5.0% for MeOH and up to 7.5% for DMSO. The results show that when GAPDH is assayed in the presence of DMSO (5%, v/v) using the ITC experiment, the enzyme exhibits approximately twofold higher activity than that of GAPDH with no cosolvent added. When MeOH (5%, v/v) is the cosolvent, the GAPDH activity is sixfold higher. The favorable effects of the organic solvents on the Michaelis-Menten enzyme-substrate complex formation ensure the consistency of the biological assays, structural integrity of the protein, and reproducibility over the measurement time. The reaction was also kinetically monitored by standard spectrophotometric assays to establish a behavioral performance of T. cruzi GAPDH when used for screening of potential inhibitors.  相似文献   

20.
The incorporation of caproic acid in the sn-1 position of phosphatidylcholine (PC) catalyzed by lipase from Rhizopus oryzae was investigated in a water activity-controlled organic medium. The reaction was carried out either as esterification or transesterification. A comparison between these two reaction modes was made with regard to product yield, product purity, reaction time, and byproduct formation as a consequence of acyl migration. The yield in the esterification and transesterification reaction was the same under identical conditions. The highest yield (78%) was obtained at a water activity (a(w)) of 0.11 and a caproic acid concentration of 0.8 M. The reaction time was shorter in the esterification reaction than in the transesterification reaction. The difference in reaction time was especially pronounced at low water activities and high fatty acid concentrations. The loss in yield due to acyl migration and consequent enzymatic side reactions was around 16% under a wide range of conditions. The incorporation of a fatty acid in the sn-1 position of PC proved to be thermodynamically much more favorable than the incorporation of a fatty acid in the sn-2 position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号