首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scanning genomes for loci with high levels of population differentiation has become a standard of population genetics. FST outlier loci are most often interpreted as signatures of local selection, but outliers might arise for many other reasons too often left unexplored. Here, we tried to identify further the history and genetic basis underlying strong differentiation at FST outlier loci in a marine mussel. A genome scan of genetic differentiation has been conducted between Atlantic and Mediterranean populations of Mytilus galloprovincialis. The differentiation was low overall (FST = 0.03), but seven loci (2%) were strong FST outliers. We then analysed DNA sequence polymorphism at two outlier loci. The genetic structure proved to be the consequence of differential introgression of alleles from the sister‐hybridizing species Mytilus edulis. Surprisingly, the Mediterranean population was the most introgressed at these two loci, although the contact zone between the two species is nowadays localized along the Atlantic coasts of France and the British Isles. A historical contact between M. edulis and Mediterranean M. galloprovincialis should have happened during glacial periods. It proved difficult to disentangle two hypotheses: (i) introgression was adaptive, implying edulis alleles have been favoured in Mediterranean populations, or (ii) the genetic architecture of the barrier to edulis gene flow is different between the two M. galloprovincialis backgrounds. Five of the seven outliers between M. galloprovincialis populations were also outliers between M. edulis and Atlantic M. galloprovincialis, which would support the latter hypothesis. Differential introgression across semi‐permeable barriers to gene flow is a neglected scenario to interpret outlying loci that may prove more widespread than anticipated.  相似文献   

2.
Hymenopteran inquiline species have been proposed to originate by sympatric speciation through intraspecific social parasitism. One such parasite, Myrmica microrubra, was recently synonymized with its Myrmica rubra host, because comparisons across Europe indicated insufficient genetic differentiation. Here, we use microsatellite markers to study genetic differentiation more precisely in a sample of Finnish M. rubra and its inquilines collected at two localities, supplemented with mitochondrial DNA sequences. The parasite had much lower genetic variation than the host at three of the four loci studied. Genetic differentiation between the host populations was moderate (F ST = 0.089), whereas the parasite populations were more strongly subdivided (F ST = 0.440). The host and parasite were highly genetically differentiated both across populations (F ST = 0.346) and in strict sympatry (0.327, 0.364), a result that remained robust both in a haplotype network and in PCA ordination. Individual assignments of genotypes indicated that gene flow between sympatric host and inquiline populations is reduced by about an order of magnitude relative to the gene flow within the morphs. Our results suggest that the parasitic morph of M. rubra may be an incipient species, but it remains unclear to what extent the observed genetic differentiation between host and inquiline is due to possible assortative mating and selection against hybrids or to recurrent bottlenecking and genetic drift. We conclude that an explicitly functional species concept would be unambiguous in treating this inquiline as a full species, as it begets its own kind and maintains its integrity in spite of occasional interbreeding with the host.  相似文献   

3.
We have identified 15 variable microsatellite loci in Cannabis sativa. In 48 samples from five fibre crop seed accessions, we detected an average of 10 alleles per locus (range 2–28) with mean heterozygosity of 0.68 (range 0.28–0.94). Significant genetic differentiation was found between accessions (FST = 0.12, P < 0.001). These markers have utility for characterizing genetic diversity in cultivated and naturalized Cannabis populations.  相似文献   

4.
In this paper, we analyze the genetic variability in four Tunisian natural populations of Medicago ciliaris using 19 quantitative traits and six polymorphic microsatellite loci. We investigated the amplification transferability of 30 microsatellites developed in the model legume M. truncatula to M. ciliaris. Results revealed that about 56.66% of analyzed markers are valuable genetic markers for M. ciliaris. The most genetic diversity at quantitative traits and microsatellite loci was found to occur within populations (>80%). Low differentiations among populations at quantitative traits Q ST  = 0.146 and molecular markers F ST  = 0.18 were found. The majority of measured traits exhibited no significant difference in the level of Q ST and F ST . Furthermore, significant correlations established between these traits and eco-geographical factors suggested that natural selection should be invoked to explain the level of phenotypic divergence among populations rather than drift. There was no significant correlation between population differentiation at quantitative traits and molecular markers. Significant spatial genetic structure consistent with models of isolation by distance was detected within all studied populations. The site-of-origin environmental factors explain about 9.07% of total phenotypic genetic variation among populations. The eco-geographical factors that influence more the variation of measured traits among populations are the soil texture and altitude. Nevertheless, there were no consistent pattern of associations between gene diversity (He) and environmental factors.  相似文献   

