首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
In order to understand more details about the role of abscisic acid (ABA) in fruit ripening and senescence, six 740 bp cDNAs (LeNCED1, LeNCED2, PpNCED1, VVNCED1, DKNCED1 and CMNCED1) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) as a key enzyme in ABA biosynthesis, were cloned from fruits of tomato, peach, grape, persimmon and melon using an RT-PCR approach. A Blast homology search revealed a similarity of amino acid 85.76% between the NCEDs. A relationship between ABA and ethylene during ripening was also investigated. At the mature green stage, exogenous ABA treatment increased ABA content in flesh, and promoting ethylene synthesis and fruit ripening, while treatment with nordihydroguaiaretic acid (NDGA), inhibited them, delayed fruit ripening and softening. However, ABA inhibited the ethylene synthesis obviously while NDGA promoted them when treated the immature fruit with these chemicals. At the breaker, NDGA treatment cannot block ABA accumulation and ethylene synthesis. Based on the results obtained in this study, it was concluded that ABA plays different role in ethylene synthesis system in different stages of tomato fruit ripening.Key words: tomato, NCED gene, ABA, ethylene, fruit ripening, peach, grape, persimmon, melon  相似文献   

3.
Abscisic acid (ABA) glucose conjugation mediated by uridine diphosphate glucosyltransferases (UGTs) is an important pathway in regulating ABA homeostasis. In the present study, we investigated three tomato SlUGTs that are highly expressed in fruit during ripening, and these SlUGTs were localized to the cytoplasm and cell nucleus. Among these three UGTs, SlUGT75C1 catalyzes the glucosylation of both ABA and IAA in vitro; SlUGT76E1 can only catalyze the conjugation of ABA; and SlUGT73C4 cannot glycosylate either ABA or IAA. Therefore, SlUGT75C1 was selected for further investigation. SlUGT75C1 RNA interference significantly up‐regulated the expression level of SlCYP707A2, which encodes an ABA 8′‐hydroxylase but did not affect the expression of SlNCED1, which encodes a key enzyme in ABA biosynthesis. Suppression of SlUGT75C1 significantly accelerated fruit ripening by enhancing ABA levels and promoting the early release of ethylene. SlUGT75C1‐RNAi altered the expression of fruit ripening genes (genes involved in ethylene release and cell wall catabolism). SlUGT75C1‐RNAi seeds showed delayed germination and root growth compared with wild‐type as well as increased sensitivity to exogenous ABA. SlUGT75C1‐RNAi plants were also more resistant to drought stress. These results demonstrated that SlUGT75C1 plays a crucial role in ABA‐mediated fruit ripening, seed germination, and drought responses in tomato.  相似文献   

4.
Excessive softening is the main factor limiting fruit shelf life and storage. Transgenic plants modified in the expression of cell wall modifying proteins have been used to investigate the role of particular activities in fruit softening during ripening, and in the manufacture of processed fruit products. Transgenic experiments show that polygalacturonase (PG) activity is largely responsible for pectin depolymerization and solubilization, but that PG-mediated pectin depolymerization requires pectin to be de-methyl-esterified by pectin methylesterase (PME), and that the PG -subunit protein plays a role in limiting pectin solubilization. Suppression of PG activity only slightly reduces fruit softening (but extends fruit shelf life), suppression of PME activity does not affect firmness during normal ripening, and suppression of -subunit protein accumulation increases softening. All these pectin-modifying proteins affect the integrity of the middle lamella, which controls cell-to-cell adhesion and thus influences fruit texture. Diminished accumulation of either PG or PME activity considerably increases the viscosity of tomato juice or paste, which is correlated with reduced polyuronide depolymerization during processing. In contrast, suppression of -galactosidase activity early in ripening significantly reduces fruit softening, suggesting that the removal of pectic galactan side-chains is an important factor in the cell wall changes leading to ripening-related firmness loss. Suppression or overexpression of endo-(1\to4)-d-glucanase activity has no detectable effect on fruit softening or the depolymerization of matrix glycans, and neither the substrate nor the function for this enzyme has been determined. The role of xyloglucan endotransglycosylase activity in softening is also obscure, and the activity responsible for xyloglucan depolymerization during ripening, a major contributor to softening, has not yet been identified. However, ripening-related expansin protein abundance is directly correlated with fruit softening and has additional indirect effects on pectin depolymerization, showing that this protein is intimately involved in the softening process. Transgenic work has shown that the cell wall changes leading to fruit softening and textural changes are complex, and involve the coordinated and interdependent activities of a range of cell wall-modifying proteins. It is suggested that the cell wall changes caused early in ripening by the activities of some enzymes, notably -galactosidase and ripening-related expansin, may restrict or control the activities of other ripening-related enzymes necessary for the fruit softening process.  相似文献   

