首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sulfated derivatives of a glycosaminoglycan containing l-glutamic acid produced by a marine Pseudomonas species, No. 42 strain, were prepared by the method of dicyclohexyl-carbodiimide-mediated reaction. Both low and high degrees of sulfation of the polysaccharides (products A1 and A2, respectively) were investigated for their antiviral activities against influenza virus type A (FluV-A) and B (FluV-B) in MDCK cells. Both preparations showed antiviral activity against FluV-A at the 50% antiviral effective concentration of 17.3 and 5.2 μg/ml, respectively, whereas they had no antiviral activity against FluV-B. No cytotoxicity of either product was noted against MDCK cells at the 50% cytotoxic concentration of 100 μg/ml. Received April 4, 1998; accepted July 24, 1998.  相似文献   

2.
The sulfated exopolysaccharide p-KG03, which is produced by the marine microalga Gyrodinium impudicum strain KG03, exhibited impressive antiviral activity in vitro (EC50 = 26.9 µg/ml) against the encephalomyocarditis virus (EMCV). Depending on the p-KG03 concentration, the development of cytopathic effects in EMCV-infected HeLa cells was either inhibited completely or slowed. Moreover, p-KG03 did not show any cytotoxic effects on HeLa cells, even at concentrations up to 1000 µg/ml. The polysaccharide was purified by repeated precipitation in ethanol, followed by gel filtration. The p-KG03 polysaccharide had a molecular weight of 1.87 × 107, and was characterized as a homopolysaccharide of galactose with uronic acid (2.96% wt/wt) and sulfate groups (10.32% wt/wt). The biological activities of p-KG03 suggest that sulfated metabolites from marine organisms are a rich source of antiviral agents. This is the first reported marine source of antiviral sulfated polysaccharides against EMCV. The p-KG03 polysaccharide may be useful in the development of marine bioactive exopolysaccharide for biotechnological and pharmaceutical products.  相似文献   

3.
Many viruses display affinity for cell surface heparan sulfate proteoglycans with biological relevance to virus entry. This raises the possibility of the application of sulfated polysaccharides in antiviral therapy. In this study, we have analyzed xylogalactofucan- and alginic acid-containing fractions from Sphacelaria indica, a marine alga. The xylogalactofucan that has apparent molecular mass of 26±5 kDa and negative specific rotation [α](D)(32) -71° (c 0.2, H(2)O) contains, inter alia, (1→3)-linked L-fucopyranosyl and D-galactopyranosyl residues. The algin (molecular mass: 21±5kDa) contains 41% guluronic and 59% mannuronic acid residues. The 50% inhibitory concentration (IC(50)) values of these macromolecules and their chemically sulfated derivatives against herpes simplex virus type 1 (HSV-1) were in the range of 0.6-10 μg ml(-1) and they lacked cytotoxicity at concentrations up to 200 μg ml(-1). The antiviral activity was dependent on the sulfate contents of the polysaccharides. The results support the feasibility of inhibiting HSV infection by direct interaction of polysaccharides with viral particles.  相似文献   

4.
In this paper, in vitro anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis were investigated. Cytotoxicities and antiviral activities of Gracilaria lemaneiformis polysaccharides (PGL), Gracilaria lemaneiformis polysaccharide fraction-1 (GL-1), Gracilaria lemaneiformis polysaccharide fraction-2 (GL-2) and Gracilaria lemaneiformis polysaccharide fraction-3 (GL-3) were studied by the Methyl thiazolyl tetrazolium (MTT) method, and the inhibitory effect against Human influenza virus H1-364 induced cytopathic effect (CPE) on MDCK cells were observed by the CPE method. In addition, the antiviral mechanism of PGL was explored by Plaque forming unit (PFU), MTT and CPE methods. The results showed: i) Cytotoxicities were not significantly revealed, and H1-364 induced CPE was also reduced treated with sulfated polysaccharide fractions from Gracilaria lemaneiformis; ii) Antiviral activities were associated with the mass percentage content of sulfate groups in polysaccharide fractions, which was about 13%, in polysaccharides (PGL and GL-2) both of which exhibited higher antiviral activity; iii) A potential antiviral mechanism to explain these observations is that viral adsorption and replication on host cells were inhibited by sulfated polysaccharides from Gracilaria lemaneiformis. In conclusion, Anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis were revealed, and the antiviral activities were associated with content of sulfate groups in polysaccharide fractions.  相似文献   

