首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Extremely thermophilic anaerobic fermentative bacteria growing at temperatures between 50 and 80(deg)C (optimum, 65 to 70(deg)C) were isolated from mud samples collected at Abano Terme spa (Italy). The cells were gram-negative motile rods, about 1.8 (mu)m in length and 0.6 (mu)m in width, occurring singly and in pairs. Cells commonly formed spheroids at one end similar to Fervidobacterium islandicum and Fervidobacterium nodosum. The new isolate differs from F. nodosum by the 7% higher G+C content of its DNA (40.6 mol%) but is similar to Fervidobacterium pennavorans and F. islandicum in its G+C content and phenotypic properties. The phylogenetic dendrogram indicates that strain Ven5 belongs to the order Thermotogales and shows the highest 16S ribosomal DNA sequence similarity to F. pennavorans, F. islandicum, and F. nodosum, with similarities of 99.0, 98.6, and 96.0%, respectively. During growth on starch the strain produced a thermostable pullulanase of type I which preferentially hydrolyzed (alpha)-1,6 glucosidic linkages. The enzyme was purified 65-fold by anion-exchange, gel permeation, and hydrophobic chromatography. The native pullulanase has a molecular mass of 240,000 Da and is composed of three subunits, each with a molecular mass of 77,600 Da as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Optimal conditions for the activity and stability of the purified pullulanase were pH 6.0 and 85(deg)C. At pH 6.0, the half-life of the enzyme was over 2 h at 80(deg)C and 5 min at 90(deg)C. This is the first report on the presence of pullulanase type I in an anaerobic bacterium.  相似文献   

2.
A native-feather-degrading thermophilic anaerobe was isolated from a geothermal hot stream in Indonesia. Isolate AW-1, identified as a member of the species Fervidobacterium islandicum, was shown to degrade native feathers (0.8%, w/v) completely at 70 degrees C and pH 7 with a maximum specific growth rate (0.14 h(-1)) in Thermotoga- Fervidobacterium(TF) medium. After 24 h of culture, feather degradation led to an increase in free amino acids such as histidine, cysteine and lysine. Moreover, nutritionally essential amino acids such as tryptophan and methionine, which are rare in feather keratin, were also produced as microbial metabolites. A homomultimeric membrane-bound keratinolytic protease (>200 kDa; 97 kDa subunits) was purified from a cell extract of F. islandicum AW-1. The enzyme exhibited activity toward casein and soluble keratin optimally at 100 degrees C and pH 9, and had a half-life of 90 min at 100 degrees C. The enzyme showed higher specific activity for the keratinous substrates than other proteases and catalyzed the cleavage of peptide bonds more rapidly following the reduction of disulfide bridges in feather keratin by 10 mM dithiothreitol. Therefore, the enzyme from F. islandicum AW-1 is a novel, thermostable keratinolytic serine protease.  相似文献   

3.
Nine extremely thermophilic archaea and one novel thermophilic bacterium were screened for their ability to produce amylolytic and pullulytic enzymes. Cultivation of these micro-organisms was performed in the absence of elemental sulphur with starch as the major carbon source. Enzymatic activity was mainly detected in two archaea belonging to the order Thermoproteales,Desulfurococcus mucosus andStaphylothermus marinus, in two archaea belonging to the order Thermococcales,Thermococcus celer andT. litoralis and in two novel archaeal strains, TYS and TY previously isolated from the Guaymas Basin in the Gulf of California. Both amylolytic and pullulytic activities were also detected in a newly isolated thermophilic bacterium belonging to the order Thermotogales and previously described asFervidobacterium pennavorans. Best yields for enzyme production were obtained in 1–1 batch cultures with the strains TYS (13 units U/1 of amylase, 6 U/1 of pullulanase),F. pennavorans (2.5 U/l of amylase, 4.5 U/l of pullulanase) andT. litoralis (3.0 U/l of amylase). Enzymes were in general characterized by temperature optima around 90–100°C, pH optima around 5.5–6.5 and a high degree of thermostability. Due to the remarkable properties of these enzymes, they are of interest for biotechnological applications.  相似文献   