5.
6.
7.
Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca2+) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue–tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue.  相似文献   

8.
Brecht JK  Huber DJ 《Plant physiology》1988,88(4):1037-1041
Enzymically active cell wall from ripe tomato (Lycopersicon esculentum Mill.) fruit pericarp release uronic acids through the action of wall-bound polygalacturonase. The potential involvement of products of wall hydrolysis in the induction of ethylene synthesis during tomato ripening was investigated by vacuum infiltrating preclimacteric (green) fruit with solutions containing pectin fragments enzymically released from cell wall from ripe fruit. Ripening initiation was accelerated in pectin-infiltrated fruit compared to control (buffer-infiltrated) fruit as measured by initiation of climacteric CO2 and ethylene production and appearance of red color. The response to infiltration was maximum at a concentration of 25 micrograms pectin per fruit; higher concentrations (up to 125 micrograms per fruit) had no additional effect. When products released from isolated cell wall from ripe pericarp were separated on Bio-Gel P-2 and specific size classes infiltrated into preclimacteric fruit, ripening-promotive activity was found only in the larger (degree of polymerization >8) fragments. Products released from pectin derived from preclimacteric pericarp upon treatment with polygalacturonase from ripe pericarp did not stimulate ripening when infiltrated into preclimacteric fruit.  相似文献   

9.
Auxin is one of the most prominent phytohormones regulating many aspects of fleshy fruit development including fruit set, fruit size through the control of cell division and cell expansion, and fruit ripening. To shed light on the role of auxin fruit ripening, we have previously shown that Sl-ARF4 is a major player in mediating the auxin control of sugar metabolism in tomato fruit (cv MicroTom). Further extending this study, we show here that down-regulation of Sl-ARF4 in tomato alters some ripening-related fruit quality traits including enhanced fruit density at mature stage, increased firmness, prolonged shelf-life and reduced water (weight) loss at red ripe stage. These findings suggest that Sl-ARF4 plays a role in determining fruit cell wall architecture and thus providing a potential genetic marker for improving post-harvest handling and shelf life of tomato fruits.  相似文献   

10.
Post‐harvest storage is largely limited by fruit softening, a result of cell wall degradation. Pectin methylesterase (PE) (EC 3.1.1.11) is a major hydrolase responsible for pectin de‐esterification in the cell wall, a response to fruit ripening. Two major PE isoforms, PE1 and PE2, have been isolated from tomato (Solanum lycopersicon) pericarp tissue and both have previously been down‐regulated using antisense suppression. In this paper, PE1 and PE2 double antisense tomato plants were successfully generated through crossing the two single antisense lines. In the double antisense fruit, approximately 10% of normal PE activity remained and ripening associated pectin de‐esterification was almost completely blocked. However, double antisense fruit softened normally during ripening. In tomato fruit, the PE1 isoform was found to contribute little to total PE activity and have little effect on the degree of esterification of pectin. In contrast, the other dominant fruit isoform, PE2, has a major impact on de‐esterification of total pectin. PE2 appears to act on non‐CDTA‐soluble pectin during ripening and on CDTA‐soluble pectin before the start of ripening in a potentially block‐wise fashion.  相似文献   

11.
The plant hormone abscisic acid (ABA) accumulates in response to drought stress and confers stress tolerance to plants. 9-cis-Epoxycarotenoid dioxygenase (NCED), the key regulatory enzyme in the ABA biosynthesis pathway, plays an important role in ABA accumulation. Treatment of plants with abamine, the first NCED inhibitor identified, inhibits ABA accumulation. On the basis of structure-activity relationship studies of abamine, we identified an inhibitor of ABA accumulation more potent than abamine and named it abamineSG. An important structural feature of abamineSG is a three-carbon linker between the methyl ester and the nitrogen atom. Treatment of osmotically stressed plants with 100 microM abamineSG inhibited ABA accumulation by 77% as compared to the control, whereas abamine inhibited the accumulation by 35%. The expression of AB A-responsive genes and ABA catabolic genes was strongly inhibited in abamineSG-treated plants under osmotic stress. AbamineSG is a competitive inhibitor of the enzyme NCED, with a K(i) of 18.5 microM. Although the growth of Arabidopsis seedlings was inhibited by abamine at high concentrations (>50 microM), an effect that was unrelated to the inhibition of ABA biosynthesis, seedling growth was not affected by 100 microM abamineSG. These results suggest that abamineSG is a more potent and specific inhibitor of ABA biosynthesis than abamine.  相似文献   

