首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We have previously shown that inhibition of catalase and glutathione peroxidase activities in rat primary hepatocytes by 3-amino-1,2,4-triazole (ATZ) and mercaptosuccinic acid (MS) results in sustained oxidative stress, followed by apoptosis. To examine the effects of duration of oxidative stress, ATZ and MS were removed from culture medium at 3, 6 and 9 h after treatment with both inhibitors. Oxidative stress was induced for periods of time by ATZ and MS exposures in primary hepatocytes. Treatment with ATZ and MS reduced catalase (CAT) and glutathione peroxidase (GPx) activities, and decreased CAT and GPx activities recovered to normal values upon withdrawal. Although oxidative stress of up to 6 h duration did not cause cell death, sustained oxidative stress (over 9 h) induced apoptosis. The increase in the glutathione disulfide/reduced glutathione ratio under oxidative stress up to 6 h was transient and reversible, while that due to sustained oxidative stress was irreversible. These results suggest that irreversible redox shifts resulting from sustained oxidative stress play a critical role in the induction of hepatocyte apoptosis in this experimental system.  相似文献   

2.
Ozone-induced inactivation of antioxidant enzymes   总被引:2,自引:0,他引:2  
Lee YK  Mok Kim S  Han S 《Biochimie》2003,85(10):947-952
Ozone is an air pollutant that damages a variety of biomolecules. We investigated ozone-induced inactivation of three major antioxidant enzymes. Cu/Zn superoxide dismutase was inactivated by ozone in a concentration-dependent manner. The concentration of ozone for 50% inactivation was approximately 45 microM when 10 microM Cu/Zn superoxide dismutase was incubated for 30 min in the presence of ozone. SDS-polyacrylamide gel electrophoresis (PAGE) showed that the enzyme was randomly fragmented. Both ascorbate and glutathione were very effective in protecting Cu/Zn superoxide dismutase from ozone-induced inactivation. The other two enzymes, catalase and glutathione peroxidase, were much more resistant to ozone than Cu/Zn superoxide dismutase. The ozone concentrations for 50% inactivation of 10 microM catalase and glutathione peroxidase were 500 and 240 microM, respectively. SDS-PAGE demonstrated that ozone caused formation of high molecular weight aggregates in catalase and dimerization in glutathione peroxidase. Glutathione protected catalase and glutathione peroxidase from ozone but the effective concentrations were much higher than that for Cu/Zn superoxide dismutase. Ascorbate was almost ineffective. The result suggests that, among the three antioxidant enzymes, Cu/Zn superoxide dismutase is a major target for ozone-induced inactivation and both glutathione and ascorbate are very effective in protecting the enzyme from ozone.  相似文献   

3.
The stability of glutathione peroxidase was assessed in vitro via oxidative inactivation by peroxides and a peroxidizing fatty acid and by renaturation and proteolysis. The stability of glutathione peroxidase to methyl ethyl ketone peroxide, H2O2, linoleic acid hydroperoxide, and peroxidizing methyl linolenate was compared with the stability of several other enzymes. Sulfhydryl enzymes were the most labile to all four treatments. Some of the enzymes tested were very stable to methyl ethyl ketone peroxide but very labile to linoleic acid hydroperoxide treatment. Glutathione peroxidase in the absence of glutathione was relatively slowly inactivated by each treatment. Linoleic acid hydroperoxide damage to glutathione peroxidase was characterized by release of a nonstoichiometric amount of selenite from the protein. Glutathione peroxidase samples lost all of their activity when (i) acidified to pH 2, (ii) heated 5 min at 100 degrees C, and (iii) treated with 6 M guanidinium hydrochloride or 8.5 M urea and heated 5 min at 100 degrees C. When the pH 2 sample was neutralized or the guanidinium hydrochloride-treated sample was diluted 101-fold, about 80% of the original activity was recovered in 30 min. The samples treated with urea and heat recovered no activity when diluted 101-fold. No loss of glutathione peroxidase occurred during treatment for 24 h within trypsin or thermolysin. Based on these results, glutathione peroxidase appears to be a relatively stable enzyme, and thus is is well-suited to perform its role in peroxide detoxification and prevention of oxidative deterioration of cells.  相似文献   