5.
In this paper, in vitro anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis were investigated. Cytotoxicities and antiviral activities of Gracilaria lemaneiformis polysaccharides (PGL), Gracilaria lemaneiformis polysaccharide fraction-1 (GL-1), Gracilaria lemaneiformis polysaccharide fraction-2 (GL-2) and Gracilaria lemaneiformis polysaccharide fraction-3 (GL-3) were studied by the Methyl thiazolyl tetrazolium (MTT) method, and the inhibitory effect against Human influenza virus H1-364 induced cytopathic effect (CPE) on MDCK cells were observed by the CPE method. In addition, the antiviral mechanism of PGL was explored by Plaque forming unit (PFU), MTT and CPE methods. The results showed: i) Cytotoxicities were not significantly revealed, and H1-364 induced CPE was also reduced treated with sulfated polysaccharide fractions from Gracilaria lemaneiformis; ii) Antiviral activities were associated with the mass percentage content of sulfate groups in polysaccharide fractions, which was about 13%, in polysaccharides (PGL and GL-2) both of which exhibited higher antiviral activity; iii) A potential antiviral mechanism to explain these observations is that viral adsorption and replication on host cells were inhibited by sulfated polysaccharides from Gracilaria lemaneiformis. In conclusion, Anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis were revealed, and the antiviral activities were associated with content of sulfate groups in polysaccharide fractions.  相似文献   

6.
Four neutral polysaccharides (BRN-1, BRN-2, BRN-3 and BRN-4) were isolated from the hot water extract of the aerial part of Basella rubra L. They were found to consist of a large amount of d-galactose (81.0-92.4%) and small amounts of l-arabinose (5.4-7.8%), d-glucose (2.2-11.0%) and mannose (∼2.9%). Linkage analysis revealed that all these neutral polysaccharides might be arabinogalactan type I polysaccharides in different molecular weight and chain length. Among them, only BRN-3 showed antiviral activity against herpes simplex virus type 2 (HSV-2) with 50% inhibitory concentration of 55 μg/mL without showing the cytotoxicity up to 2300 μg/mL. Furthermore, the main antiviral target of BRN-3 was shown to be the inhibition of virus adsorption to host cells. This is the first report on the neutral polysaccharide with anti-HSV-2 activity obtained from B. rubra L.  相似文献   

7.
反义寡核苷酸体外抗流感病毒活性   总被引:2,自引:0,他引:2  
为了获得具有抗流感病毒活性的反义寡核苷酸,针对A型流感病毒基因组3′和5′端保守序列,设计并合成了多条硫代寡核苷酸(ODN):3′端反义ODN(IV3#)与3′端正义ODN(IV3S);5′端反义ODN(IV4#)与5′端正义ODN(IV4S)以及由5′和3′端正义/反义保守序列组成的复合序列ODN(IV6#和IV7#)。测定了PSODN的体外细胞毒性和在MDCK细胞中对流感病毒复制的影响。结果表明:(1)PSODN浓度高达50μmol/L时对MDCK细胞末表现有毒性作用;(2)与流感病毒基因组5′端互补的ODN IV4#以及由5′和3′端保守序列构成的IV6#ODN和IV7#ODN均具有较高的抗病毒活性;如IV4#ODN浓度为1μmol/L时对流感病毒A/京防/861(H1N1)抑制率近50%,浓度为10μmol/L或更高时抑制率超过70%,且IV4#抑制病毒活性呈现明显的序列和剂量依赖性;(3)IV4#ODN不仅对A型流感病毒H1N1亚型有抑制作用,对H3N2亚型也表现较高的抑制活性;(4)病毒感染复数(MOI)对IV4#ODN抗病毒活性有一定影响,当MOI较低时,IV4#ODN表现的剂量效应关系更加明显。抗流感病毒反义寡核苷核IV4#ODN的发现为进一步研究流感新型药物奠定了实验基础。〖HTH〗关键词〖HTSS〗:流感病毒, 反义寡核苷酸, 体外细胞毒性, 抗病毒活性, 感染复数  相似文献   

8.
The effect of sulfated polysaccharides on the efficiency of the infection of mouse transplantable fibroblast SC-1 and NIH-3T3 cell lines by replication-competent recombinant Moloney murine leukemia virus (Mo-MuLV), which carries the eGFP gene, was investigated. It was found that sulfated polysaccharides have no cytostatic and cytotoxic effects on SC-1 and NIH-3T3 cells in the concentration range of 0.01–100 μg/mL and have virucidal activity against Mo-MuLV. Polysaccharides in the indicated concentrations inhibit Mo-MuLV infection that prevents the further development of viral infection. It was shown that sulfated polysaccharides are also effective inhibitors of other retroviruses, including lentiviruses, which use sulfated polysaccharides as primary cell receptors.  相似文献   

