首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In order to construct a chicken (Gallus gallus) cytogenetic map, we isolated 134 genomic DNA clones as new cytogenetic markers from a chicken cosmid DNA library, and mapped these clones to chicken chromosomes by fluorescence in situ hybridization. Forty-five and 89 out of 134 clones were localized to macrochromosomes and microchromosomes, respectively. The 45 clones, which localized to chicken macrochromosomes (Chromosomes 1-8 and the Z chromosome) were used for comparative mapping of Japanese quail (Coturnix japonica). The chromosome locations of the DNA clones and their gene orders in Japanese quail were quite similar to those of chicken, while Japanese quail differed from chicken in chromosomes 1, 2, 4 and 8. We specified the breakpoints of pericentric inversions in chromosomes 1 and 2 by adding mapping data of 13 functional genes using chicken cDNA clones. The presence of a pericentric inversion was also confirmed in chromosome 8. We speculate that more than two rearrangements are contained in the centromeric region of chromosome 4. All 30 clones that mapped to chicken microchromosomes also localized to Japanese quail microchromosomes, suggesting that chromosome homology is highly conserved between chicken and Japanese quail and that few chromosome rearrangements occurred in the evolution of the two species.  相似文献   

2.
A new family of centromeric highly repetitive DNA sequences was isolated from EcoRI-digested genomic DNA of the blue-breasted quail (Coturnix chinensis, Galliformes), and characterized by filter hybridization and chromosome in situ hybridization. The repeated elements were divided into two types by nucleotide length and chromosomal distribution; the 578-bp element predominantly localized to microchromosomes and the 1,524-bp element localized to chromosomes 1 and 2. The 578-bp element represented tandem arrays and did not hybridize to genomic DNAs of other Galliformes species, chicken (Gallus gallus), Japanese quail (Coturnix japonica) and guinea fowl (Numida meleagris). On the other hand, the 1,524-bp element was not organized in tandem arrays, and did hybridize to the genomic DNAs of three other Galliformes species, suggesting that the 1,524-bp element is highly conserved in the Galliformes. The 578-bp element was composed of basic 20-bp internal repeats, and the consensus nucleotide sequence of the internal repeats had homologies to the 41-42 bp CNM repeat and the XHOI family repeat of chicken. Our data suggest that the microchromosome-specific highly repetitive sequences of the blue-breasted quail and chicken were derived from a common ancestral sequence, and that they are one of the major and essential components of chromosomal heterochromatin in Galliformes species.  相似文献   

3.
Using direct R-banding fluorescence in situ hybridization, we assigned five functional genes-growth hormone receptor (GHR), prolactin receptor (PRLR), spleen tyrosine kinase (SYK), aldolase B (ALDOB), and muscle skeletal receptor tyrosine kinase (MUSK)-to the chicken Z chromosome. SYK and MUSK were newly localized to the chicken Z chromosome in this study. GHR and PRLR were situated close to each other on the short arm of the chicken Z chromosome, as are their counterparts on human chromosome 5. SYK, MUSK, and ALDOB, which have been mapped to human chromosome 9, were localized to the long arm of the chicken Z chromosome. Thus, the present results indicate the presence of conserved synteny between the chicken Z chromosome and human chromosomes 5 and 9. Using the same method, four of the genes (GHR, PRLR, ALDOB, and MUSK) were assigned to the Japanese quail Z chromosome. The locations of these four Z-linked genes were conserved between chicken and Japanese quail. The results support the notion that the avian Z chromosome and the mammalian X chromosome did not evolve from a common ancestral linkage group.  相似文献   

