首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
2.
S Mader  J Y Chen  Z Chen  J White  P Chambon    H Gronemeyer 《The EMBO journal》1993,12(13):5029-5041
We show here that, in addition to generating an increase in DNA binding efficiency, heterodimerization of retinoid X receptor (RXR) with either retinoic acid receptor (RAR) or thyroid hormone receptor (TR) alters the binding site repertoires of RAR, RXR and TR homodimers. The binding site specificities of both homo- and heterodimers appear to be largely determined by their DNA binding domains (DBDs), and are dictated by (i) homocooperative DNA binding of the RXR DBD, (ii) heterocooperative DNA binding of RXR/RAR and RXR/TR DBDs, and (iii) steric hindrance. No homodimerization domain exists in the DBDs of TR and RAR. The dimerization function which is located in the ligand binding domain further stabilizes, but in general does not change, the repertoire dictated by the corresponding DBD(s). The binding repertoire can be further modified by the actual sequence of the binding site. We also provide evidence supporting the view that the cooperative binding of the RXR/RAR and RXR/TR DBDs to directly repeated elements is anisotropic, with interactions between the dimerization interfaces occurring only with RXR bound to the 5' located motif. This polarity, which appears to be maintained in the full-length receptor heterodimers, may constitute a novel parameter in promoter-specific transactivation.  相似文献   

3.
4.
5.
6.
Binding of retinoic acid (RA) to specific RA receptors alpha and beta (RAR alpha and RAR beta) was studied. Receptors were obtained in two ways: (1) full-length receptors were produced by transient expression of the respective human cDNAs in COS 1 cells; and (2) the ligand-binding domains of RAR alpha and RAR beta were produced in Escherichia coli. RA binding to the wild-type and truncated forms of the receptor was identical for both RAR alpha and RAR beta, indicating that the ligand-binding domains have retained the binding characteristics of the intact receptors. Furthermore, RA bound with the same affinity to both RAR alpha and RAR beta. Only retinoid analogues with an acidic end-group were able to actively bind to both receptors. On measuring the binding of various retinoids, we have found that the properties of the ligand-binding sites of RAR alpha and RAR beta were rather similar. Two retinoid analogues were capable of binding preferentially to either RAR alpha or RAR beta, suggesting that it may be possible to synthesize specific ligands for RAR alpha and RAR beta.  相似文献   

7.
8.
Panguluri SK  Kumar P  Palli SR 《The FEBS journal》2006,273(24):5550-5563
Regulated expression of transgene is essential in basic research as well as for many therapeutic applications. The main purpose of the present study is to understand the functioning of the ecdysone receptor (EcR)-based gene switch in mammalian cells and to develop improved versions of EcR gene switches. We utilized EcR mutants to develop new EcR gene switches that showed higher ligand sensitivity and higher magnitude of induction of reporter gene expression in the presence of ligand. We also developed monopartite versions of EcR gene switches with reduced size of the components that are accommodated into viral vectors. Ligand binding assays revealed that EcR alone could not bind to the nonsteroidal ligand, RH-2485. The EcR's heterodimeric partner, ultraspiracle, is required for efficient binding of EcR to the ligand. The essential role of retinoid X receptor (RXR) or its insect homolog, ultraspiracle, in EcR function is shown by RXR knockdown experiments using RNAi. Chromatin immunoprecipitation assays demonstrated that VP16 (activation domain, AD):GAL4(DNA binding domain, DBD):EcR(ligand binding domain, LBD) or GAL4(DBD):EcR(LBD) fusion proteins can bind to GAL4 response elements in the absence of ligand. The VP16(AD) fusion protein of a chimera between human and locust RXR could heterodimerize with GAL4(DBD):EcR(LBD) in the absence of ligand but the VP16(AD) fusion protein of Homo sapiens RXR requires ligand for its heterodimerization with GAL4(DBD):EcR(LBD).  相似文献   

9.
Retinoic acid receptors (RARs) belong to the nuclear receptor superfamily. The mechanism of ligand-dependent activation of RARs is well known. The effect of protein phosphorylation on the activity of RARs has also been demonstrated. However, it is unclear whether other types of modifications exist and if so whether they can affect the activity of RARs. In a mass spectrometric analysis of mouse RARalpha expressed in insect cells, we identified a trimethylation site on Lys(347) in the ligand binding domain. The modification site was verified in mammalian cells, and site-directed mutagenesis studies revealed the functionality of Lys(347) methylation in vivo. Constitutive negative mutants, mimicking hypomethylated RARalpha, were prepared by replacing methylated Lys(347) with either alanine or glutamine. A constitutive positive mutant partially mimicking the hypermethylated RARalpha was generated by replacing the methylated lysine residue with phenylalanine, a bulky hydrophobic amino acid, to introduce a site-specific hydrophobicity similar to that contributed by lysine methylation. Studies of these mutants revealed that trimethylation of Lys(347) of RARalpha facilitated its interactions with cofactors p300/CREB-binding protein-associated factor and receptor-interacting protein 140 as well as its heterodimeric partner retinoid X receptor, suggesting that site-specific hydrophobicity at Lys(347) enhanced molecular interaction of RARalpha with its modulators. This study uncovers the first example of lysine trimethylation on a mammalian non-histone protein that has an important biological consequence. Our finding also provides the evidence for lysine methylation for the family of nuclear receptors for the first time.  相似文献   