9.
A sulphated polysaccharide (SP-2a) from the brown alga Sargassum patens (Kütz.) Agardh (Sargassaceae) was found to significantly inhibit the in vitro replication of both the acyclovir (ACV)-sensitive and -resistant strains of Herpes simplex virus type 1 (HSV-1), in dose-dependent manners, with 50% inhibitions occurring with 1.5–5.3 μg/ml of the polysaccharide. SP-2a exhibited extracellular virucidal activity only against the ACV-sensitive strains, but not the resistant strain, at the concentration of 100 μg/ml. The strongest antiviral activities against the different strains of HSV-1 were observed when this polysaccharide was present during and after adsorption of the virus to host cells. The inhibitory effect of SP-2a on virus adsorption occurred dose-dependently in all the HSV-1 strains tested, and the adsorption of the ACV-resistant DM2.1 strain was reduced by 81.9% (relative to control) with 4 μg/ml of the polysaccharide. This study clearly demonstrated that the antiviral mode of action of SP-2a is mediated mainly by inhibiting virus attachment to host cells, and this sulphated polysaccharide might have different modes of action against the ACV-sensitive and -resistant strains of HSV-1.  相似文献   

10.
Herpes simplex viruses (HSVs) display affinity for cell-surface heparan sulfate proteoglycans with biological relevance in virus entry. Here, we exploit an approach to inhibiting HSV infection by using a sulfated fucoidan, and a guluronic acid-rich alginate derived from Sargassum tenerrimum, mimicking the active domain of the entry receptor. These macromolecules have apparent molecular masses of 30 ± 5 and 26 ± 5 kDa, respectively. They and their chemically sulfated derivatives showed activity against herpes simplex virus type 1 (HSV-1). Their inhibitory concentration 50% (IC50) values were in the range 0.5–15 μg/ml and they lacked cytotoxicity at concentrations up to 1000 μg/ml. The anti-HSV activity increased with increasing sulfate ester content. Our results suggest the feasibility of inhibiting HSV infection by blocking viral entry with polysaccharide having specific structure.  相似文献   

11.
12.
A mannose-binding lectin (Narcissus tazetta lectin [NTL]) with potent antiviral activity was isolated and purified from the bulbs of the Chinese daffodil Narcissus tazetta var. chinensis, using ion exchange chromatography on diethylaminoethyl (DEAE)-cellulose, affinity chromatography on mannose-agarose and fast protein liquid chromatography (FPLC)-gel filtration on Superose 12. The purified lectin was shown to have an apparent molecular mass of 26 kDa by gel filtration and 13 kDa by SDS-PAGE, indicating that it is probably a dimer with two identical subunits. The cDNA-derived amino acid sequence of NTL as determined by molecular cloning also reveals that NTL protein contains a mature polypeptide consisting of 105 amino acids and a C-terminal peptide extension. Three-dimensional modelling study demonstrated that the NTL primary polypeptide contains three subdomains, each with a conserved mannose-binding site. It shows a high homology of about 60%–80% similarity with the existing monocot mannose-binding lectins. NTL could significantly inhibit plaque formation by the human respiratory syncytial virus (RSV) with an IC50 of 2.30 μg/ml and exhibit strong antiviral properties against influenza A (H1N1, H3N2, H5N1) and influenza B viruses with IC50 values ranging from 0.20 μg/ml to 1.33 μg/ml in a dose-dependent manner. It is worth noting that the modes of antiviral action of NTL against RSV and influenza A virus are significantly different. NTL is effective in the inhibition of RSV during the whole viral infection cycle, but the antiviral activity of NTL is mainly expressed at the early stage of the viral cycle of influenza A (H1N1) virus. NTL with a high selective index (SI=CC50/IC50≥141) resulting from its potent antiviral activity and low cytotoxicity demonstrates a potential for biotechnological development as an antiviral agent.  相似文献   

13.
Influenza virus continues to emerge and re-emerge, posing new threats for humans. Here we tested various Korean medicinal plant extracts for potential antiviral activity against influenza viruses. Among them, an extract of Agrimonia pilosa was shown to be highly effective against all three subtypes of human influenza viruses including H1N1 and H3N2 influenza A subtypes and influenza B virus. The EC50 value against influenza A virus, as tested by the plaque reduction assay on MDCK cells, was 14–23 μg/ml. The extract also exhibited a virucidal effect at a concentration of 160–570 ng/ml against influenza A and B viruses when the viruses were treated with the extract prior to plaque assay. In addition, when tested in embryonated chicken eggs the extract exhibited a strong inhibitory effect in ovo on the H9N2 avian influenza virus at a concentration of 280 ng/ml. Quantitative RT-PCR analysis data showed that the extract, to some degree, suppressed viral RNA synthesis in MDCK cells. HI and inhibition of neuraminidase were observed only at high concentrations of the extract. And yet, the extract's antiviral activity required direct contact between it and the virus, suggesting that its antiviral action is mediated by the viral membrane, but does not involve the two major surface antigens, HA and NA, of the virus. The broad-spectrum antiviral activity of Agrimonia pilosa extract on various subtypes of influenza viruses merits further investigation as it may provide a means of managing avian influenza infections in poultry farms and potential avian-human transmission.  相似文献   