4.
We conducted comparative chromosome painting and chromosome mapping with chicken DNA probes against the blue-breasted quail (Coturnix chinensis, CCH) and California quail (Callipepla californica, CCA), which are classified into the Old World quail and the New World quail, respectively. Each chicken probe of chromosomes 1-9 and Z painted a pair of chromosomes in the blue-breasted quail. In California quail, chicken chromosome 2 probe painted chromosomes 3 and 6, and chicken chromosome 4 probe painted chromosomes 4 and a pair of microchromosomes. Comparison of the cytogenetic maps of the two quail species with those of chicken and Japanese quail revealed that there are several intrachromosomal rearrangements, pericentric and/or paracentric inversions, in chromosomes 1, 2 and 4 between chicken and the Old World quail. In addition, a pericentric inversion was found in chromosome 8 between chicken and the three quail species. Ordering of the Z-linked DNA clones revealed the presence of multiple rearrangements in the Z chromosomes of the three quail species. Comparing these results with the molecular phylogeny of Galliformes species, it was also cytogenetically supported that the New World quail is classified into a different clade from the lineage containing chicken and the Old World quail.  相似文献   

5.
Sex chromosomes of birds and mammals are highly differentiated and share several cytological features. However, comparative gene mapping reveals extensive conserved synteny between the chicken Z sex chromosome and human chromosome 9 but not the human X sex chromosome, implying an independent origin of avian and mammalian sex chromosomes. To better understand the evolution of the avian Z chromosome we analysed the synteny of chicken Z-linked genes in zebrafish, which is the best-mapped teleost genome so far. Existing zebrafish maps do not support the existence of an ancestral Z linkage group in the zebrafish genome, whereas mammalian X-linked genes show at least some degree of synteny conservation. This is consistent with in situ hybridisation mapping data in the freshwater pufferfish, Tetraodon nigroviridis where mammalian X-linked genes show a much higher degree of conserved synteny than human chromosome 9 or the avian Z chromosome. Collectively, these data argue in favour of a more recent evolution of the avian Z chromosome, compared with the mammalian X.  相似文献   

6.
Chromosome-specific paints from macrochromosomes 1-9 and Z of the chicken were hybridised to metaphases of the red-legged partridge and revealed no inter-chromosomal rearrangements. The results from chromosome painting are similar to previous studies on the Japanese quail but different from findings in guinea fowl and several species of pheasant. The difference in centromere position in chicken and partridge chromosome 4, previously assumed to be the result of an inversion, was confirmed. However, FISH mapping of BAC clones from chicken chromosome 4 revealed that the order of loci was the same in both species, indicating the occurrence of a neocentromere during divergence.  相似文献   

7.
K. M. Devos  S. Chao  Q. Y. Li  M. C. Simonetti    M. D. Gale 《Genetics》1994,138(4):1287-1292
Comparison of the genetic map of maize chromosome 9 with maps of wheat chromosomes has revealed a high degree of colinearity between maize chromosome 9 and the group 4 and 7 chromosomes of wheat. The order of DNA markers on the short arm and a proximal region of the long arm of the genetic map of maize chromosome 9 is highly conserved with the marker order on the short arm and proximal region of the long arm of the genetic maps of the wheat homeologous group 7 chromosomes. A major part of the long arm of the genetic map of maize chromosome 9 is homeologous with a short segment in the proximal region of the long arm of the genetic map of the wheat group 4 chromosomes. Evidence is also presented that maize chromosome 9 has diverged from the wheat group 7 chromosomes by both a pericentric and a paracentric inversion. The paracentric inversion is probably unique to maize among the major cereal genomes.  相似文献   

8.
Using direct R-banding fluorescence in situ hybridization, we determined the location of 31 functional genes on chicken chromosomes. Replication R-banded chromosomes were obtained by synchronizing splenocyte cultures with excessive thymidine, followed by BrdU treatment. Thirty-one functional genes were directly localized to banded chicken chromosomes using genomic DNA and cDNA fragments as probes. The possibility of conserved linkage homology between chicken and human chromosomes was demonstrated for seven chicken chromosome regions (1p, 1q, 2q, 4p, 4q, and 5q).  相似文献   