10.
11.
Hepatocyte nuclear factor 4 (HNF-4) defines a new subgroup of nuclear receptors that exist in solution and bind DNA exclusively as homodimers. We recently showed that the putative ligand binding domain (LBD) of HNF-4 is responsible for dimerization in solution and prevents heterodimerization with other receptors. In this report, the role of the LBD in DNA binding by HNF-4 is further investigated by using electrophoretic mobility shift analysis. A comparison of constructs containing either the DNA binding domain (DBD) alone or the DBD plus the LBD of HNF-4 showed that dimerization via the DBD was sufficient to provide nearly the full DNA binding affinity of the full-length HNF-4. In contrast, dimerization via the DBD was not sufficient to produce a stable protein-DNA complex, whereas dimerization via the LBD increased the half-life of the complex by at least 100-fold. Circular permutation analysis showed that full-length HNF-4 bent DNA by approximately 80 degrees while the DBD bent DNA by only 24 degrees. Nonetheless, analysis of other constructs indicated that the increase in stability afforded by the LBD could be explained only partially by an increased ability to bend DNA. Coimmunoprecipitation studies, on the other hand, showed that dimerization via the LBD produced a protein-protein complex that was much more stable than the corresponding protein-DNA complex. These results led us to propose a model in which dimerization via the LBD stabilizes the receptor on DNA by converting an energetically favorable two-step dissociation event into an energetically unfavorable single-step event. Implications of this one-step model for other nuclear receptors are discussed.  相似文献   

12.
13.
P19 embryonal carcinoma (EC) cells differentiate when treated with retinoic acid (RA). The P19 EC-derived mutant cell line RAC65 is resistant to the differentiation-inducing activity of RA. We show that these cells express a truncated retinoic acid receptor alpha(mRAR alpha-RAC65), probably due to the integration of a transposon-like element in the RAR alpha gene. This receptor lacks 71 C-terminal amino acids and terminates in the ligand-binding domain. In CAT assays in RAC65 cells, mRAR alpha-RAC65 fails to trans-activate the RAR beta promoter, which contains a RA-response element. In wild-type P19 EC cells mRAR alpha-RAC65 functions as a dominant-negative repressor of RA-induced RAR beta activation. Gel retardation assays demonstrate that mRAR alpha-RAC65 is still able to bind to the RA-response element of the RAR beta promoter, indicating that competition with functional RARs for the same binding site leads to the observed dominant-negative effect. In addition, in two RAC65 clones in which wild-type hRAR alpha was stably transfected RA-sensitivity was restored and in one RAR beta expression could be induced by RA. Taken together, these data show that the primary cause of RA-resistance of RAC65 cells is the expression of a defective RAR alpha, which prevents the trans-activation of RA-responsive genes and results in a loss of the ability to differentiate.  相似文献   

14.
15.
Heterodimers of retinoid X receptor (RXR) and retinoic acid receptor (RAR) bind preferentially to directly repeated elements with spacing of two (DR2) or five (DR5) base pairs, due to the specific heterocooperative interaction of their DNA binding domains (DBDs) on these elements. We have demonstrated in the accompanying paper that the heterodimeric DBD interface that is responsible for the cooperative binding to DR5 elements, specifically involves the D-box of the RXR CII finger and the tip of the RAR CI finger. We show here that a second type of dimerization interface, which specifically implicates the RAR T-box and the RXR CII finger to the exclusion of the D-box, determines the selective binding to DR2 elements. Interestingly, the same type of dimerization interface (RXR T-box and CII finger) is responsible for the cooperative binding of homodimers of the RXR DBD to DR1 elements. Based on the three-dimensional structure of the glucocorticoid receptor DBD, modeling of RXR/RAR, RXR/TR and RXR/RXR DBD cooperative interactions predicts that in all cases the DBD contributing the CII finger, i.e. that of RXR, has to be positioned 5' to its cooperatively bound partner. This binding polarity of the DBDs is conferred upon the full-length receptors, since crosslinking experiments indicate that RXR is always 5' to RAR in complexes between either DR5 or DR2 and RXR/RAR heterodimers. The possible significance of these observations for transactivation by retinoic acid receptors is discussed.  相似文献   

16.
17.
18.
19.
Retinoic acid (RA) suppresses alpha 2(I) collagen expression in hepatic stellate cells through the binding of retinoic acid receptor beta (RAR beta) and retinoid X receptor alpha (RXR alpha) to RA response elements (RAREs) in the alpha 2(I) collagen promoter. This study determined the influence of coactivators and corepressors to RAR beta and RXR alpha on the regulation of the alpha 2(I) collagen promoter. The coactivators, steroid receptor coactivator-1 (SRC-1) and growth hormone receptor interacting protein-1 (GRIP-1), enhanced, while the nuclear receptor corepressor (N-CoR) abolished the inhibitory effect of RAR beta and RXR alpha on the promoter activity. In the presence of RA, the coactivators SRC-1 and GRIP-1 formed complexes with RAR beta and RXR alpha which are bound to an oligonucleotide specifying a RARE site in the promoter. In conclusion, this study shows that in the presence of retinoic acid, the coactivators SRC-1 and GRIP-1 augment, while the corepressor N-CoR abolishes, the suppressive effects of RAR beta and RXR alpha on alpha 2(I) collagen promoter activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号