14.
Li Q  Zhao Z  Zhou D  Chen Y  Hong W  Cao L  Yang J  Zhang Y  Shi W  Cao Z  Wu Y  Yan H  Li W 《Peptides》2011,32(7):1518-1525
Outbreaks of SARS-CoV, influenza A (H5N1, H1N1) and measles viruses in recent years have raised serious concerns about the measures available to control emerging and re-emerging infectious viral diseases. Effective antiviral agents are lacking that specifically target RNA viruses such as measles, SARS-CoV and influenza H5N1 viruses, and available vaccinations have demonstrated variable efficacy. Therefore, the development of novel antiviral agents is needed to close the vaccination gap and silence outbreaks. We previously indentified mucroporin, a cationic host defense peptide from scorpion venom, which can effectively inhibit standard bacteria. The optimized mucroporin-M1 can inhibit gram-positive bacteria at low concentrations and antibiotic-resistant pathogens. In this investigation, we further tested mucroporin and the optimized mucroporin-M1 for their antiviral activity. Surprisingly, we found that the antiviral activities of mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses were notably increased with an EC50 of 7.15 μg/ml (3.52 μM) and a CC50 of 70.46 μg/ml (34.70 μM) against measles virus, an EC50 of 14.46 μg/ml (7.12 μM) against SARS-CoV and an EC50 of 2.10 μg/ml (1.03 μM) against H5N1, while the original peptide mucroporin showed no antiviral activity against any of these three viruses. The inhibition model could be via a direct interaction with the virus envelope, thereby decreasing the infectivity of virus. This report provides evidence that host defense peptides from scorpion venom can be modified for antiviral activity by rational design and represents a practical approach for developing broad-spectrum antiviral agents, especially against RNA viruses.  相似文献   

15.
Novel hydrazones of the lupane and 19β,28-epoxy-18α-oleanane types have been synthesized via the interaction of 2,3-secotriterpenic aldehydonitriles with substituted hydrazines. As a result of the investigation of the antiviral activity of 2,3-secotriterpenic hydrazones against the Indiana strain of the vesicular stomatitis virus on two models of mammalian cell line infection, the acetylhydrazone of 1-cyano-2,3-seco-19β,28-epoxy-18α-olean-3-al has been found to have a high prophylactic activity of 0.00016 μg/ml to the vesicular stomatitis virus and to inhibit virus reproduction in primarily infected cells in a 0.21-μg/ml concentration.  相似文献   

16.
The cell wall sulfated polysaccharide of the red microalga Porphyridium sp. exhibited impressive antiviral activity against herpes simplex virus types 1 and 2 (HSV-1 and -2) both in vitro (cell culture) and in vivo (rats and rabbits). Depending on the concentration, this polysaccharide completely inhibited or slowed down the development of the cytopathic effect in HSV-infected cells, but did not show any cytotoxic effects on vero cells even when a concentration as high as 250 μg/ml was used. There was indirect evidence for a strong interaction between the polysaccharide and HSV and a weak interaction with the cell surface. When tested in vivo, Porphyridium sp. polysaccharide conferred significant and efficient protection against HSV-1 infection: at a concentration as low as 100 μg/ml, it prevented the appearance and development of symptoms of HSV-1 infection in rats and rabbits. The polysaccharide did not exhibit any cytotoxic effects at a concentration of 2 mg/ml in vivo.  相似文献   

17.
Pressurized liquid extraction (PLE), an environmentally friendly technique, was used to obtain antiviral compounds from the edible seaweed Himanthalia elongata. The antiviral properties of PLE extracts (hexane, ethanol, and water) were evaluated against herpes simplex virus type 1 (HSV-1) at different stages during viral infection. Pre-treatment of Vero cells with 75 μg mL−1 of ethanol extract inhibited virus infection by approximately 90%, whereas the same concentration of water and hexane extracts reduced the virus infectivity to 78% and 70%, respectively. Moreover, ethanol extract was also more effective against HSV-1 intracellular replication than water and hexane extracts. The antiviral activity of water PLE extract was found to correlate with polysaccharides, since the polysaccharide-rich fraction isolated from this extract showed higher antiviral activity than the original water extract. A GC–MS characterization of the hexane and ethanol extracts showed that the antiviral activity of the hexane extract seemed to be related with the presence of fucosterol; meanwhile, in the case of the ethanol extract, other compounds, besides fucosterol, could be involved in this activity. Results demonstrated that PLE was an appropriate technique to obtain antiviral agents from H. elongata. These antiviral compounds were in addition to polysaccharides, which are the antiviral agents usually proposed when studying seaweeds.  相似文献   

