首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
ATP synthase (FoF1) consists of F1 (ATP-driven motor) and Fo (H+-driven motor). F1 is a complex of 33 subunits, and is the rotating cam in 33. Thermophilic F1 (TF1) is exceptional in that it can be crystallized as a monomer and an 33 oligomer, and it is sufficiently stable to allow refolding and reassembly of hybrid complexes containing 1, 2, and 3 modified or . The nucleotide-dependent open–close conversion of conformation is an inherent property of an isolated and energy and signals are transferred through / interfaces. The catalytic and noncatalytic interfaces of both mitochondrial F1 (MF1) and TF1 were analyzed by an atom search within the limits of 0.40 nm across the interfaces. Seven (plus thermophilic loop in TF1) contact areas are located at both the catalytic and noncatalytic interfaces on the open form. The number of contact areas on closed increased to 11 and 9, respectively, in the catalytic and noncatalytic interfaces. The interfaces in the barrel domain are immobile. The torsional elastic strain applied through the mobile areas is concentrated in hinge residues and the P-loop in . The notion of elastic energy in FoF1 has been revised. X-ray crystallography of F1 is a static snap shot of one state and the elastic hypotheses are still inconsistent with the structure, dyamics, and kinetics of FoF1. The domain motion and elastic energy in FoF1 will be elucidated by time-resolved crystallography.  相似文献   

2.
Minimal photosynthetic catalytic F1() core complexes, containing equimolar ratios of the and subunits, were isolated from membrane-bound spinach chloroplast CF1 and Rhodospirillum rubrum chromatophore RrF1. A CF1-33 hexamer and RrF1-11 dimer, which were purified from the respective F1() complexes, exhibit lower rates and different properties from their parent F1-ATPases. Most interesting is their complete resistance to inhibition by the general F1 inhibitor azide and the specific CF1 inhibitor tentoxin. These inhibitors were earlier reported to inhibit multisite, but not unisite, catalysis in all sensitive F1-ATPases and were therefore suggested to block catalytic site cooperativity. The absence of this typical property of all F1-ATPases in the 11 dimer is consistant with the view that the dimer contains only a single catalytic site. The 33 hexamer contains however all F1 catalytic sites. Therefore the observation that CF1-33 can bind tentoxin and is stimulated by it suggests that the F1 subunit, which is required for obtaining inhibition by tentoxin as well as azide, plays an important role in the cooperative interactions between the F1-catalytic sites.Abbreviations CF0F1 chloroplast F0F1 - CF1 chloroplast F1 - CF1 chloroplast F1 subunit - CF1 chloroplast F1 subunit - CF1() a complex containing equal amounts of the CF1 and subunits - MF1 mitochondrial F1 - RrF0F1 Rhodospirillum rubrum F0F1 - RrF1 R. rubrum F1 - RrF1 R. rubrum F1 subunit - RrF1 R. rubrum F1 subunit - RrF1() a complex containing equal amounts of the RrF1 and subunits - Rubisco Ribulose-1,5-bisphosphate carboxylase - TF1 thermophilic bacterium PS3 F1  相似文献   

3.
Most neurons co-express two catalytic isoforms of Na,K-ATPase, the ubiquitous α1, and the more selectively expressed α3. Although neurological syndromes are associated with α3 mutations, the specific role of this isoform is not completely understood. Here, we used electrophysiological and Na+ imaging techniques to study the role of α3 in central nervous system neurons expressing both isoforms. Under basal conditions, selective inhibition of α3 using a low concentration of the cardiac glycoside, ouabain, resulted in a modest increase in intracellular Na+ concentration ([Na+]i) accompanied by membrane potential depolarization. When neurons were challenged with a large rapid increase in [Na+]i, similar to what could be expected following suprathreshold neuronal activity, selective inhibition of α3 almost completely abolished the capacity to restore [Na+]i in soma and dendrite. Recordings of Na,K-ATPase specific current supported the notion that when [Na+]i is elevated in the neuron, α3 is the predominant isoform responsible for rapid extrusion of Na+. Low concentrations of ouabain were also found to disrupt cortical network oscillations, providing further support for the importance of α3 function in the central nervous system. The α isoforms express a well conserved protein kinase A consensus site, which is structurally associated with an Na+ binding site. Following activation of protein kinase A, both the α3-dependent current and restoration of dendritic [Na+]i were significantly attenuated, indicating that α3 is a target for phosphorylation and may participate in short term regulation of neuronal function.  相似文献   