9.
The California condor is the largest flying bird in North America and belongs to a group of New World vultures. Recovering from a near fatal population decline, and currently with only 197 extant individuals, the species remains listed as endangered. Very little genetic information exists for this species, although sexing methods employing chromosome analysis or W-chromosome specific amplification is routinely applied for the management of this monomorphic species. Keeping in mind that genetic conditions like chondrodystrophy have been identified, preliminary steps were undertaken in this study to understand the genome organization of the condor. This included an extensive cytogenetic analysis that provided (i) a chromosome number of 80 (with a likelihood of an extra pair of microchromosomes), and (ii) information on the centromeres, telomeres and nucleolus organizer regions. Further, a comparison between condor and chicken macrochromosomes was obtained by using individual chicken chromosome specific paints 1-9 and Z and W on condor metaphase spreads. Except for chromosomes 4 and Z, each of the chicken (GGA) macrochromosomes painted a single condor (GCA) macrochromosome. GGA4 paint detected complete homology with two condor chromosomes, viz., GCA4 and GCA9 providing additional proof that the latter are ancestral chromosomes in the birds. The chicken Z chromosome showed correspondence with both Z and W in the condor. The homology suggests that the condor sex chromosomes have not completely differentiated during evolution, which is unlike the majority of the non-ratites studied up till now. Overall, the study provides detailed cytogenetic and basic comparative information on condor chromosomes. These findings significantly advance the effort to study the chondrodystrophy that is responsible for over ten percent mortality in the condor.  相似文献   

10.
The sand lizard (Lacerta agilis, Lacertidae) has a chromosome number of 2n?=?38, with 17 pairs of acrocentric chromosomes, one pair of microchromosomes, a large acrocentric Z chromosome, and a micro-W chromosome. To investigate the process of karyotype evolution in L. agilis, we performed chromosome banding and fluorescent in situ hybridization for gene mapping and constructed a cytogenetic map with 86 functional genes. Chromosome banding revealed that the Z chromosome is the fifth largest chromosome. The cytogenetic map revealed homology of the L. agilis Z chromosome with chicken chromosomes 6 and 9. Comparison of the L. agilis cytogenetic map with those of four Toxicofera species with many microchromosomes (Elaphe quadrivirgata, Varanus salvator macromaculatus, Leiolepis reevesii rubritaeniata, and Anolis carolinensis) showed highly conserved linkage homology of L. agilis chromosomes (LAG) 1, 2, 3, 4, 5(Z), 7, 8, 9, and 10 with macrochromosomes and/or macrochromosome segments of the four Toxicofera species. Most of the genes located on the microchromosomes of Toxicofera were localized to LAG6, small acrocentric chromosomes (LAG11–18), and a microchromosome (LAG19) in L. agilis. These results suggest that the L. agilis karyotype resulted from frequent fusions of microchromosomes, which occurred in the ancestral karyotype of Toxicofera and led to the disappearance of microchromosomes and the appearance of many small macrochromosomes.  相似文献   

11.
Karyotypes of chicken (Gallus gallus domesticus; 2n = 78) and mallard duck (Anas platyrhynchos; 2n = 80) share the typical organization of avian karyotypes including a few macrochromosome pairs, numerous indistinguishable microchromosomes, and Z and W sex chromosomes. Previous banding studies revealed great similarities between chickens and ducks, but it was not possible to use comparative banding for the microchromosomes. In order to establish precise chromosome correspondences between these two species, particularly for microchromosomes, we hybridized 57 BAC clones previously assigned to the chicken genome to duck metaphase spreads. Although most of the clones showed similar localizations, we found a few intrachromosomal rearrangements of the macrochromosomes and an additional microchromosome pair in ducks. BAC clones specific for chicken microchromosomes were localized to separate duck microchromosomes and clones mapping to the same chicken microchromosome hybridized to the same duck microchromosome, demonstrating a high conservation of synteny. These results demonstrate that the evolution of karyotypes in avian species is the result of fusion and/or fission processes and not translocations.  相似文献   