4.
Six strains of thermophilic actinomycetes were isolated from soil using an enrichmenttechnique with feathers as the sole carbon and nitrogen source. They showed clear proteolyticactivity on casein agar medium. The most active strain was tentatively identified as Streptomycesthermonitrificans. This isolate was grown in a basal medium with feathers and:or other carbon andnitrogen sources. Supernatant from centrifuged cultures was examined for protease activity andtemperature and pH optima were determined for enzyme activity. Optimum proteolytic activity onbasal liquid medium containing 1% chicken feather pieces was obtained at 50°C, in a mediumadjusted at pH8 and incubated for 72 h at 150 rpm. Proteolytic activity was further increased by1.5% feather pieces and the time required for maximal activity was 96 h. The keratinolytic activityof S. thermonitrificans was examined by incubation with native chicken feather pieces and it wasfound that it is significantly active. The degradation of whole intact feathers by S.thermonitrificans was obtained after 48 h of incubation at 50°C. The pH and temperature optimafor proteolytic activity were 9.0 and 50°C, respectively. The proteolytic activity was stable at40°C for 1 h. The proteolytic activity was inhibited by DFP but not by EDTA or pCMB. Theseresults inidicated that the enzyme(s) can be classified as an alkaline protease. 1999 ElsevierScience Ltd. All rights reserved.  相似文献   

5.
The keratinase production by the thermophilic actinomycete strain Thermoactinomyces candidus was induced by sheep wool as the sole source of carbon and nitrogen in the cultivation medium. For complete digestion of wool by the above strain, both keratinolytic serine proteinase and cellular reduction of disulfide bonds were involved. Evidence was presented that substrate induction was a major regulatory mechanism and the keratinase biosynthesis was not completely repressed by addition of other carbon (glucose) and nitrogen (NH4C1) sources. The enzyme was purified 62-fold by diethylaminoethyl-anion exchange and Sephadex G-75 gel permeation chromatographies. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the purified keratinase is a monomeric enzyme with a molecular mass of 30 kDa. The pH and temperature optima were determined to be 8.6 and 70 degrees C, respectively. The purified thermophilic keratinase catalyses the hydrolysis of a broad range of substrates and displays higher proteolytic activity against native keratins than other proteinases. Ca2+ was found to have a stabilizing effect on the enzyme activity at elevated temperatures.  相似文献   

6.
A yeast strain isolated from feather waste from a chicken processing plant was identified as Candida parapsilosis by biochemical tests and morphological studies. The yeast was able to grow in phosphate-buffered saline supplemented with 1% native feather as the sole carbon and nitrogen source. A keratin substrate was obtained from the feathers by dimethylsulphoxide extraction. A 20-fold concentrated culture supernatant from Candida parapsilosis grown on feathers was analysed by SDS–PAGE electrophoresis containing either 1% gelatin or 1% keratin as copolymerised substrates. The presence of a single band with an approximate molecular mass of 60 kDa with gelatinolytic and keratinolytic activities was observed. This proteolytic activity was fully inhibited by phenylmethylsulphonyl fluoride. These results suggest that the extracellular enzyme belongs to the serine peptidase class. This is the first report of an extracellular serine peptidase produced by C. parapsilosis with keratinolytic activity. The role of this enzyme in yeast–host interactions is discussed.  相似文献   

7.
Hamana K  Niitsu M  Samejima K  Itoh T 《Microbios》2001,104(409):177-185
Cellular polyamines of four new thermophiles located in three early branched eubacterial clades, were investigated for the chemotaxonomic significance of polyamine distribution profiles. The thermophilic anaerobic Thermosipho japonicus, belonging to the order Thermotogales, contained norspermidine, norspermine and thermospermine in addition to spermidine and spermine. The polyamine profile was identical to the polyamine composition of Thermotoga, Fervidobacterium and Petrotoga species of the order. Spermidine, norspermidine, spermine, N4-bis(aminopropyl)spermidine and agmatine were found in thermophilic aerobic Thermaerobacter marianensis. Some differences were observed in the polyamine compositions of the phylogenetically related thermophilic anaerobes, Moorella, Dictyoglomus, Thermoanaerobacterium and Thermoanaerobacter species. Thermophilic anaerobic Caldicellulosiruptor kristianssonii and Caldicellulosiruptor owensensis contained a linear penta-amine, thermopentamine, and two quaternary branched penta-amines, N4-bis(aminopropyl)spermidine and N4-bis(aminopropyl)norspermidine, as the major polyamines. A novel tertiary branched penta-amine, N4-aminopropylspermine, was found in the two Caldicellulosiruptor species.  相似文献   