4.
The purified glutathione reductase was homogeneous on polyacrylamide-gel electrophoresis. It had an Mr of 79,000 and consisted of two subunits with a Mr of 40,000. The activity was maximum at pH 8.2 and 52 degrees C. It was specific for NADPH but not for NADH as the electron donor; the reverse reaction was not observed. The Km values for NADPH and GSSG were 14 and 55 microM respectively. The enzyme activity was markedly inhibited by thiol inhibitors and metal ions such as Hg2+, Cu2+ and Zn2+. Euglena cells contained total glutathione at millimolar concentration. GSH constituted more than 80% of total glutathione in Euglena under various growth conditions. Glutathione reductase was located solely in cytosol, as were L-ascorbate peroxidase and dehydroascorbate reductase, which constitute the oxidation-reduction cycle of L-ascorbate [Shigeoka et al. (1980) Biochem. J. 186, 377-380]. These results indicate that glutathione reductase functions to maintain glutathione in the reduced form and to accelerate the oxidation-reduction of L-ascorbate, which scavenges peroxides generated in Euglena cells.  相似文献   

5.
Glutathione content, the activity of glutathione-dependent enzymes (glutathione reductase, glutathione peroxidase, and glutathione S-transferase), and also SOD (superoxide dismutase) and catalase were studied in human malignant tumors (uterus, breast, and ovaries) and normal tissues. Glutathione level and the activity of glutathione-dependent enzymes were 2-3 times higher in the malignant tumors than in normal tissues. A negative correlation between the level of glutathione and glutathione-dependent enzymes (glutathione peroxidase and glutathione S-transferase) in tumors and the efficacy of postoperative chemotherapy may characterize the degree of tumor resistance to chemotherapy and therefore may have prognostic value. Low SOD and catalase activity and high activity of glutathione-dependent enzymes in tumors suggest that glutathione peroxidase and glutathione S-transferase play a major role in peroxide utilization in malignant tumors.  相似文献   

6.
7.
In early maturation stages of Paragonimus westermani (metacercariae, 4-, 8-, 12-week old worms), activities of antioxidant enzymes, such as superoxide dismutase, catalase, peroxidase and glutathione peroxidase, were examined. Specific activity of catalase was the highest in metacercariae and decreasing with age. That of superoxide dismutase was higher in metacercariae and 4-week worms. Specific activity of peroxidase was at its peak in 4-week worms while that of glutathione peroxidase was in 8-week worms. Specific activities of all these antioxidant enzymes were decreased to their lowest in 12-week old adults.  相似文献   

8.
Glutathione peroxidase activities from rat liver   总被引:1,自引:0,他引:1  
There are two enzymes in rat liver with glutathione peroxidase activity when cumene hydroperoxide is used as substrate. One is the selenium-requiring glutathione peroxidase (glutathione:hydrogen-peroxide oxidoreductase, EC 1.11.1.9) and the other appears to be independent of dietary selenium. Activities of the two enzymes vary greatly among tissues and among animals. The molecular weight of the enzyme with selenium-independent glutathione peroxidase activity was estimated by gel filtration to be 35 000, and the subunit molecular weight was estimated by dodecyl sulfate-polyacrylamide gel electrophoresis to be 17 000. Double reciprocal plots of enzyme activity as a function of substrate concentration produced intersecting lines which are suggestive of a sequential reaction mechanism. The Km for glutathione was 0.20 mM and the Km for cumene hydroperoxide was 0.57 mM. The enzyme was inhibited by N-ethylmaleimide, but not by iodoacetic acid. Inhibition by cyanide was competitive with respect to glutathione and the Ki for cyanide was 0.95 mM. This selenium-independent glutathione peroxidase also catalyzes the conjugation of glutathione to 1-chloro-2,4-dinitrobenzene. Along with other similarities to glutathione S-transferase, this suggests that the selenium-independent glutathione peroxidase and glutathione S-transferase activities in rat liver are of the same enzyme.  相似文献   