5.
Recent papers have suggested that epifaunal organisms use artificial structures as stepping‐stones to spread to areas that are too distant to reach in a single generation. With thousands of artificial structures present in the North Sea, we test the hypothesis that these structures are connected by water currents and act as an interconnected reef. Population genetic structure of the blue mussel, Mytilus edulis, was expected to follow a pattern predicted by a particle tracking model (PTM). Correlation between population genetic differentiation, based on microsatellite markers, and particle exchange was tested. Specimens of M. edulis were found at each location, although the PTM indicated that locations >85 km offshore were isolated from coastal subpopulations. The fixation coefficient FST correlated with the number of arrivals in the PTM. However, the number of effective migrants per generation as inferred from coalescent simulations did not show a strong correlation with the arriving particles. Isolation by distance analysis showed no increase in isolation with increasing distance and we did not find clear structure among the populations. The marine stepping‐stone effect is obviously important for the distribution of M. edulis in the North Sea and it may influence ecologically comparable species in a similar way. In the absence of artificial shallow hard substrates, M. edulis would be unlikely to survive in offshore North Sea waters.  相似文献   

6.
A key aim of evolutionary biology – inferring the action of natural selection on wild species – can be achieved by comparing neutral genetic differentiation between populations (FST) with quantitative genetic variation (QST). Each of the three possible outcomes of comparisons of QST and FST (QST FST, QST FST, QST FST) is associated with an inference (diversifying selection, genetic drift, uniform selection, respectively). However, published empirical and theoretical studies have focused on the QST FST outcome. We believe that this reflects the absence of a straightforward biological interpretation of the QST < FST pattern. We here report recent evidence of this neglected evolutionary pattern, provide guidelines to its interpretation as either a canalization phenomenon or a consequence of uniform selection and discuss the significant importance this issue will have for the area of evolutionary biology.  相似文献   

7.
Genetic variation and population structure of wild white shrimp (Litopenaeus vannamei) from 4 geographic locations from Mexico to Panama were investigated using 5 microsatellite DNA loci. The genetic diversity between populations was indicated by the mean number of alleles per locus and mean observed heterozygosity, which ranged from 7.4 to 8.6 and from 0.241 to 0.388, respectively. Significant departures from Hardy-Weinberg equilibrium were found at most locations at each locus, with the exception Guatemala at Pvan0013, and were caused by high heterozygote deficiencies. Genetic differences between localities were detected by pairwise comparison based on allelic and genotypic frequencies, with the exception of locus Pvan1003. Significant pairwise F ST values between locations and total F ST showed that the white shrimp population is structured into subpopulations. However, population differentiation does not follow an isolation-by-distance model. Knowledge of the genetic diversity and structure of L.vannamei populations will be of interest for aquaculture and fisheries management to utilize and preserve aquatic biodiversity.  相似文献   

8.

Background and Aims

Natural selection and genetic drift are important evolutionary forces in determining genetic and phenotypic differentiation in plant populations. The extent to which these two distinct evolutionary forces affect locally adaptive quantitative traits has been well studied in common plant and animal species. However, we know less about how quantitative traits respond to selection pressures and drift in endangered species that have small population sizes and fragmented distributions. To address this question, this study assessed the relative strengths of selection and genetic drift in shaping population differentiation of phenotypic traits in Psilopeganum sinense, a naturally rare and recently endangered plant species.

Methods

Population differentiation at five quantitative traits (QST) obtained from a common garden experiment was compared with differentiation at putatively neutral microsatellite markers (FST) in seven populations of P. sinense. QST estimates were derived using a Bayesian hierarchical variance component method.

Key Results

Trait-specific QST values were equal to or lower than FST. Neutral genetic diversity was not correlated with quantitative genetic variation within the populations of P. sinense.