4.
Anosmin is an extracellular matrix protein, and genetic defects in anosmin result in human Kallmann syndrome. It functions in neural crest formation, cell adhesion, and neuronal migration. Anosmin consists of multiple domains, and it has been reported to bind heparan sulfate, FGF receptor, and UPA. In this study, we establish cell adhesion/spreading assays for anosmin and use them for antibody inhibition analyses to search for an integrin adhesion receptor. We find that α5β1, α4β1, and α9β1 integrins are needed for effective adhesive receptor function in cell adhesion and cell spreading on anosmin; adhesion is inhibited by both RGD and α4β1 CS1-based peptides. This identification of anosmin-integrin adhesion receptors should facilitate studies of anosmin function in cell and developmental biology.  相似文献   

5.
《Life sciences》1993,53(12):PL177-PL181
In membranes prepared from rabbit liver, competition with [3H] prazosin by different α1-agonists and antagonists revealed different affinities in comparison to the results obtained on rat liver membranes, and showed a good correlation with the affinity of the same compounds for the cloned α1c-adrenoceptor subtype. The potencies observed on rat liver membranes were well correlated with the affinity observed for the cloned α1b-adrenoceptors. These results confirm that rabbit and rat liver membranes preparations can be utilized to evaluate the affinity of compounds for these α1-adrenergic subtypes.  相似文献   

6.
The interaction between duodenase, a newly recognized serine proteinase belonging to the small group of Janusfaced proteinases, and 1-proteinase inhibitor (1-PI) from human serum was investigated. The stoichiometry of the inhibition was 1.2 mol/mol. The presence of a stable enzyme–inhibitor complex was shown by SDS-PAGE. The mechanism of interaction between duodenase and 1-PI was shown to be of the suicide type. The equilibrium and inhibition constants are 13 ± 3 nM and (1.9 ± 0.3)·105 M–1·sec–1, respectively. Based on the association rate constant of the enzyme–inhibitor complex and localization of duodenase and 1-PI in identical compartments, 1-PI is suggested to be a duodenase inhibitor in vivo.  相似文献   

7.
Electron microscopy together with image analysis has been used to study the structure of theintact F1F0-ATPsynthase from Escherichia coli. A procedure has been developed which allowspreparation of detergent-free enzyme. Aside from the well known two-domain structure, imagesof F1F0 prepared by this procedure show a number of additional features, including a secondstalk, which can be seen extending all the way from the F0 to the top of the F1 in some images,and a small protein on the very top of the F1, which has been identified as the subunit bydecoration with a monoclonal antibody. In light of these results, a refined model of the subunitarrangement of the complex is presented.  相似文献   

8.
The N-terminal domains VI plus V (62 kDa) and V alone (43 kDa) of the laminin α1 chain were obtained as recombinant products and shown to be folded into a native form by electron microscopy and immunological assays. Domain VI alone, which corresponds to an LN module, did not represent an autonomously folding unit in mammalian cells, however. Fragment α1VI/V, but not fragment α1V, bound to purified α1β1 and α2β1 integrins, to heparin, and to heparan sulfate-substituted domains I and V of perlecan. This localized the binding activities to the LN module, which contains two basic sequences suitable for heparin interactions.  相似文献   

9.
Mena is an Ena/VASP family actin regulator with roles in cell migration, chemotaxis, cell-cell adhesion, tumor cell invasion, and metastasis. Although enriched in focal adhesions, Mena has no established function within these structures. We find that Mena forms an adhesion-regulated complex with α5β1 integrin, a fibronectin receptor involved in cell adhesion, motility, fibronectin fibrillogenesis, signaling, and growth factor receptor trafficking. Mena bound directly to the carboxy-terminal portion of the α5 cytoplasmic tail via a 91-residue region containing 13 five-residue "LERER" repeats. In fibroblasts, the Mena-α5 complex was required for "outside-in" α5β1 functions, including normal phosphorylation of FAK and paxillin and formation of fibrillar adhesions. It also supported fibrillogenesis and cell spreading and controlled cell migration speed. Thus, fibroblasts require Mena for multiple α5β1-dependent processes involving bidirectional interactions between the extracellular matrix and cytoplasmic focal adhesion proteins.  相似文献   