8.
Several thermophilic anaerobic bacteria with keratinolytic activity growing at temperatures between 50 degrees C and 90 degrees C were isolated from samples collected on the island of S?o Miguel in the Azores (Portugal). On the basis of morphological, physiological, and 16S rDNA studies, the isolate 2KXI was identified as a new species of the genus Thermoanaerobacter, designated Thermoanaerobacter keratinophilus. This strain, which grows optimally at 70 degrees C, pH 7.0, and 0.5% NaCl, is the first member of the genus Thermoanaerobacter that has been described for its ability to degrade native keratin. Around 70% of native wool was solubilized after 10 days of incubation under anaerobic conditions. The strain was shown to possess intracellular and extracellular proteases optimally active at 60 degrees C, pH 7.0, and 85 degrees C, pH 8.0, respectively. Keratin hydrolysis was demonstrated in vitro using a sodium dodecyl sulfate gel containing feather meal. The extracellular protease responsible for breaking down keratin fibers was purified to homogeneity in only one step by applying hydroxyapatite column chromatography. The enzyme belongs to the serine-type proteases and has a molecular mass of 135 kDa.  相似文献   

9.
10.
A keratin-degrading strain of Bacillus licheniformis (K-508) was isolated from partially-degraded feathers and characterised. It had high chicken feather-degrading activity when cultured in feather-containing broth, with a growth optimum at pH 7 and 47 °C. Broth filtrates were active towards N-Bz-Phe-Val-Arg-p-nitroanilide and N-Suc-Ala-Ala-Pro-Phe-p-nitroanilide, as chromogenic protease substrates at pH 8. Strain K-508 displays keratinolytic activity against native feather keratin (without any pretreatment) in the presence of SH-reducing compounds. It constitutively secreted both trypsin-like and chymotrypsin-like proteases.  相似文献   

11.
A strain of Kocuria rosea able to secrete keratin-hydrolysing proteinases (keratinases) in submerged batch cultures with finely milled feathers as carbon and nitrogen sources was studied. The highest production of keratinases was obtained when feathers were used as the only fermentation substrate (17 U/mg). Considerably lower activity was present in cultures containing glucose and others nutrient supplements. The optimum temperature and pH for keratinolytic activity was 40 °C and 10, respectively. Gelatin-sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) electrophoresis analysis showed that Kocuria rosea grown on feathers secreted at least two alkaline extracellular proteases with apparent molecular weights of 90.2 and >200 kDa, respectively. These proteolytic activities appear sequentially during microbial growth. Keratinolytic activity was strongly inhibited by phenylmethanesulphonyl fluoride (PMSF), chymostatin and crystalline soybean trypsin inhibitor, indicating the presence of serine proteases. Proteolytic enzymes derived from the biodegradation of feathers by this microorganism could be a useful biotechnological tool in the leather, food and cosmetic industries.  相似文献   

12.
Most extremophilic anaerobes possess a sulfur formation (Suf) system for Fe–S cluster biogenesis. In addition to its essential role in redox chemistry and stress responses of Fe–S cluster proteins, the Suf system may play an important role in keratin degradation by Fervidobacterium islandicum AW-1. Comparative genomics of the order Thermotogales revealed that the feather-degrading F. islandicum AW-1 has a complete Suf-like machinery (SufCBDSU) that is highly expressed in cells grown on native feathers in the absence of elemental sulfur (S0). On the other hand, F. islandicum AW-1 exhibited a significant retardation in the Suf system-mediated keratin degradation in the presence of S0. Detailed differential expression analysis of sulfur assimilation machineries unveiled the mechanism by which an efficient sulfur delivery from persulfurated SufS to SufU is achieved during keratinolysis under sulfur starvation. Indeed, addition of SufS–SufU to cell extracts containing keratinolytic proteases accelerated keratin decomposition in vitro under reducing conditions. Remarkably, mass spectrometric analysis of extracellular and intracellular levels of amino acids suggested that redox homeostasis within cells coupled to extracellular cysteine and cystine recycling might be a prerequisite for keratinolysis. Taken together, these results suggest that the Suf-like machinery including the SufS–SufU complex may contribute to sulfur availability for an extracellular reducing environment as well as intracellular redox homeostasis through cysteine released from keratin hydrolysate under starvation conditions.  相似文献   