12.
Recent progress of chicken genome projects has revealed that bird ZW and mammalian XY sex chromosomes were derived from different autosomal pairs of the common ancestor; however, the evolutionary relationship between bird and reptilian sex chromosomes is still unclear. The Chinese soft-shelled turtle (Pelodiscus sinensis) exhibits genetic sex determination, but no distinguishable (heteromorphic) sex chromosomes have been identified. In order to investigate this further, we performed molecular cytogenetic analyses of this species, and thereby identified ZZ/ZW-type micro-sex chromosomes. In addition, we cloned reptile homologues of chicken Z-linked genes from three reptilian species, the Chinese soft-shelled turtle and the Japanese four-striped rat snake (Elaphe quadrivirgata), which have heteromorphic sex chromosomes, and the Siam crocodile (Crocodylus siamensis), which exhibits temperature-dependent sex determination and lacks sex chromosomes. We then mapped them to chromosomes of each species using FISH. The linkage of the genes has been highly conserved in all species: the chicken Z chromosome corresponded to the turtle chromosome 6q, snake chromosome 2p and crocodile chromosome 3. The order of the genes was identical among the three species. The absence of homology between the bird Z chromosome and the snake and turtle Z sex chromosomes suggests that the origin of the sex chromosomes and the causative genes of sex determination are different between birds and reptiles.  相似文献   

13.
Giant lampbrush chromosomes, which are characteristic of the diplotene stage of prophase I during avian oogenesis, represent a very promising system for precise physical gene mapping. We applied 35 chicken BAC and 4 PAC clones to both mitotic metaphase chromosomes and meiotic lampbrush chromosomes of chicken (Gallus gallus domesticus) and Japanese quail (Coturnix coturnix japonica). Fluorescence in situ hybridization (FISH) mapping on lampbrush chromosomes allowed us to distinguish closely located probes and revealed gene order more precisely. Our data extended the data earlier obtained using FISH to chicken and quail metaphase chromosomes 1–6 and Z. Extremely low levels of inter- and intra-chromosomal rearrangements in the chicken and Japanese quail were demonstrated again. Moreover, we did not confirm the presence of a pericentric inversion in Japanese quail chromosome 4 as compared to chicken chromosome 4. Twelve BAC clones specific for chicken chromosome 4p and 4q showed the same order in quail as in chicken when FISH was performed on lampbrush chromosomes. The centromeres of chicken and quail chromosomes 4 seem to have formed independently after centric fusion of ancestral chromosome 4 and a microchromosome.  相似文献   

14.
The molecular characterization of maize B chromosome specific AFLPs   总被引:9,自引:0,他引:9  
Qi ZX  Zeng H  Li XL  Chen CB  Song WQ  Chen RY 《Cell research》2002,12(1):63-68
INTRODUCTIONB chromosomes (Bs) are also called supernumer-ary chromosomes, accessory chromosomes or extrachromosomes. They are supernumerary to the stan-dard chromosome (A chromosomes) set, which arefound in hundreds of plants and animals. They areoften morphologicaIly distinct from A chromosomes,being sma1ler and more highly heterochromatic inmost cases. B chromosomes are inherited in a non-Mendelian wap They dO not pair with A chromo-somes, and exhibite meiotic and mitotic instabiIit…  相似文献   

15.
To define the process of karyotypic evolution in the Galliformes on a molecular basis, we conducted genome-wide comparative chromosome painting for eight species, i.e. silver pheasant (Lophura nycthemera), Lady Amherst's pheasant (Chrysolophus amherstiae), ring-necked pheasant (Phasianus colchicus), turkey (Meleagris gallopavo), Western capercaillie (Tetrao urogallus), Chinese bamboo-partridge (Bambusicola thoracica) and common peafowl (Pavo cristatus) of the Phasianidae, and plain chachalaca (Ortalis vetula) of the Cracidae, with chicken DNA probes of chromosomes 1-9 and Z. Including our previous data from five other species, chicken (Gallus gallus), Japanese quail (Coturnix japonica) and blue-breasted quail (Coturnix chinensis) of the Phasianidae, guinea fowl (Numida meleagris) of the Numididae and California quail (Callipepla californica) of the Odontophoridae, we represented the evolutionary changes of karyotypes in the 13 species of the Galliformes. In addition, we compared the cytogenetic data with the molecular phylogeny of the 13 species constructed with the nucleotide sequences of the mitochondrial cytochrome b gene, and discussed the process of karyotypic evolution in the Galliformes. Comparative chromosome painting confirmed the previous data on chromosome rearrangements obtained by G-banding analysis, and identified several novel chromosome rearrangements. The process of the evolutionary changes of macrochromosomes in the 13 species was in good accordance with the molecular phylogeny, and the ancestral karyotype of the Galliformes is represented.  相似文献   

