首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The host-substituted variant termed CVP8/1/P2 (EcoRI res) was first isolated several years ago after serial passage of simian virus 40 strain 777 on BSC-1 cells at 37 degrees C. When BSC-1 are coinfected with wild-type simian virus 40 strain 777 and variant CVP8/1/P2 (EcoRI res), the variant rapidly becomes the dominant species produced, often representing as much as 80% of the total DNA I synthesized after infection. We present evidence that the replicative advantage of the variant was increased when the infection was carried out at 33 rather than 37 degrees C. Also described are nine new and independent serial passage experiments carried out at 33 degrees C with several purified wild-type virus stocks, including strain 776, and both BSC-1 and primary African green monkey kidney cells. In each series variants related to CVPs/1/P2 (EcoRI res) were detected in the progeny viral genomes after four serial passages. Hybridization data suggest that at least some of these variant DNA I molecules contain simian virus 40 DNA sequences, monkey alpha-component DNA sequences (highly repetitive), and the infrequently reiterated monkey DNA sequences found in CVP8/1/P2 (EcoRI res), all covalently linked as in CPV8/1/P2 (EcoRI res). It appears that this type of variant emerges with some frequency during infection and is then preferentially replicated at 33 degrees C, thereby becoming readily detectable in passaged stocks. A variety of control experiments indicated that the repeated emergence of similar, if not identical, variants is unlikely to be the result of inadvertent cross-contamination or the presence of detectable amounts of the variant in the plaque-purified viral stocks.  相似文献   

2.
Three plaque isolates of SV40 strain 777 and 1 plaque isolate of strain 776 were grown to high-titer stocks and serially passaged, undiluted, in monkey BS-C-1 cells. In each case, the serial passaging procedure resulted in the accumulation of closed-circular SV40 DNA molecules containing covalently linked sequences homologous to reiterated host cell DNA (called substituted virus DNA). The relative yields, at a given passage level, of SV40 DNA with measurable homology to host DNA varied in different sets of serial passages, including passages of the same virus clone. More reproducible yields of substituted viral DNA progeny were obtained when the serial passaging procedure was initiated from earlier passages rather than from the original plaque-purified stock. Fractionation of closed-circular SV40 DNA molecules on alkaline sucrose gadients indicated that the majority of substituted virus DNA molecules are not plaque producers and are slightly smaller in size than plaque-forming DNA molecules which display no detectable homology to host DNA. Evidence that substituted SV40 DNA molecules replicate during serial undiluted passage was obtained from experiments which demonstrated (i) the presence of host sequences in replicative forms of the viral DNA and (ii) the incorporation of (3)H-thymidine into host sequences isolated from the mature substituted virus DNA molecule.  相似文献   

3.
Comparison of two viable variants of simian virus 40.   总被引:2,自引:2,他引:0       下载免费PDF全文
A C Kay  G R Rao    M F Singer 《Journal of virology》1978,25(1):339-348
The DNAs of two viable strains of simian virus 40, 776 and 777, have been compared by using restriction endonucleases. Differences between the two strains were detected at five separate points on the simian virus 40 genome. One of these differences, in the region of DNA coding for the major viral coat protein, was confirmed by tryptic peptide analysis of coat proteins from the two strains. Some physiological differences between the two strains were examined and can, in general, be explained by differences observed between the DNAs of the two strains. In addition, defective variants derived from strain 777 interfere more efficiently with the replication of strain 777 than with the replication of strain 776.  相似文献   