Conclusions

Despite the prevalent empirical evidence for QST > FST, the results instead suggest a definitive role of stabilizing selection and drift leading to phenotypic differentiation among small populations. Three traits exhibited a significantly lower QST relative to FST, suggesting that populations of P. sinense might have experienced stabilizing selection for the same optimal phenotypes despite large geographical distances between populations and habitat fragmentation. For the other two traits, QST estimates were of the same magnitude as FST, indicating that divergence in these traits could have been achieved by genetic drift alone. The lack of correlation between molecular marker and quantitative genetic variation suggests that sophisticated considerations are required for the inference of conservation measures of P. sinense from neutral genetic markers.  相似文献   

9.
A combination of founder effects and local adaptation – the Monopolization hypothesis – has been proposed to reconcile the strong population differentiation of zooplankton dwelling in ponds and lakes and their high dispersal abilities. The role genetic drift plays in genetic differentiation of zooplankton is well documented, but the impact of natural selection has received less attention. Here, we compare differentiation in neutral genetic markers (FST) and in quantitative traits (QST) in six natural populations of the rotifer Brachionus plicatilis to assess the importance of natural selection in explaining genetic differentiation of life‐history traits. Five life‐history traits were measured in four temperature × salinity combinations in common‐garden experiments. Population differentiation for neutral genetic markers – 11 microsatellite loci – was very high (FST = 0.482). Differentiation in life‐history traits was higher in traits related to sexual reproduction than in those related to asexual reproduction. QST values for diapausing egg production (a trait related to sexual reproduction) were higher than their corresponding FST in some pairs of populations. Our results indicate the importance of divergent natural selection in these populations and suggest local adaptation to the unpredictability of B. plicatilis habitats.  相似文献   

10.

Background  

Sperm morphology can be highly variable among species, but less is known about patterns of population differentiation within species. Most studies of sperm morphometric variation are done in species with internal fertilization, where sexual selection can be mediated by complex mating behavior and the environment of the female reproductive tract. Far less is known about patterns of sperm evolution in broadcast spawners, where reproductive dynamics are largely carried out at the gametic level. We investigated variation in sperm morphology of a broadcast spawner, the green sea urchin (Strongylocentrotus droebachiensis), within and among spawnings of an individual, among individuals within a population, and among populations. We also examined population-level variation between two reproductive seasons for one population. We then compared among-population quantitative genetic divergence (Q ST) for sperm characters to divergence at neutral microsatellite markers (F ST).  相似文献   

11.
Statistical power is critical in conservation for detecting genetic differences in space or time from allele frequency data. Organelle and nuclear genetic markers have fundamentally different transmission dynamics; the potential effect of these differences on power to detect divergence have been speculated on but not investigated. We examine, analytically and with computer simulations, the relative performance of organelle and nuclear markers under basic, ideal situations. We conclude that claims of a generally higher resolving power of either marker type are not correct. The ratio R = F ST,organelle/F ST,nuclear varies between 1 and 4 during differentiation and this greatly affects the power relationship. When nuclear F ST is associated with organelle differentiation four times higher, the power of the organelle marker is similar to two nuclear loci with the same allele frequency distribution. With large sample sizes (≥ 50) and several populations or many alleles per locus (≥5), the power difference may typically be disregarded when nuclear F ST > 0.05. To correctly interpret observed patterns of genetic differentiation in practical situations, the expected F STs and the statistical properties (i.e., power analysis) of the genetic markers used should be evaluated, taking the observed allele frequency distributions into consideration.  相似文献   

12.
We evaluated the genetic structure of 16 Betula maximowicziana populations in the Chichibu mountain range, central Japan, located within a 25-km radius; all but two populations were at altitudes of 1,100–1,400 m. The results indicate the effects of geographic topology on the landscape genetic structure of the populations and should facilitate the development of local-scale strategies to conserve and manage them. Analyses involving 11 nuclear simple sequence repeat loci showed that most populations had similar intrapopulation genetic diversity parameters. Population differentiation (F ST = 0.021, GST = 0.033) parameters for the populations examined were low but were relatively high compared to those obtained in a previous study covering populations in a much larger area with a radius of approximately 1,000 km (F ST = 0.062, GST = 0.102). Three populations (Iriyama, Kanayamasawa, and Nishizawa) were differentiated from the other populations by Monmonier’s and spatial analysis of molecular variance algorithms or by STRUCTURE analysis. Since a high mountain ridge (nearly 2,000 m) separates the Kanayamasawa and Nishizawa populations from the other 14 populations and the Kanayamasawa and Nishizawa populations are themselves separated by another mountain ridge, the genetic structure appears to be partly due to mountain ridges acting as genetic barriers and restricting gene flow. However, the Iriyama population is genetically different but not separated by any clear geographic barrier. These results show that the landscape genetic structure is complex in the mountain range and we need to pay attention, within landscape genetic studies and conservation programs, to geographic barriers and local population differentiation.  相似文献   