16.
Conserved genome homologies between the chicken and partridge have been demonstrated for chromosomes 1 and Z in previous studies. Morphological differences between the chicken and partridge for chromosome 4 have also been identified. The chicken chromosome 4 is submetacentric while the partridge chromosome 4 is acrocentric. We now report that in spite of this morphological difference, both species share extensive homology for chromosome 4 as determined by fluorescent in situ hybridization (FISH). Since only two chromosomes of the partridge karyotype showed FISH signals, our observation suggests that a chromosome rearrangement (peri- or paracentric inversion) has occurred in the partridge chromosome 4.  相似文献   

17.
Chromosome locations of the eight SOX family genes, SOX1, SOX2, SOX3, SOX5, SOX9, SOX10, SOX14 and SOX21, were determined in the chicken by fluorescence in situ hybridization. The SOX1 and SOX21 genes were localized to chicken chromosome 1q3.1-->q3.2, SOX5 to chromosome 1p1.6-->p1.4, SOX10 to chromosome 1p1.6, and SOX3 to chromosome 4p1.2-->p1.1. The SOX2 and SOX14 genes were shown to be linked to chromosome 9 using two-colored FISH and chromosome painting, and the SOX9 gene was assigned to a pair of microchromosomes. These results suggest that these SOX genes form at least three clusters on chicken chromosomes. The seven SOX genes, SOX1, SOX2, SOX3, SOX5, SOX10, SOX14 and SOX21 were localized to chromosome segments with homologies to human chromosomes, indicating that the chromosome locations of SOX family genes are highly conserved between chicken and human.  相似文献   

18.
Comparative Genome Map of Human and Cattle   总被引:2,自引:0,他引:2  
Chromosomal homologies between individual human chromosomes and the bovine karyotype have been established by using a new approach termed Zoo-FISH. Labeled DNA libraries from flow-sorted human chromosomes were used as probes for fluorescence in situ hybridization on cattle chromosomes. All human DNA libraries, except the Y chromosome library, hybridized to one or more cattle chromosomes, identifying and delineating 50 segments of homology, most of them corresponding to the regions of homology as identified by the previous mapping of individual conserved loci. However, Zoo-FISH refines the comparative maps constructed by molecular gene mapping of individual loci by providing information on the boundaries of conserved regions in the absence of obvious cytogenetic homologies of human and bovine chromosomes. It allows study of karyotypic evolution and opens new avenues for genomic analysis by facilitating the extrapolation of results from the human genome initiative.  相似文献   

19.
To study pseudoautosomal and bordering regions in the avian Z and W chromosomes, we used seven BAC clones from genomic libraries as DNA probes of fragments of different gametologs of the ATP5A1 gene located close to the proximal border of the pseudoautosomal region (PAR) of sex chromosomes of domestic chicken and Japanese quail. Localization of BAC clones TAM31-b100C09, TAM31-b99N01, TAM31-b27P16, and TAM31-b95L18 in the short arm of Z chromosomes of domestic chicken and Japanese quail (region Zp23-p22) and localization of the BAC clones CHORI-261-CH46G16, CHORI-261-CH33F10, and CHORI-261-CH64F22 on W chromosomes of these species and in the short arm of Z chromosomes (region Zp23-p22) were determined by fluorescence in situ hybridization with the use of W-specific probes. The difference in the localization of the BAC clones on the Z and W chromosomes is probably explained by divergence of the nucleotide sequences of different sex chromosomes located beyond the pseudoautosomal region.  相似文献   

20.
A chicken Z-linked BAC probe containing the aldolase B gene was used for fluorescence in-situ hybridization (FISH) mapping in four different avian species. The biotinylated BAC clone showed distinct unique hybridization sites on the structurally different Z chromosomes. This result, together with previous data, lends credence to the notion that, despite undergoing structural rearrangements, the gene content of the avian Z chromosome remained conserved during evolution. Our study also demonstrates the feasibility of using large genomic clones for comparative mapping of Z-linked genes in birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号