13.
Several members of the order Thermotogales in the domain Bacteria, viz., Thermotoga neapolitana, Thermotoga maritima, Thermosipho africanus, Fervidobacterium islandicum, and Thermotoga strain SEBR 2665, an isolate from an oil well, reduced thiosulfate to sulfide. This reductive process enhanced cellular yields and growth rates of all the members but was more significant with the two hyperthermophiles T. neapolitana and T. maritima. This is the first report of such an occurrence in this group of thermophilic and hyperthermophilic anaerobic bacteria. The results suggest that thiosulfate reduction is important in the geochemical cycling of sulfur in anaerobic thermal environments such as the slightly acidic and neutral-pH volcanic hot springs and oil reservoirs.  相似文献   

14.
Feather keratin hydrolysis by a Vibrio sp. strain kr2   总被引:1,自引:0,他引:1  
The aim of the study was to characterize feather-degrading bacteria isolated from poultry industry waste. A Vibrio sp. strain kr2 producing a high keratinolytic activity when cultured on native feather-containing broth was isolated. The bacterium grew with an optimum at pH 6.0 and 30 degrees C, where maximum featherdegrading activity was also observed. Keratinase production was similar at both 25 and 30 degrees C, while the maximum concentration of soluble protein was reached at 30 degrees C. Reduction of disulphide bridges was also observed, increasing with cultivation time. The keratinase of strain kr2 was active on azokeratin, azocasein, benzoyl-arginine-p-nitroanilide and Ala-Ala-p-nitroanilide as substrates. The amino acid composition of the feather hydrolysate was determined, presenting similarities with that reported for feather lysate, feather meal and raw feathers. A novel feather-degrading bacterium was isolated and characterized, showing high keratinolytic activity. Complete feather degradation was achieved during cultivation. Strain kr2 shows potential for use for biotechnological processes involving keratin hydrolysis.  相似文献   

15.
《Process Biochemistry》2010,45(5):617-626
A new keratinolytic enzyme-producing bacterium was isolated from slaughter house polluted water and identified as Bacillus pumilus A1. Medium composition and culture conditions for the keratinases production by B. pumilus A1 were optimized using two statistical methods: Plackett–Burman design applied to find the key ingredients and conditions for the best yield of enzyme production and central composite design used to optimize the concentration of the five significant variables: feathers meal, soy peptone, NaCl, KCl, and KH2PO4. The medium optimization resulted in a 3.4-fold increase in keratinase production (87.73 U/ml) compared to that of the initial medium (25.9 U/ml). The zymography analysis shows the presence of at least five keratinolytic enzymes. The keratinolytic activity of the extracellular proteinases was examined by incubation with non-autoclaved chicken feathers. Complete solubilisation of whole feathers was observed after a 6-h incubation at temperatures ranging from 45 °C to 60 °C. The crude enzyme exhibited maximal activity at 60 °C and pH 8.5 or 55 °C and pH 9.0 using casein or keratin as substrates, respectively.  相似文献   

16.
B Bckle  B Galunsky    R Müller 《Applied microbiology》1995,61(10):3705-3710
A serine protease from the keratin-degrading Streptomyces pactum DSM 40530 was purified by casein agarose affinity chromatography. The enzyme had a molecular weight of 30,000 and an isoelectric point of 8.5. The proteinase was optimally active in the pH range from 7 to 10 and at temperatures from 40 to 75 degrees C. The enzyme was specific for arginine and lysine at the P1 site and for phenylalanine and arginine at the P1' site. It showed a high stereoselectivity and secondary specificity with different synthetic substrates. The keratinolytic activity of the purified proteinase was examined by incubation with the insoluble substrates keratin azure, feather meal, and native and autoclaved chicken feather downs. The S. pactum proteinase was significantly more active than the various commercially available proteinases. After incubation with the purified proteinase, a rapid disintegration of whole feathers was observed. But even after several days of incubation with repeated addition of enzymes, less than 10% of the native keratin substrate was solubilized. In the presence of dithiothreitol, degradation was more than 70%.  相似文献   

17.
A bacterium which can grow on chicken feathers and which exhibits keratinolytic activity was isolated from solfataric muds. It was classified as belonging to the genus Clostridium and closely related to C. sporogenes. Based on its unique capability to degrade chicken feathers, it was designated as Clostridium sporogenes bv. pennavorans bv. nov. The keratinase purified from the culture supernatant is a monomer of 28.7kDa molecular mass. The enzyme is relatively thermostable and is active over a broad range of temperature and pH. Specific enzymatic assays demonstrate that keratinase can act on a large variety of soluble and insoluble protein substrates.  相似文献   