9.
Abstract

We have previously shown that inhibition of catalase and glutathione peroxidase activities in rat primary hepatocytes by 3-amino-1,2,4-triazole (ATZ) and mercaptosuccinic acid (MS) results in sustained oxidative stress, followed by apoptosis. To examine the effects of duration of oxidative stress, ATZ and MS were removed from culture medium at 3, 6 and 9 h after treatment with both inhibitors. Oxidative stress was induced for periods of time by ATZ and MS exposures in primary hepatocytes. Treatment with ATZ and MS reduced catalase (CAT) and glutathione peroxidase (GPx) activities, and decreased CAT and GPx activities recovered to normal values upon withdrawal. Although oxidative stress of up to 6 h duration did not cause cell death, sustained oxidative stress (over 9 h) induced apoptosis. The increase in the glutathione disulfide/reduced glutathione ratio under oxidative stress up to 6 h was transient and reversible, while that due to sustained oxidative stress was irreversible. These results suggest that irreversible redox shifts resulting from sustained oxidative stress play a critical role in the induction of hepatocyte apoptosis in this experimental system.  相似文献   

10.
The activities of glucose-6-phosphate dehydrogenase, glutathione reductase and glutathione peroxidase from liver, skeletal muscles and erythrocytes of rats fed a vitamin E-deficient, or supplemented, diet were studied. Vitamin E was added in the diet either as a pure pharmacy form of alpha-tocopherol or as a tocopherol mixture derived from oil wastes. The deficiency of vitamin E caused an increase in the activity of the above mentioned enzymes. Both alpha-tocopherol and the tocopherol mixture were found to influence the glutathione peroxidase system. The dose-dependent response of the glutathione peroxidase system was revealed. Possible mechanisms of the changes in the antioxidizing enzymes induced by vitamin E are discussed.  相似文献   

11.
C. Shan  F. He  G. Xu  R. Han  Z. Liang 《Biologia Plantarum》2012,56(1):187-191
This study investigated the regulation of ascorbate and glutathione metabolism by nitric oxide in Agropyron cristatum leaves under water stress. The activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), L-galactono-1,4-lactone dehydrogenase (GalLDH) and γ-glutamylcysteine synthetase (γ-ECS), and the contents of NO, reduced ascorbic acid (AsA), reduced glutathione (GSH), total ascorbate and total glutathione increased under water stress. These increases were suppressed by pretreatments with NO synthesis inhibitors N G-nitro-L-arginine methyl ester (L-NAME) and 4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). However, application of L-NAME and cPTIO to plants sufficiently supplied with water did not affect the activities of above mentioned enzymes and the contents of NO and above mentioned antioxidants. Pretreatments with L-NAME and cPTIO increased the malondialdehyde (MDA) content and electrolyte leakage of plants under water stress. Our results suggested that water stress-induced NO is a signal that leads to the upregulation of ascorbate and glutathione metabolism and has important role for acquisition of water stress tolerance.  相似文献   

12.
Andrographis paniculata (AP) treatment prevents BHC induced increase in the activities of enzymes y-Glutamyl transpeptidase, glutathione-S-transferase and lipid peroxidation. The activities of antioxidant enzymes like superoxide dismutase, catalase, glutathione peroxidase and the levels of glutathione were decreased following BHC effect. Administration of AP showed protective effects in the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase as well the level of glutathione. The activity of lipid peroxidase was also decreased. The result indicate antioxidant and hepatoprotective action of A. paniculata.  相似文献   

13.
Human WI-38 diploid fibroblasts have been cultivated under high toxic O2 pressure, and their survival curves are reported. Superoxide dismutase, catalase, or glutathione peroxidase provided some protection when injected in the cells exposed to O2. This protective effect, recorded after 3 or 4 days of incubation, was the most pronounced when cells were injected just before oxygen exposure. Quantitative injection assays have been performed for the three enzymes. Surprisingly, glutathione peroxidase was found to be much more effective than both catalase and superoxide dismutase, the latter being particularly inefficient.  相似文献   