4.
The genome of the simian virus 40 (SV40) temperature-sensitive (ts) mutant tsD202 rescued by passage on transformed permissive monkey lines (see accompanying paper [Y. Gluzman et al., J. Virol. 24:534-540, 1977]) was analyzed by restriction endonuclease cleavage mapping to obtain biochemical evidence that the rescue of the ts phenotype results from recombination with the resident SV40 genome of the transformed cell. It was demonstrated that the endonuclease R. HaeIII cleavage site, which is located at 0.9 map unit in the standard viral genome (and which is in the proximity of the known map position of the tsD lesion), is missing in the DNAs of the parental tsD202 virus and of three independent revertants of tsD202. In contrast, this cleavage site was shown to be present in the DNAs of four out of five independently derived rescued D202 populations and in the DNA of the SV40 strain, 777, used to transform the monkey cells. Comparison of the endonuclease R. Hin(II + III) cleavage patterns of SV40 strain 777 DNA and tsD202 DNA revealed differences in the electrophoretic mobilities of Hin fragments A, B, and F. However, the corresponding Hin fragments from all four rescued D202 genomes were identical in their mobilities to those of tsD202 DNA, indicating that these regions of the rescued D202 genome are characteristic of the tsD202 parent. We conclude, therefore, that the genome of the rescued D202 virus is a true recombinant, since it contains restriction endonuclease cleavage sites characteristic of both parents, the endogenous resident SV40 genome of the transformed monkey cells and the exogenous tsD202 mutant.  相似文献   

5.
6.
A new variant of simian virus 40 (EL SV40), containing the complete viral DNA separated into two molecules, was isolated. One DNA species contains nearly all of the early (E) SV40 sequences, and the other DNA contains nearly all of the late (L) viral sequences. Each genome was encircled by reiterated viral origins and termini and migrated in agarose gels as covalently closed supercoiled circles. EL SV40 or its progenitor appears to have been generated in human A172 glioblastoma cells, as defective interfering genomes during acute lytic infections, but was selected during the establishment of persistently infected (PI) green monkey cells (TC-7). PI TC-7/SV40 cells contained EL SV40 as the predominant SV40 species. EL SV40 propagated efficiently and rapidly in BSC-1, another line of green monkey cells, where it also formed plaques. EL SV40 stocks generated in BSC-1 cells were shown to be free of wild-type SV40 by a number of criteria. E and L SV40 genomes were also cloned in the bacterial plasmid pBR322. When transfected into BSC-1 cell monolayers, only the combination of E and L genomes produced a lytic infection, followed by the synthesis of EL SV40. However, transfection with E SV40 DNA alone did produce T-antigen, although at reduced frequency.  相似文献   

7.
When simian virus 40 (SV40) is serially passaged at high multiplicity, a heterogeneous collection of naturally arising variants is generated. Those which are the most abundant presumably have a selective replicative advantage over other defective and wild-type helper SV40s. Two such naturally arising host-substituted variants of SV40 have been characterized in terms of complete nucleotide sequence determination. Evolutionary variant ev-1101 (previously isolated by Lee et al., Virology 66:53-69, 1975) is from undiluted serial passage 13, whereas ev-2101 is newly isolated from undiluted serial passage 6 of an independently-derived evolutionary series. Both variants contain a five-times tandemly repeated segment of DNA consisting of viral Hin C and Hin A sequences that have recombined with a segment of host DNA that is not highly reiterated in the monkey genome. The monkey segment differs in the two variants as does the size of the viral segment retained. In two additional host-substituted variants, ev-1102 (previously isolated from serial passage 20 by Brockman et al., Virology 54:384-397, 1973) and ev-1108 (newly isolated from serial passage 40), the SV40 sequences derived from the replication origin are present as inverted repetitions. The inverted repeat regions of these two variants have been analyzed at the nucleotide sequence level and are compared with SV40 variant ev-1104 from passage 45 (previously characterized by Gutai and Nathans, J. Mol. Biol. 126:259-274, 1978). The viral segment containing the regulatory signals for replication and viral gene expression is considerably shortened in later serial passages as demonstrated by these five variants. It is of interest that the variants presumably arose due to their enhanced replication efficiency, yet are missing some of the sequence elements implicated in the regulation of replication. Furthermore, a comparison of the structure of the replication origin regions indicates that additional changes occur in the SV40 regulatory region with continued undiluted serial passage.  相似文献   