18.
Antiviral activity against H1N1 influenza was studied using ethnic medicinal plants of South India. Results revealed that Wrightia tinctoria (2.25 μg/ml) was one of the best antidotes against H1N1 virus in terms of inhibitory concentration of 50% (IC50) whereas the control drug Oseltamivir showed 6.44 μg/ml. Strychnos minor, Diotacanthus albiflorus and Cayratia pedata showed low cytotoxicity (>100) to the MDCK (Malin darby canine kidney) cells by cytotoxicity concentration of 50% (CC50) and possessed antiviral activity suggesting that these plants can be used as herbal capsules for H1N1 virus. W. tinctoria and S. minor showed high therapeutic indexes (TI) such as 12.67 and 21.97 suggesting that those plants can be used for anti-viral drug development. The CC50 values of Eugenia singampattiana (0.3 μg/ml), Vitex altissima (42 μg/ml), Salacia oblonga (7.32 μg/ml) and Salacia reticulata (7.36 μg/ml) resulted in cytotoxicity of the MDCK cells, due to their high phenolic content. Findings from this study state that the plant W. tinctoria can be a potent source for third generation anti-viral drug development against H1N1.  相似文献   

19.
To study the antiviral effect of Hypericum perforatum L. extract (HPE) on influenza A virus (IAV) (H1N1) in vitro and in vivo. Cytopathic effect (CPE) and neutral red (NR) dye uptake were used to examine the antiviral effect of HPE on Madin Darby Canine Kidney (MDCK) cells which were infected with IAV in vitro. HPE was effective against influenza A virus (IAV) in vitro, with a 50% effective concentration (EC50) of 40 μg/mL. The mean 50% cytotoxic concentration (CC50) in the MDCK used in these experiments was 1.5 mg/mL. Ribavirin was run in parallel with EC50 values of 5.0 μg/mL; the mean CC50 for ribavirin was 520 μg/mL. Oral gavage administrations of HPE or ribavirin to mice infected with the IAV were highly effective in preventing death, slowing the decline of arterial oxygen saturation, inhibiting lung consolidation and reducing lung virus titers. The minimum effective dose of HPE in these studies was 31.25 mg/kg/day, which was administered twice daily for 5 d beginning 4 h prior to virus exposure. Below a dosage of 2000 mg/kg/day, almost all treated mice survived, which suggests that HPE is of low toxicity. Ribavirin’s minimum effective dose was 40 mg/kg/day with the LD50 determined to be 200 mg/kg/day. Delay of the initiation of either HPE or ribavirin therapy, using approximately 1/3 LD50 dose each time, could still be protective as late as 48 h after exposure to the IAV. While both agents appeared to have similar efficacy against IAV infections, HPE was considered to be less toxic and may warrant further evaluation as a possible therapy for influenza. Foundation items: One Hundred Person Project of The Chinese Academy of Sciences (2008-287); The Project of Basic Scientific Research Fund for Central Public-Welfare of Institute of Sciences (BRF070402).  相似文献   

20.
Five cyanophyte species (Amorphonostoc punctiforme, Gloeocapsa turgidus, Sphaeronostoc coeruleum, Stratonostoc linckia f. spongiaeforme and Synechococcus cedrorum) were isolated and identified from sandy Egyptian soils. Polysaccharides extracted from these species showed a pronounced antiviral activity against Rabies and Herpes-1 viruses represented by the absence of the characteristic cytopathic effects of these viruses. It was found that 100 μg polysaccharide/ml induced 100% inhibition of the two viruses which, depending on the polysaccharide concentration. Both of Gloeocapsa turgidus and Synechococcus cedrorum showed higher antiviral activity against rabies virus than that against herpes-1 virus. Amorphonostoc punctiforme showed nil to weak antiviral activity against both viruses. It was suggested that polysaccharides of such species of cyanophyte react against human and animal viruses. So, it could be concluded that there is a need for further studies to explain the mode of action of these substances on the replication of different viral origins to know how one deals with cyanophyte polysaccharides as antiviral substances in the most suitable and effective manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号