14.
‘Hass’ and ‘Fuerte’ avocado plants were grown under well-watered or waterlogged conditions. Results indicated significant effects on the majority of the allometric parameters in waterlogged plants, with ‘Fuerte’ displaying a more pronounced growth inhibition. Waterlogged conditions caused a progressive and simultaneous decline in net photosynthetic rate and stomatal conductance, earlier in ‘Fuerte’ than in ‘Hass’. Maximal potential quantum yield of PSII was unaffected by the soil water regime and/or variety and leaf water potential values in waterlogged plants were not more negative compared with control plants. ‘Fuerte’ waterlogged plants exhibited increased contents of thiobarbituric acid reactive substances, whereas oxidative injury was not detected in ‘Hass’. Finally, none of the two cultivars displayed valuable antioxidant potential, as evidenced by the decreased activities of the antioxidant enzymes superoxide dismutase, guaiacol peroxidase, glutathione peroxidase, and ascorbate peroxidase.  相似文献   

15.
The effect of elevated light treatment (25 degrees C, PPFD 360 mumol m-2 sec-1) or chilling temperatures combined with elevated light (5 degrees C, PPFD 360 mumol m-2 sec-1) on the activity of six antioxidant enzymes, guaiacol peroxidases, and glutathione peroxidase (GPx, EC 1.11.1.9) protein accumulation were studied in tobacco Nicotiana tabacum cv. Petit Havana SR1. Both treatments caused no photooxidative damage, but chilling caused a transient wilting. The light treatment increased the activities of ascorbate peroxidase (APx, EC 1.11.1.11) and guaiacol peroxidases while catalase (EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2) were unchanged. In contrast, chilling treatment did not increase any of the antioxidant enzyme activities, but decreased catalase and to a lesser extent DHAR activities. Glutathione peroxidase protein levels increased sporadically under light treatment and constantly under chilling. Both chilling and light stress caused induction of glutathione synthesis and accumulation of oxidised glutathione, although the predominant part of the glutathione pool remained in the reduced form. Antioxidant enzymes from the chilling treated plants were measured at both 25 degrees C and 5 degrees C. Measurements at 5 degrees C revealed a 3-fold reduction in catalase activity, compared with that measured at 25 degrees C, indicating that the overall reduction in catalase after four days of chilling was approximately 10-fold. The overall reduction in activity for the other antioxidant enzymes after four days of chilling was 2-fold for GR and APx, 1.5-fold for MDHAR, 3.5-fold for DHAR. The activity of SOD was the same at 25 and 5 degrees C. These results indicate that catalase and DHAR are most strongly affected by the chilling treatment and may be the rate-limiting factor of the antioxidant system at low temperatures.  相似文献   

16.
Oxidative stress stimulates production of hydrogen peroxide and organic hydroperoxides which are involved in lipid peroxidation and oxidative damage to protein. Glutathione peroxidase protects against oxidative stress. Quantitative data on glutathione peroxidase of crustaceans are very limited and so this study was performed to determine the assay condition of glutathione peroxidase in crustaceans. Particularly, some properties of hepatic selenium dependent glutathione peroxidase and total glutathione peroxidase of the freshwater prawn Macrobrachium malcolmsonii were examined. The optimal pH for Se-GSH-Px was 7.5 and for total GSH-Px was 8.0. The activation energy (Ea) was found to be 9.14 Kcal/mol for Se-GSH-Px and 10.96 Kcal/mol for total GSH-Px. The energy inhibition (Ei) value for Se-GSH-Px was 14.36 Kcal/mol and 13.71 Kcal/mol for total GSH-Px. The Km values were also determined at various concentrations of substrates (GSH, CHP, H2O2) for both enzymes.  相似文献   

17.
外源一氧化氮对镉胁迫下绿豆幼苗根尖抗氧化酶的影响   总被引:3,自引:0,他引:3  
采用水培法研究外源一氧化氮对镉(Cd)胁迫下绿豆幼苗根尖抗氧化酶活性的影响。结果表明:0.01mmol/L和0.1mmol/L一氧化氮供体硝普钠(sodium nitroprusside,SNP)显著促进上胚轴生长,1mmol/LSNP则抑制绿豆幼苗生长。Cd单独处理抑制根尖抗坏血酸过氧化物酶(ascorbate peroxidase,APX)和超氧化物歧化酶(superoxide dismutase,SOD)活性而刺激脂氧合酶(lipoxygenase,LOX)、谷胱甘肽转硫酶(glutathione S-transferase,GST)、谷胱甘肽还原酶(glutathione reductase,GR)和过氧化物酶(guaiacol peroxidase,POD)活性上升。0.1mmol/LSNP预处理能够明显缓解Cd对根生长的抑制,降低根尖中MDA含量,提高根尖APX和SOD活性,降低LOX和POD活性,但不影响GST和GR活性。  相似文献   