18.
The evolutionary potential of a thermostable alpha-galactosidase, with regard to improved catalytic activity at high temperatures, was investigated by employing an in vivo selection system based on thermophilic bacteria. For this purpose, hybrid alpha-galactosidase genes of agaA and agaB from Bacillus stearothermophilus KVE39, designated agaA1 and agaB1, were cloned into an autonomously replicating Thermus vector and introduced into Thermus thermophilus OF1053GD (DeltaagaT) by transformation. This selector strain is unable to metabolize melibiose (alpha-galactoside) without recombinant alpha-galactosidases, because the native alpha-galactosidase gene, agaT, has been deleted. Growth conditions were established under which the strain was able to utilize melibiose as a single carbohydrate source when harboring a plasmid-encoded agaA1 gene but unable when harboring a plasmid-encoded agaB1 gene. With incubation of the agaB1 plasmid-harboring strain under selective pressure at a restrictive temperature (67 degrees C) in a minimal melibiose medium, spontaneous mutants as well as N-methyl-N'-nitro-N-nitrosoguanidine-induced mutants able to grow on the selective medium were isolated. The mutant alpha-galactosidase genes were amplified by PCR, cloned in Escherichia coli, and sequenced. A single-base substitution that replaces glutamic acid residue 355 with glycine or valine was found in the mutant agaB1 genes. The mutant enzymes displayed the optimum hydrolyzing activity at higher temperatures together with improved catalytic capacity compared to the wild-type enzyme and furthermore showed an enhanced thermal stability. To our knowledge, this is the first report of an in vivo evolution of glycoside-hydrolyzing enzyme and selection within a thermophilic host cell.  相似文献   

19.
Degradation of chicken feathers by Chrysosporium georgiae   总被引:1,自引:0,他引:1  
Using a baiting technique, Chrysosporium georgiae was isolated from chicken feathers. Twenty-eight different fungal isolates were evaluated for their ability to produce keratinase enzymes using a keratin–salt agar medium containing either white chicken feathers or a prepared feather keratin suspension (KS). The Chrysosporium species were able to use keratin and grow at different rates. Chrysosporium georgiae completely degraded the added keratin after 9 days of incubation. Degradation of feathers by C. georgiae was affected by several cultural factors. Highest keratinolytic activity occurred after 3 weeks of incubation at 6 and 8~pH at 30 °C. Chrysosporium georgiae was able to degrade white chicken feathers, whereas bovine and human hair and sheep wool were not degraded and did not support fungal growth. Addition of 1% glucose to the medium containing keratin improved fungal growth and increased enzyme production. Higher keratin degradation resulted in high SH accumulation and the utilization of the carbohydrate carbon in the medium resulted in high keto-acid accumulation but decreased ammonia accumulation. Supplementation of the keratin–salt medium with minerals such as NH4Cl and MgSO4 slightly increased mycelial growth, but decreased production of extracelluar keratinase. Keratinase enzymes were very poorly produced in the absence of keratin, indicating its inducible nature. Analysis of endocellular keratinases in the mycelial homogenate indicated higher activity of intracellular keratinase as compared to the extracellular enzyme in culture filtrates. Chrysosporium georgiae was the most superior for keratinase production among the Chrysosporium species tested in the presence or absence of glucose. It produced more of the intracellular enzymes than the exocellular ones. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
A moderately thermophilic bacterial strain, Meiothermus ruber H328, can efficiently solubilize intact chicken feathers by aerobic cultivation at 55 °C for 6 days. The keratinolytic proteases extracellularly secreted by the strain were partially purified by an ultrafiltration system and a size-exclusion column chromatography, and thus were found to be two different sizes of macromolecules with an extremely high molecular mass like the sizes of virus and DNA (peak 1 fraction) and with a molecular mass of larger than 500 kDa (peak 2 fraction). They formed protein complex assemblies that were composed of multiple but different proteins. The peak 1 fraction showed more thermophilic characteristics than did the peak 2 fraction in temperature dependence and thermal stability. By contrast, they comparably showed extraordinary resistance to powerful denaturants, SDS at 30 % (w/v) and organic solvents (methanol, ethanol, acetonitrile, acetone, and chloroform) at 40 % (v/v) at 60 °C for 30 min. The extraordinary denaturant tolerance and the large molecular size of the keratinolytic protease complex assemblies suggest the possibility that those may be lipophilic and have the structure of partial membrane fractions, or membrane vesicles, which are exfoliated from the outer membrane of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号