13.
Herbivorous insects that use the same host plants as larvae and adults can have a subdivided population structure that corresponds to the distribution of their hosts. Having a subdivided population structure favors local adaptation of subpopulations to small-scale environmental differences and it may promote their genetic divergence. In this paper, I present the results of a hierarchical study of population structure in a montane willow leaf beetle, Chrysomela aeneicollis (Coleoptera: Chrysomelidae). This species spends its entire life associated with the larval host (Salix spp.), which occurs in patches along high-elevation streams and in montane bogs. I analyzed the genetic differentiation of C. aeneicollis populations along three drainages in the Sierra Nevada mountains of California at five enzyme loci: ak-1, idh-2, mpi-1, pgi-1, and pgm-1, using recent modifications of Wright's F-statistics. My results demonstrated significant differentiation (FST = 0.043) among drainages that are less than 40 kilometers apart. One locus, pgi-1, showed much greater differentiation than the other four (FST = 0.412), suggesting that it is under natural selection. C. aeneicollis populations were also subdivided within drainages, with significant differentiation 1) among patches of willows (spanning less than three kilometers) and 2) in some cases, among trees within a willow patch. My results demonstrate that this species has the capacity to adapt to local environmental variation at small spatial scales.  相似文献   

14.
The giant garter snake, Thamnophis gigas, is a threatened species endemic to California’s Central Valley. We tested the hypothesis that current watershed boundaries have caused genetic differentiation among populations of T. gigas. We sampled 14 populations throughout the current geographic range of T. gigas and amplified 859 bp from the mitochondrial gene ND4 and one nuclear microsatellite locus. DNA sequence variation from the mitochondrial gene indicates there is some genetic structuring of the populations, with high FST values and unique haplotypes occurring at high frequency in several populations. We found that clustering populations by watershed boundary results in significant between-region genetic variance for mtDNA. However, analysis of allele frequencies at the microsatellite locus NSU3 reveals very low FST values and little between-region variation in allele frequencies. The discordance found between mitochondrial and microsatellite data may be explained by aspects of molecular evolution and/or T. gigas life history characteristics. Differences in effective population size between mitochondrial and nuclear DNA, or male-biased gene flow, result in a lower migration rate of mitochondrial haplotypes relative to nuclear alleles. However, we cannot exclude homoplasy as one explanation for homogeneity found for the single microsatellite locus. The mitochondrial nucleotide sequence data supports conservation practices that identify separate management units for T. gigas.  相似文献   

15.

Background  

Understanding the mechanisms that control species genetic structure has always been a major objective in evolutionary studies. The association between genetic structure and species attributes has received special attention. As species attributes are highly taxonomically constrained, phylogenetically controlled methods are necessary to infer causal relationships. In plants, a previous study controlling for phylogenetic signal has demonstrated that Wright's F ST, a measure of genetic differentiation among populations, is best predicted by the mating system (outcrossing, mixed-mating or selfing) and that plant traits such as perenniality and growth form have only an indirect influence on F ST via their association with the mating system. The objective of this study is to further outline the determinants of plant genetic structure by distinguishing the effects of mating system on gene flow and on genetic drift. The association of biparental inbreeding and inbreeding depression with population genetic structure, mating system and plant traits are also investigated.  相似文献   

16.
Background selection is a process whereby recurrent deleterious mutations cause a decrease in the effective population size and genetic diversity at linked loci. Several authors have suggested that variation in the intensity of background selection could cause variation in FST across the genome, which could confound signals of local adaptation in genome scans. We performed realistic simulations of DNA sequences, using recombination maps from humans and sticklebacks, to investigate how variation in the intensity of background selection affects FST and other statistics of population differentiation in sexual, outcrossing species. We show that, in populations connected by gene flow, Weir and Cockerham's (1984; Evolution, 38 , 1358) estimator of FST is largely insensitive to locus‐to‐locus variation in the intensity of background selection. Unlike FST, however, dXY is negatively correlated with background selection. Moreover, background selection does not greatly affect the false‐positive rate in FST outlier studies in populations connected by gene flow. Overall, our study indicates that background selection will not greatly interfere with finding the variants responsible for local adaptation.  相似文献   