12.
桃果实在成熟过程中细胞壁干物质不断减少,随着共价结合果胶质和离子结合果胶质减少,水溶性果胶质明显增加,纤维素也逐渐减少,但半纤维素含量变化较小.低温胁迫造成果胶质和纤维素的降解过程受阻,从而造成较高分子量果胶质的积累,果汁粘度升高.中途加温则能促进果胶质和纤维素的增溶和解聚,引导细胞进行与果实成熟有关的细胞壁代谢.14C-蔗糖标记试验表明,在细胞壁不断降解的同时,也进行着合成.在果实成熟的启动阶段,细胞壁的合成能力加强.果实衰老过程与细胞壁合成减少有着直接的联系.受到低温伤害的果实细胞壁物质含量高于正常果实的原因,并不是其合成水平的升高,而是其降解的减慢.  相似文献   

13.
14.
The role of the cell wall hydrolase polygalacturonase (PG) during fruit ripening was investigated using novel mutant tomato lines in which expression of the PG gene has been down regulated by antisense RNA. Tomato plants were transformed with chimaeric genes designed to express anti-PG RNA constitutively. Thirteen transformed lines were obtained of which five were analysed in detail. All contained a single PG antisense gene, the expression of which led to a reduction in PG enzyme activity in ripe fruit to between 5% and 50% that of normal. One line, GR16, showed a reduction to 10% of normal PG activity. The reduction in activity segregated with the PG antisense gene in selfed progeny of GR16. Plants homozygous for the antisense gene showed a reduction of PG enzyme expression of greater than 99%. The PG antisense gene was inherited stably through two generations. In tomato fruit with a residual 1% PG enzyme activity pectin depolymerisation was inhibited, indicating that PG is involved in pectin degradation in vivo. Other ripening parameters, such as ethylene production, lycopene accumulation, polyuronide solubilisation, and invertase activity, together with pectinesterase activity were not affected by the expression of the antisense gene.  相似文献   

15.
Two genes encoding enzymes in the abscisic acid (ABA) biosynthesis pathway, zeaxanthin epoxidase (ZEP) and 9-cis-epoxycarotenoid dioxygenase (NCED), have previously been cloned by transposon tagging in Nicotiana plumbaginifolia and maize respectively. We demonstrate that antisense down-regulation of the tomato gene LeZEP1 causes accumulation of zeaxanthin in leaves, suggesting that this gene also encodes ZEP. LeNCED1 is known to encode NCED from characterization of a null mutation (notabilis) in tomato. We have used LeZEP1 and LeNCED1 as probes to study gene expression in leaves and roots of whole plants given drought treatments, during light/dark cycles, and during dehydration of detached leaves. During drought stress, NCED mRNA increased in both leaves and roots, whereas ZEP mRNA increased in roots but not leaves. When detached leaves were dehydrated, NCED mRNA responded rapidly to small reductions in water content. Using a detached leaf system with ABA-deficient mutants and ABA feeding, we investigated the possibility that NCED mRNA is regulated by the end product of the pathway, ABA, but found no evidence that this is the case. We also describe strong diurnal expression patterns for both ZEP and NCED, with the two genes displaying distinctly different patterns. ZEP mRNA oscillated with a phase very similar to light-harvesting complex II (LHCII) mRNA, and oscillations continued in a 48 h dark period. NCED mRNA oscillated with a different phase and remained low during a 48 h dark period. Implications for regulation of water stress-induced ABA biosynthesis are discussed.  相似文献   