8.
A comparative study of simian virus 40 (SV40) lytic infection in three different monkey cell lines is described. The results demonstrate that viral deoxyribonucleic acid (DNA) synthesis and infectious virus production begin some 10 to 20 hr earlier in CV-1 cells and primary African green monkey kidney (AGMK) cells than in BSC-1 cells. Induction of cellular DNA synthesis by SV40 was observed in CV-1 and AGMK cells but not with BSC-1 cells. Excision of large molecular weight cellular DNA to smaller fragments was easily detectable late in infection of AGMK cells. Little or no excision was observed at comparable times after infection of CV-1 and BSC-1 cells. The different kinds of responses of these three monkey cell lines during SV40 lytic infection suggest the involvement of cellular functions in the virus-directed induction of cellular DNA synthesis and the excision of this DNA from the genome.  相似文献   

9.
D Ganem  A L Nussbaum  D Davoli  G C Fareed 《Cell》1976,7(3):349-359
A 520 base pair DNA segment was excised from the bacteriophage lamda-genome by cleavage with the bacterial restriction endonuclease, endo R. Hindll. This segment was covalently joined in vitro to an 880 base pair simian virus 40 (SV40) DNA segment which contains the initation site for SV40 DNA replication. The latter segment was derived from the genome of a defective reiteration mutant of SV40 also by endo R. Hindlll cleavage. When the recombinant molecule, together with wild-type SV40 DNA as helper, was introduced into monkey cells by DNA infection, replication of the lamda-DNA sequences was observed, and hybrid genomes were encapsidated into progeny SV40 virions. The structure of the lamda-DNA segment after serial passage in monkey cells was examined by use of restriction endonucleases and electron microscopic heteroduplex analysis.  相似文献   

10.
Three simian virus (SV40)-phi X174 recombinant genomes were isolated from single BSC-1 monkey cells cotransfected with SV40 and phi X174 RF1 DNAs. The individual cell progenies were amplified, cloned, and mapped by a combination of restriction endonuclease and heteroduplex analyses. In each case, the 600 to 1,000 base pairs of phi X174 DNA (derived from different regions of the phi X174 genome) were present as single inserts, located in either the early or late SV40 regions; the deletion of SV40 DNA was greater than the size of the insert; and the remaining portions of the hybrid genome were indistinguishable from wild-type SV40 DNA, as judged by both mapping and biological tests. Hence, apart from the deletion which accommodates the phi X174 DNA insert, no other rearrangements of SV40 DNA were detected. The restriction map of a SV40-phi X174 recombinant DNA isolate before molecular cloning was indistinguishable from those of two separate cloned derivatives of that isolate, indicating that the species cloned was the major amplifiable recombinant structure generated by a single recombinant-producing cell. The relative simplicity of the SV40-phi X174 recombinant DNA examined is consistent with the notion that most recombinant-producing BSC-1 cells support single recombination events generating only one amplifiable recombinant structure.  相似文献   

11.
In an effort to characterize sites of recombination between SV40 and monkey DNA, we have determined the primary sequence of a large portion of the SV40 variant, designated 1103. This virus contains DNA sequences derived both from the wild type SV40 genome and from the permissive monkey cell in which the virus was propagated. Further, the monkey sequences included in the defective genome are homologous to both highly repeated monkey DNA (alpha component) and sequences that are infrequently repeated in the monkey genome. The regions of the 1103 genome where DNA sequences were determined include 1) the segments of the variant that surround joints connecting SV40 and monkey sequences, 2) the segment that contains the joint between monkey sequences of high and low reiteration frequency, and 3) the DNA segment of the variant that is homologous to monkey alpha component DNA. Comparison of the data obtained from the sequences analysis of the SV40 variants 1103 and CVP8/1/P2 (EcoRI res) (described in Wakamiya, T., McCutchan, T., Rosenberg, M., and Singer, M. (1979) J. Biol. Chem 254, 3584-3591) reveals certain similarities between the two that may be involved in eukaryotic recombination and defective variant formation.  相似文献   