18.
Glutathione peroxidase catalyzes the reduction of hydrogen peroxide and organic hydroperoxide by glutathione and functions in the protection of cells against oxidative damage. Glutathione peroxidase exists in several forms that differ in their primary structure and localization. We have also shown that selenoprotein P exhibits a glutathione peroxidase-like activity (Saito, Y., Hayashi, T., Tanaka, A., Watanabe, Y., Suzuki, M., Saito, E., and Takahashi, K. (1999) J. Biol. Chem. 274, 2866-2871). To understand the physiological significance of the diversity among these enzymes, a comparative study on the peroxide substrate specificity of three types of ubiquitous glutathione peroxidase (cellular glutathione peroxidase, phospholipid hydroperoxide glutathione peroxidase, and extracellular glutathione peroxidase) and of selenoprotein P purified from human origins was done. The specific activities and kinetic parameters against two hydroperoxides (hydrogen peroxide and phosphatidylcholine hydroperoxide) were determined. We next examined the thiol specificity and found that thioredoxin is the preferred electron donor for selenoprotein P. These four enzymes exhibit different peroxide and thiol specificities and collaborate to protect biological molecules from oxidative stress both inside and outside the cells.  相似文献   

19.
云芝多糖对巨噬细胞GPx基因表达的影响   总被引:22,自引:0,他引:22  
细胞内存在两种谷胱甘肽过氧化物酶;硒谷胱甘肽过氧化物酶和非硒谷肽甘肽过氧化物酶,它们在保护细胞免受氧化损伤等过程中起重要作用。为揭示云芝多糖作用与细胞抗氧化酶的关系,采用酶活性测定,斑点杂交等方法,探讨云芝多糖对小鼠腹腔巨噬细胞过氧化物酶表达的影响。结果显示,腹腔注射云芝多糖可以提高小鼠腹腔巨噬细胞的两种过氧化物酶活性,并使其mRNA含量增加,应用阻断剂的研究发现,云芝多糖对巨噬细胞SeGPx及G  相似文献   

20.
Hydroperoxide metabolism in diverse pathogens is reviewed under consideration of involved enzymes as potential drug targets. The common denominator of the peroxidase systems of Trypanosoma, Leishmania, Plasmodium, and Mycobacterium species is the use of NAD(P)H to reduce hydroperoxides including peroxynitrite via a flavin-containing disulfide reductase, a thioredoxin (Trx)-related protein and a peroxidase that operates with thiol catalysis. In Plasmodium falciparum, thioredoxin- and glutathione dependent systems appear to be linked via glutaredoxin and plasmoredoxin to terminal thioredoxin peroxidases belonging to both, the peroxiredoxin (Prx) and glutathione peroxidase (GPx) family. In Mycobacterium tuberculosis, a catalase-type peroxidase is complemented by the typical 2-C-Prx AhpC that, in contrast to most bacteria, is reduced by TrxC, and an atypical 2-C-Prx reduced by TrxB or C. A most complex variation of the scheme is found in trypanosomatids, where the unique redox metabolite trypanothione reduces the thioredoxin-related tryparedoxin, which fuels Prx- and GPx-type peroxidases as well as ribonucleotide reductase. In Trypanosoma brucei and Leishmania donovani the system has been shown to be essential for viability and virulence by inversed genetics. It is concluded that optimum efficacy can be expected from inhibitors of the most upstream components of the redox cascades. For trypanosomatids attractive validated drug targets are trypanothione reductase and trypanothione synthetase; for mycobacteria thioredoxin reductase appears most appealing, while in Plasmodium simultaneous inhibition of both the thioredoxin and the glutathione pathway appears advisable to avoid mutual substitution in co-substrate supply to the peroxidases. Financial and organisational needs to translate the scientific progress into applicable drugs are discussed under consideration of the socio-economic impact of the addressed diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号