10.
αS-Casein, the major milk protein, comprises αS1- and αS2-casein and acts as a molecular chaperone, stabilizing an array of stressed target proteins against precipitation. Here, we report that αS-casein acts in a similar manner to the unrelated small heat-shock proteins (sHsps) and clusterin in that it does not preserve the activity of stressed target enzymes. However, in contrast to sHsps and clusterin, α-casein does not bind target proteins in a state that facilitates refolding by Hsp70. αS-Casein was also separated into α- and α-casein, and the chaperone abilities of each of these proteins were assessed with amorphously aggregating and fibril-forming target proteins. Under reduction stress, all α-casein species exhibited similar chaperone ability, whereas under heat stress, α-casein was a poorer chaperone. Conversely, αS2-casein was less effective at preventing fibril formation by modified κ-casein, whereas α- and αS1-casein were comparably potent inhibitors. In the presence of added salt and heat stress, αS1-, α- and αS-casein were all significantly less effective. We conclude that αS1- and α-casein stabilise each other to facilitate optimal chaperone activity of αS-casein. This work highlights the interdependency of casein proteins for their structural stability.  相似文献   

11.
CLP36 is a member of the ALP/Enigma protein family and has been shown to be localized to stress fibers in various cells. We previously reported that depletion of CLP36 caused loss of stress fibers in BeWo choriocarcinoma cells, but it remains unclear how CLP36 contributes to stress fiber formation. In this study, we generated CLP36-depleted F2408 fibroblasts and found that stress fibers showed abnormal non-oriented organization in these cells. In addition to CLP36, F2408 cells contained RIL, another ALP/Enigma protein, and we demonstrated that RIL could compensate for the role of CLP36 in stress fiber formation. CLP36 and RIL form a complex with α-actinin-1 and palladin. We found a strong correlation between loss of CLP36/RIL and failure of α-actinin-1 or palladin to localize on stress fibers. In addition, time lapse observation revealed that incorporation of RIL stabilizes stress fibers and that CLP36 influences the dynamic architecture of these fibers. Our findings indicate that CLP36 and RIL have a redundant role in the formation of stress fibers, but have different effects on stress fiber dynamics in F2408 cells.  相似文献   

12.
13.
14.
15.
The garden chrysanthemum (Chrysanthemum × morifolium) variety ??Aoyunhuoju?? (2n = 6x = 54) was crossed as female with Ajania pacifica (2n = 10x = 90) to produce intergeneric F1 hybrids, which were used both as the source of F2 generation and as the parent for a first back-cross with ??Aoyunhuoju??. The morphology of all of the F1 hybrids and hybrid derivatives was intermediate with respect to the two parents, although the BC1 progenies resembled ??Aoyunhuoju?? more closely than any of the F1 and F2 progenies did. In the F1 generation, the density of silvery hairs on the lower leaf surface and along the margin of the leaf was lower than in A. pacifica, while that in the BC1 generation, this trait was less prominent than in the F1. The somatic chromosome number of the F1, F2 (with an exception of F2-6 of a mainly 63) and BC1 generations was 2n = 8x = 72, 2n = 8x = 72 and 2n = 7x = 63 respectively, as expected. The hybrids and their derivatives retained a variable degree of fertility. There was a low frequency of meiotic chromosome pairing failure in all three hybrid generations, with most of the chromosomes involved as bivalents. Some BC1 individuals show potential for commercialization thanks both to their flower shape and the inheritance of the silvery leaf trait from A. pacifica.  相似文献   

16.
Gap junctions are composed of connexins that form transmembrane channels between adjacent cells. The C-terminal tail of connexin-43 (Cx43), the most widely expressed connexin member, has been implicated in the regulation of Cx43 channel gating. Interestingly, channel-independent processes regulated by Cx43 have also been postulated. In our studies to elucidate the mechanism of Cx43 channel gating by growth factors and to explore additional functions of gap junctions, we have identified three interacting partners of the C-terminal tail of Cx43 (Cx43CT). (i) the c-Src tyrosine kinase, which phosphorylates Cx43CT and is involved in G protein-mediated inhibition of Cx43 gap junctional communication, (ii) the ZO-1 ‘scaffold’ protein, which might recruit signaling proteins into Cx43-based gap junctions. (iii) microtubules (consisting of α/β-tubulin dimers), which extend with their distal ends to Cx43-based gap junctions, suggesting that Cx43 gap junctions may play a novel role in regulating microtubule stability in contacted cells. Here we show that Cx43 binds α-tubulin equally well as β-tubulin. In addition, we show that the second, but not the first, PDZ domain of ZO-1 binds directly to Cx43, and we confirm that the very C-terminal isoleucine residue of Cx43 is critical for ZO-1 binding.  相似文献   