12.
13.
The simian virus 40 T-antigen carboxy-terminal mutants, dlA2459 and dlA2475, are cell line and temperature dependent for growth and plaque formation in monkey kidney cells. Although these mutants did form plaques on BSC-1 cells at 37 degrees C, they were about fivefold less efficient for plaque formation than wild-type simian virus 40. These mutants did not grow in CV-1 cells and did not synthesize agnoprotein in those cells. CV-1 cells which constitutively express the agnoprotein were permissive for mutant plaque formation. However, late mRNAs, virion proteins, and progeny virion yields did not accumulate to wild-type levels during mutant infection of the agnoprotein-producing cells.  相似文献   

14.
The survival of UV-irradiated simian virus 40 (SV40) is higher in UV-irradiated than in non-irradiated monolayers of BSC-1 monkey cells. A similar reactivation is found when cells are infected with SV40-DNA, suggesting that reactivation acts on viral DNA. The enhanced reactivation of UV-irradiated SV40 and SV40-DNA is optimal when infection is delayed for 2–3 days after irradiation of the cells.UV-pretreated cells infected with SV40-DNA produce more virus than infected control cells; the time curve of this process is similar to that found for enhanced virus reactivation and suggests that facilitated virus production in UV-irradiated cells and enhanced virus reactivation might be manifestations of the same process.If the non-irradiated SV40 thermosensitive mutant BC245 is propagated in UV-irradiated BSC-1 cells the rate of back mutation to phenotypically wild-type is increased compared with that of the control. This suggests that an inducible error-prone system is functional in these cells. When the UV-irradiated tsBC245 is propagated in non-irradiated cells the reversion frequency is greatly enhanced, which suggests that either the introduction of UV-irradiated SV40-DNA is sufficient to induce an error-generating system, or that a constitutive error-prone mechanism is operative on this DNA.  相似文献   

15.
Primary monkey kidney cells (Cerocpithecus aethiops) in the stationary phase of growth were labeled with (14)C-thymidine for 24 hr prior to infection with simian virus 40 (strain 777). (3)H-deoxyadenosine and 5-iodo-2'-deoxyuridine (IUdR) were added to some of the cultures 24, 48, or 72 hr after infection; 24 hr later the deoxyribonucleic acid (DNA) was extracted from these cultures and centrifuged in a CsCl density gradient. The portion of DNA which had become heavier because of incorporation of IUdR could be seen as a second peak in the sedimentation profile. This peak contained (14)C as well as (3)H activity. The possibility that the (14)C-labeled cellular DNA might be degraded and used for the synthesis of viral DNA could be excluded. On the basis of these results, it must be assumed that the infection of monkey kidney cells with simian virus 40 induces the synthesis of cellular DNA.  相似文献   

16.
The site-directed bisulfite mutagenesis technique has been used to construct a specific mutation, am404, at nucleotide position 3124 in the simian virus 40 genome. The mutation was contained within a PstI restriction site (map position 0.27) and prevented cleavage by PstI at that position. Nucleotide sequence analysis of the mutagenized region indicated that only a single base pair change had occurred: a guanosine x cytosine leads to adenine x thymine transition. Comparison of the nucleotide sequence of am404 with the known DNA sequence of simian virus 40 indicted that the mutation in am404 resulted in the conversion of a glutamine codon to an amber codon. am404 could not replicate autonomously when transfected into monkey cells (BSC-40) but did replicate when it was cotransfected with the late deletion helper virus dl1007. On the basis of its position in the T-antigen, gene am404 should produce a T-antigen 24% shorter than the wild-type protein.  相似文献   