16.
Polyamines (PAs) are ubiquitous, polycationic biogenic amines that are implicated in many biological processes, including plant growth and development, but their precise roles remain to be determined. Most of the previous studies have involved three biogenic amines: putrescine (Put), spermidine (Spd) and spermine (Spm), and their derivatives. We have expressed a yeast spermidine synthase (ySpdSyn) gene under constitutive (CaMV35S) and fruit‐ripening specific (E8) promoters in Solanum lycopersicum (tomato), and determined alterations in tomato vegetative and fruit physiology in transformed lines compared with the control. Constitutive expression of ySpdSyn enhanced intracellular levels of Spd in the leaf, and transiently during fruit development, whereas E8ySpdSyn expression led to Spd accumulation early and transiently during fruit ripening. The ySpdSyn transgenic fruits had a longer shelf life, reduced shriveling and delayed decay symptom development in comparison with the wild‐type (WT) fruits. An increase in shelf life of ySpdSyn transgenic fruits was not facilitated by changes in the rate of water loss or ethylene evolution. Additionally, the expression of several cell wall and membrane degradation‐related genes in ySpdSyn transgenic fruits was not correlated with an extension of shelf life, indicating that the Spd‐mediated increase in fruit shelf life is independent of the above factors. Crop maturity, indicated by the percentage of ripening fruits on the vine, was delayed in a CaMV35SySpdSyn genotype, with fruits accumulating higher levels of the antioxidant lycopene. Notably, whole‐plant senescence in the transgenic plants was also delayed compared with WT plants. Together, these results provide evidence for a role of PAs, particularly Spd, in increasing fruit shelf life, probably by reducing post‐harvest senescence and decay.  相似文献   

17.
Antioxidant Systems in Ripening Tomato Fruits   总被引:1,自引:0,他引:1  
Two cultivars of tomato (Lycopersicon esculentum Mill.), Selection-7 (shelf life 7–8 d) and ARTH-3 (shelf life 14–15 d) were analyzed for oxidative stress and the antioxidant enzyme system at different stages of fruit ripening. The results presented here suggest that during the early stages of fruit ripening, efficient antioxidant system protects the tomato fruits against the damaging effect of progressive oxidative stress. At later stages, however, oxidative damage occurs due to decreased activities of the ROS scavenging enzymes.  相似文献   

18.
19.
Polyamines, ubiquitous organic aliphatic cations, have been implicated in a myriad of physiological and developmental processes in many organisms, but their in vivo functions remain to be determined. We expressed a yeast S-adenosylmethionine decarboxylase gene (ySAMdc; Spe2) fused with a ripening-inducible E8 promoter to specifically increase levels of the polyamines spermidine and spermine in tomato fruit during ripening. Independent transgenic plants and their segregating lines were evaluated after cultivation in the greenhouse and in the field for five successive generations. The enhanced expression of the ySAMdc gene resulted in increased conversion of putrescine into higher polyamines and thus to ripening-specific accumulation of spermidine and spermine. This led to an increase in lycopene, prolonged vine life, and enhanced fruit juice quality. Lycopene levels in cultivated tomatoes are generally low, and increasing them in the fruit enhances its nutrient value. Furthermore, the rates of ethylene production in the transgenic tomato fruit were consistently higher than those in the nontransgenic control fruit. These data show that polyamine and ethylene biosynthesis pathways can act simultaneously in ripening tomato fruit. Taken together, these results provide the first direct evidence for a physiological role of polyamines and demonstrate an approach to improving nutritional quality, juice quality, and vine life of tomato fruit.  相似文献   

20.
Fruit of tomato (Lycopersicon esculentum Mill.) in which endopolygalacturonase (PG) activity had been suppressed to <1% of wild-type levels were slightly firmer than nontransgenic controls later in ripening. Enzymically inactive cell walls were prepared from these ripening fruit using Tris-buffered phenol. When extracted with chelator followed by Na2CO3, the amounts of pectin solubilized from cell walls of nontransgenic control or from transgenic antisense PG fruit were similar. Size-exclusion chromatography analysis showed that, relative to controls, in antisense PG fruit polyuronide depolymerization was delayed in the chelator-soluble fraction throughout ripening and reduced in the Na2CO3-soluble fraction at the overripe stage. Reduced pectin depolymerization rather than altered extractability thus may have contributed to enhanced fruit firmness. Substantially larger effects of suppressed PG activity were detected in tomato fruit homogenates processed to paste. In control paste the majority of the polyuronide was readily soluble in water and was very highly depolymerized. In antisense PG paste the proportion of polyuronide solubilized by water was reduced, and polyuronides retained a high degree of polymerization. The suppression of fruit PG activity thus has a small effect on polyuronide depolymerization in the fruit but a much larger effect in paste derived from these fruit. This indicates that in the cell wall PG-mediated degradation of polyuronide is normally restricted but that in tissue homogenates or in isolated cell walls this restriction is removed and extensive pectin disassembly results unless PG is inactivated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号