首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
3.
LOS5/ABA3 gene encoding molybdenum cofactor sulphurase is involved in aldehyde oxidase (AO) activity in Arabidopsis, which indirectly regulates ABA biosynthesis and increased stress tolerance. Here, we used a constitutive super promoter to drive LOS5/ABA3 overexpression in soybean (Glycine max L.) to enhance drought tolerance in growth chamber and field conditions. Expression of LOS5/ABA3 was up‐regulated by drought stress, which led to increasing AO activity and then a notable increase in ABA accumulation. Transgenic soybean under drought stress had reduced water loss by decreased stomatal aperture size and transpiration rate, which alleviated leaf wilting and maintained higher relative water content. Exposed to drought stress, transgenic soybean exhibited reduced cell membrane damage by reducing electrolyte leakage and production of malondialdehyde and promoting proline accumulation and antioxidant enzyme activities. Also, overexpression of LOS5/ABA3 enhanced expression of stress‐up‐regulated genes. Furthermore, the seed yield of transgenic plants is at least 21% higher than that of wide‐type plants under drought stress conditions in the field. These data suggest that overexpression of LOS5/ABA3 could improve drought tolerance in transgenic soybean via enhanced ABA accumulation, which could activate expression of stress‐up‐regulated genes and cause a series of physiological and biochemical resistant responses.  相似文献   

4.
5.
6.
7.
8.
9.
WRKY转录因子基因家族是植物特有的转录因子,在防御中起着重要作用。通过生物信息学分析,本研究在古四倍体大豆(Glycine max)基因组中找到一对同源性高达93%的WRKY33同源基因,并将其命名为GmWRKY33B。从GmWRKY33B的两个同源基因保守区域选取一个315 bp片段构建至菜豆豆荚斑驳病毒(bean pod mosaic virus, BPMV)沉默载体(BPMV-VIGS)上,以期同时沉默上述2个GmWRKY33B基因。结果表明,同时沉默2个GmWRKY33B基因并不显著改变沉默植株的表型,但却显著降低了大豆对大豆斑点病菌以及大豆花叶病毒的抗性,说明GmWRKY33B在大豆免疫反应中起正调控作用。激酶分析表明,GmWRKY33B沉默植株中flg22诱导的GmMPK6的磷酸化水平较空载体BPMV-0植株显著降低,说明GmWRKY33B可以通过调控GmMPK6的激酶活性而参与大豆的免疫反应。抗毒素为大豆中主要起防御作用的植保素,而大豆异黄酮类特异性异戊烯基转移酶(prenyltransferase, PT)基因家族是参与大豆抗毒素生物合成的主要基因,许多PT基因启动子区含有与WRKY特异性结合的W-box序列。在丁香假单胞菌pv.甘氨酸(Pseudomonas syringae pv. glycinea, Psg)侵染条件下,4个PT基因的表达水平在沉默株系中显著降低,说明GmWRKY33B参与PT基因的转录激活。综上所述,GmWRKY33B通过调控GmMPK6的激活以及调控大豆抗毒素生物合成途径中关键酶编码基因的表达而参与免疫反应。  相似文献   

10.
11.
Abscisic acid (ABA) regulates plant adaptive responses to various environmental stresses, while l ‐ascorbic acid (AsA) that is also named vitamin C is an important antioxidant and involves in plant stress tolerance and the immune system in domestic animals. Transgenic tobacco (Nicotiana tabacum L.) and stylo [Stylosanthes guianensis (Aublet) Swartz], a forage legume, plants co‐expressing stylo 9‐cis‐epoxycarotenoid dioxygenase (SgNCED1) and yeast d ‐arabinono‐1,4‐lactone oxidase (ALO) genes were generated in this study, and tolerance to drought and chilling was analysed in comparison with transgenic tobacco overexpressing SgNCED1 or ALO and the wild‐type plants. Compared to the SgNCED1 or ALO transgenic plants, in which only ABA or AsA levels were increased, both ABA and AsA levels were increased in transgenic tobacco and stylo plants co‐expressing SgNCED1 and ALO genes. Compared to the wild type, an enhanced drought tolerance was observed in SgNCED1 transgenic tobacco plants with induced expression of drought‐responsive genes, but not in ALO plants, while an enhanced chilling tolerance was observed in ALO transgenic tobaccos with induced expression of cold‐responsive genes, but not in SgNCED1 plants. Co‐expression of SgNCED1 and ALO genes resulted in elevated tolerance to both drought and chilling in transgenic tobacco and stylo plants with induced expression of both drought and cold‐responsive genes. Our result suggests that co‐expression of SgNCED1 and ALO genes is an effective way for use in forage plant improvement for increased tolerance to drought and chilling and nutrition quality.  相似文献   

12.
13.
Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses.A previous study found that the tandem CCCH zincfinger protein Gm ZF351 is an oil level regulator. In this study, we discovered that the Gm ZF351 gene is induced by stress and that the overexpression of Gm ZF351 confers stress tolerance to transgenic soybean. Gm ZF351 directly regulates the expression of Gm CIPK9 and Gm SnRK, leading to stoma...  相似文献   

14.
15.
16.
17.
Cucumber mosaic virus (CMV) encodes the 2b protein, which plays a role in local and systemic virus movement, symptom induction and suppression of RNA silencing. It also disrupts signalling regulated by salicylic acid and jasmonic acid. CMV induced an increase in tolerance to drought in Arabidopsis thaliana. This was caused by the 2b protein, as transgenic plants expressing this viral factor showed increased drought tolerance, but plants infected with CMVΔ2b, a viral mutant lacking the 2b gene, did not. The silencing effector ARGONAUTE1 (AGO1) controls a microRNA‐mediated drought tolerance mechanism and, in this study, we noted that plants (dcl2/3/4 triple mutants) lacking functional short‐interfering RNA‐mediated silencing were also drought tolerant. However, drought tolerance engendered by CMV may be independent of the silencing suppressor activity of the 2b protein. Although CMV infection did not alter the accumulation of the drought response hormone abscisic acid (ABA), 2b‐transgenic and ago1‐mutant seeds were hypersensitive to ABA‐mediated inhibition of germination. However, the induction of ABA‐regulated genes in 2b‐transgenic and CMV‐infected plants was inhibited more strongly than in ago1‐mutant plants. The virus engenders drought tolerance by altering the characteristics of the roots and not of the aerial tissues as, compared with the leaves of silencing mutants, leaves excised from CMV‐infected or 2b‐transgenic plants showed greater stomatal permeability and lost water more rapidly. This further indicates that CMV‐induced drought tolerance is not mediated via a change in the silencing‐regulated drought response mechanism. Under natural conditions, virus‐induced drought tolerance may serve viruses by aiding susceptible hosts to survive periods of environmental stress.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号