17.
A phylogenetic analysis of 14 complete simian virus 40 (SV40) genomes was conducted in order to determine strain relatedness and the extent of genetic variation. This analysis included infectious isolates recovered between 1960 and 1999 from primary cultures of monkey kidney cells, from contaminated poliovaccines and an adenovirus seed stock, from human malignancies, and from transformed human cells. Maximum-parsimony and distance methods revealed distinct SV40 clades. However, no clear patterns of association between genotype and viral source were apparent. One clade (clade A) is derived from strain 776, the reference strain of SV40. Clade B contains isolates from poliovaccines (strains 777 and Baylor), from monkeys (strains N128, Rh911, and K661), and from human tumors (strains SVCPC and SVMEN). Thus, adaptation is not essential for SV40 survival in humans. The C terminus of the T-antigen (T-ag-C) gene contains the highest proportion of variable sites in the SV40 genome. An analysis based on just the T-ag-C region was highly congruent with the whole-genome analysis; hence, sequencing of just this one region is useful in strain identification. Analysis of an additional 16 strains for which only the T-ag-C gene was sequenced indicated that further SV40 genetic diversity is likely, resulting in a provisional clade (clade C) that currently contains strains associated with human tumors and human strain PML-1. Four other polymorphic regions in the genome were also identified. If these regions were analyzed in conjunction with the T-ag-C region, most of the phylogenetic signal could be captured without complete genome sequencing. This report represents the first whole-genome approach to establishing phylogenetic relatedness among different strains of SV40. It will be important in the future to develop a more complete catalog of SV40 variation in its natural monkey host, to determine if SV40 strains from different clades vary in biological or pathogenic properties, and to identify which SV40 strains are transmissible among humans.  相似文献   

18.
19.
T Vogel  Y Gluzman    N Kohn 《Journal of virology》1979,29(1):153-160
Three different groups of temperature-sensitive mutants of simian virus 40, isolated and characterized by Chou and Martin (J. Virol. 13:1101--1109, 1974), have been analyzed by using restriction endonucleases. Differences between the restriction endonuclease cleavage pattern of these mutants and that of the standard simian virus 40 strain have been mapped. These include the following observations: (i) tsD202 carries a defective HaeIII cleavage site at position 0.9 map units; (ii) tsB204 exhibits a defective HaIII site at position 0.21 and a defective HinIII site at 0.655 map units, and (iii) tsC219 carries a new HinIII site at position 0.15. We have isolated a few wild-type revertants from each of the temperature-sensitive mutant strains; each displays the endonuclease cleavage pattern of its parental temperature-sensitive strain.  相似文献   

20.
The Ad2+ND4 virus is an adenovirus type 2 (Ad2)-simian virus 40 (SV40) recombination. The Ad2 genome of this recombinant has a rearrangement within early region 3; Ad2 DNA sequences between map positions 81.3 and 85.5 have been deleted, and the SV40 DNA sequences between map positions 0.11 and 0.626 have been inserted into the deletion in an 81.3-0.626 orientation. Nonhybrid Ad2 is defective in monkey cells; however, the Ad2+ND4 virus can replicate in monkey cells due to the expression of the SV40-enhancing function encoded by the DNA insert. Stocks of the Ad2+ND4 hybrid were produced in primary monkey cells by using the progeny of a three-step plaque purification procedure and were considered to be homogeneous populations of Ad2+ND4 virions because they induced plaques in primary monkey cells by first-order kinetics. By studying the kinetics of plaque induction in continuous lines (BSC-1 and CV-1) of monkey cells, we have found that stocks (prepared with virions before and after plaque purification) of Ad2+ND4 are actually heterogeneous populations of Ad2+ND4 virions and Ad2+ND4 deletion variants that lack SV40 and frequently Ad2 DNA sequences at the left Ad2-SV40 junction. Due to the defectiveness of the Ad2+ND4 virus, the production of progeny in BSC-1 and CV-1 cells requires complementation between the Ad2+ND4 genome and the genome of an Ad2+ND4 deletion variant. Since the deletion variants that have been obtained from Ad2+ND4 stocks do not express the SV40-enhancing function in that they cannot produce progeny in monkey cells, we conclude that they are providing an Ad2 component that is essential for the production of Ad2+ND4 progeny. These data imply that the Ad2+ND4 virus is incapable of replicating in singly infected primary monkey cells without generating deletion variants that are missing various amounts of DNA around the left Ad2-SV40 junction in the hybrid genome. As the deletion variants that arise from the Ad2+ND4 virus are created by nonhomologous DNA recombination, the generation of deletion variants in monkey cells infected with Ad2+ND4 may be a useful model for studying this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号