17.
Conjugates of αs1-,κ-caseins and αs1-,κ-casein complex were prepared with dimethylaminonaphthalenesulfonate and pyrenebutyrate. Their fluorescence lifetimes and the rotational relaxation times were measured by single photon counting technique and fluorescence depolarization technique, respectively. Both dimethylaminonaphthalenesulfonate and pyrenebutyrate conjugates had more than two lifetimes and the longer lifetime of pyrenebutyrate conjugates was near 140 nsec.

The rotational relaxation time of pyrenebutyrate αs1-,κ-casein complex was smaller than that of pyrenebutyrate κ-casein polymer, which suggested that the complex formation of αs1- and κ-casein polymers led to dissociation of the κ-casein polymer.

Changes of the rotational relaxation time as a function of weight ratio of αs1- and κ-casein polymers (αs1/κ) showed the specific variation and it was suggested that 4 moles of αs1-κ-casein complex were formed from one mole of κ-casein polymer.  相似文献   

18.
19.
Aims: This study focused on the cloning, expression and characterization of recombinant α‐l ‐arabinosidases from Bifidobacterium longum H‐1. Methods and Results: α‐l ‐Arabinofuranosidase (AfuB‐H1) and bifunctional α‐l ‐arabinopyranosidase/β‐d ‐galactosidase (Apy‐H1) from B. longum H‐1 were identified by Southern blotting, and their recombinant enzymes were overexpressed in Escherichia coli BL21 (DE3). Recombinant AfuB‐H1 (rAfuB‐H1) was purified by single‐step Ni2+‐affinity column chromatography, whereas recombinant Apy‐H1 (rApy‐H1) was purified by serial Q‐HP and Ni2+‐affinity column chromatography. Enzymatic properties and substrate specificities of the two enzymes were assessed, and their kinetic constants were calculated. According to the results, rAfuB‐H1 hydrolysed p‐nitrophenyl‐α‐l ‐arabinofuranoside (pNP‐αL‐Af) and ginsenoside Rc, but did not hydrolyse p‐nitrophenyl‐α‐l ‐arabinopyranoside (pNP‐αL‐Ap). On the other hand, rApy‐H1 hydrolysed pNP‐αL‐Ap, p‐nitrophenyl‐β‐d ‐galactopyranoside (pNP‐βD‐Ga) and ginsenoside Rb2. Conclusions: Ginsenoside‐metabolizing bifidobacterial rAfuB‐H1 and rApy‐H1 were successfully cloned, expressed, and characterized. rAfuB‐H1 specifically recognized the α‐l ‐arabinofuranoside, whereas rApy‐H1 had dual functions, that is, it could hydrolyse both β‐d ‐galactopyranoside and α‐l ‐arabinopyranoside. Significance and Impact of the Study: These findings suggest that the biochemical properties and substrate specificities of these recombinant enzymes differ from those of previously identified α‐l ‐arabinosidases from Bifidobacterium breve K‐110 and Clostridium cellulovorans.  相似文献   

20.
Abstract

The multi‐functional protein gC1qR has been reported to interact with an arginine‐rich motif in the C‐tail of hamster α1B‐adrenoceptors (ARs), controlling their expression and subcellular localization. Since a similar motif is present in α1D‐, but not α1A‐ARs, we studied the specificity of this interaction. Human α1‐ARs, tagged at their amino termini with Flag epitopes, were coexpressed in HEK293 cells with gC1qR containing a hemaglutinin (HA) tag at its carboxy terminus. Immunoprecipitation studies showed that Flag‐α1B‐ or α1D‐, but not α1A‐ARs, caused coimmunoprecipitation of HA‐gC1qR, while immunoprecipitation of HA‐gC1qR caused coimmunoprecipitation of Flag‐α1B‐ or α1D‐, but not α1A‐ARs, supporting specific interactions between subtypes. C‐terminal truncation of Flag‐α1‐ARs prevented interaction with HA‐gC1qR, supporting previous conclusions about the role of the C‐terminal arginine‐rich motif. These studies suggest that gC1qR interacts specifically with α1B‐ and α1D‐, but not α1A‐ARs, and this interaction depends on the presence of an intact C‐tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号