17.
Landscape features often shape patterns of gene flow and genetic differentiation in plant species. Populations that are small and isolated enough also become subject to genetic drift. We examined patterns of gene flow and differentiation among 12 floodplain populations of the selfing annual jewelweed (Impatiens capensis Meerb.) nested within four river systems and two major watersheds in Wisconsin, USA. Floodplain forests and marshes provide a model system for assessing the effects of habitat fragmentation within agricultural/urban landscapes and for testing whether rivers act to genetically connect dispersed populations. We generated a panel of 12,856 single nucleotide polymorphisms and assessed genetic diversity, differentiation, gene flow, and drift. Clustering methods revealed strong population genetic structure with limited admixture and highly differentiated populations (mean multilocus FST = 0.32, FST’ = 0.33). No signals of isolation by geographic distance or environment emerged, but alleles may flow along rivers given that genetic differentiation increased with river distance. Differentiation also increased in populations with fewer private alleles (R2 = 0.51) and higher local inbreeding (R2 = 0.22). Populations varied greatly in levels of local inbreeding (FIS = 0.2–0.9) and FIS increased in more isolated populations. These results suggest that genetic drift dominates other forces in structuring these Impatiens populations. In rapidly changing environments, species must migrate or genetically adapt. Habitat fragmentation limits both processes, potentially compromising the ability of species to persist in fragmented landscapes.  相似文献   

18.
Bergmann's rule predicts that individuals are larger in more poleward populations and that this size gradient has an adaptive basis. Hence, phenotypic divergence in size traits between populations (PST) is expected to exceed the level of divergence by drift alone (FST). We measured 16 skeletal traits, body mass and wing length in 409 male and 296 female house sparrows Passer domesticus sampled in 12 populations throughout Finland, where the species has its northernmost European distributional margin. Morphometric differentiation across populations (PST) was compared with differentiation in 13 microsatellites (FST). We find that twelve traits phenotypically diverged more than FST in both sexes, and an additional two traits diverged in males. The phenotypic divergence exceeded FST in several traits to such a degree that findings were robust also to strong between‐population environmental effects. Divergence was particularly strong in dimensions of the bill, making it a strong candidate for the study of adaptive molecular genetic divergence. Divergent traits increased in size in more northern populations. We conclude that house sparrows show evidence of an adaptive latitudinal size gradient consistent with Bergmann's rule on the modest spatial scale of ca. 600 km.  相似文献   

19.
The genetic differentiation and phylogenetic relationships of 18 indigenous goat populations from seven East Asian countries were analysed based on data obtained from 26 microsatellite DNA markers. The mean number of alleles (MNA) per population ranged from 2.5 to 7.6, with an average of 5.8. Genetic variability estimated from MNA and heterozygosity (HE and HO) were relatively low in coastal and island populations. A heterozygous deficiency within populations (FIS = 0.054, < 0.001) and total inbreeding (FIT = 0.181, < 0.01) were observed, and genetic differentiation in the populations (FST) was 13.4%. The results of Bayesian model‐based clustering and a neighbour‐joining tree based on Nei's genetic distance showed that Asian goat populations could be subdivided into at least the following three genetic clusters: East Asian, Southeast Asian and Mongolian. These results are in close accordance with conventional morphological and geographical classifications and migration history.  相似文献   

20.
Sequence polymorphism at the MHC class II DRB locus was investigated in three finless porpoise (Neophocaena phocaenoides) populations in Chinese waters. Intragenic recombination and strong positive selection were the main forces in generating sequence diversity in the DRB gene. MHC sequence diversity changed significantly along the study period. Significant decrease in heterozygosity and lost alleles have been detected in the Yangtze River population and South China Sea population since 1990. Furthermore, there is a trend of increasing population differentiation over time. Especially, the genetic differentiation between the Yangtze River population and the Yellow Sea population was very low prior to 1990 (F ST = 0.036, P = 0.009), but became very significant after 1990 (F ST = 0.134, P < 0.001), suggesting a recent augmentation of genetic differentiation between both populations probably in a relatively short-term period. Porpoises from the Yangtze River displayed divergent frequencies of shared and private alleles from those displayed by two marine populations, which suggest that the former riverine population has been under a different selection regime (characteristic of a fresh water environment) than that of its marine counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号