首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
We have previously reported that the binding site repertoires of heterodimers formed between retinoid X receptor (RXR) and either retinoic acid receptor (RAR) or thyroid hormone receptor (TR) bound to response elements consisting of directly repeated PuG(G/T)TCA motifs spaced by 1-5 bp [direct repeat (DR) elements 1-5] are highly similar to those of their corresponding DNA binding domains (DBDs). We have now mapped the dimerization surfaces located in the DBDs of RXR, RAR and TR, which are responsible for cooperative interaction on DR4 (RXR and TR) and DR5 (RXR and RAR). The D-box of the C-terminal CII finger of RXR provides one of the surfaces which is specifically required for the formation of the heterodimerization interfaces on both DR4 and DR5. Heterodimerization with the RXR DBD on DR5 specifically requires the tip of the RAR CI finger as the complementary surface, while a 7 amino acid sequence encompassing the 'prefinger region', but not the TR CI finger, is specifically required for efficient dimerization of TR and RXR DBDs on DR4. Importantly, DBD swapping experiments demonstrate not only that the binding site repertoires of the full-length receptors are dictated by those of their DBDs, but also that the formation of distinct dimerization interfaces between the DBDs are the critical determinants for cooperative DNA binding of these receptors to specific DRs.  相似文献   

2.
S Mader  J Y Chen  Z Chen  J White  P Chambon    H Gronemeyer 《The EMBO journal》1993,12(13):5029-5041
We show here that, in addition to generating an increase in DNA binding efficiency, heterodimerization of retinoid X receptor (RXR) with either retinoic acid receptor (RAR) or thyroid hormone receptor (TR) alters the binding site repertoires of RAR, RXR and TR homodimers. The binding site specificities of both homo- and heterodimers appear to be largely determined by their DNA binding domains (DBDs), and are dictated by (i) homocooperative DNA binding of the RXR DBD, (ii) heterocooperative DNA binding of RXR/RAR and RXR/TR DBDs, and (iii) steric hindrance. No homodimerization domain exists in the DBDs of TR and RAR. The dimerization function which is located in the ligand binding domain further stabilizes, but in general does not change, the repertoire dictated by the corresponding DBD(s). The binding repertoire can be further modified by the actual sequence of the binding site. We also provide evidence supporting the view that the cooperative binding of the RXR/RAR and RXR/TR DBDs to directly repeated elements is anisotropic, with interactions between the dimerization interfaces occurring only with RXR bound to the 5' located motif. This polarity, which appears to be maintained in the full-length receptor heterodimers, may constitute a novel parameter in promoter-specific transactivation.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Metabolic labeling and detection with a methylated lysine-specific antibody confirm lysine methylation of RAR alpha in mammalian cells. We previously reported Lys (347) trimethylation of mouse retinoic acid receptor alpha (RAR alpha) in the ligand binding domain (LBD) that affected ligand sensitivity of the dissected LBD. Here we report two monomethylated residues, Lys (109) and Lys (171) identified by LC-ESI-MS/MS in the DNA binding domain (DBD) and the hinge region, which affect retinoic acid (RA) sensitivity, coregulator interaction and heterodimerization with retinoid X receptor (RXR) in the context of the full-length protein. Constitutive negative mutation at Lys (109), but not Lys (171), reduces RA-dependent activation. Methylation at Lys (109) plays a more dominant role than trimethylation at Lys (347) in terms of RA activation of the full-length receptor. Lys (109) is located in a homologous sequence (CEGC K GFFRRS) of the DBD in RARs and is conserved in the nuclear receptor superfamily even across the species boundary. This study uncovers a potential role for monomethylation at Lys (109) in coordinating the synergy between DBD and LBD for ligand-dependent activation of RAR alpha.  相似文献   

10.
Heterodimerization of retinoic acid receptors (RARs) with 9-cis-retinoic receptors (RXRs) is a prerequisite for binding of RXR.RAR dimers to DNA and for retinoic acid-induced gene regulation. Whether retinoids control RXR/RAR solution interaction remains a debated question, and we have used in vitro and in vivo protein interaction assays to investigate the role of ligand in modulating RXR/RAR interaction in the absence of DNA. Two-hybrid assay in mammalian cells demonstrated that only RAR agonists were able to increase significantly RAR interaction with RXR, whereas RAR antagonists inhibited RXR binding to RAR. Quantitative glutathione S-transferase pull-down assays established that there was a strict correlation between agonist binding affinity for the RAR monomer and the affinity of RXR for liganded RAR, but RAR antagonists were inactive in inducing RXR recruitment to RAR in vitro. Alteration of coactivator- or corepressor-binding interfaces of RXR or RAR did not alter ligand-enhanced dimerization. In contrast, preventing the formation of a stable holoreceptor structure upon agonist binding strongly altered RXR.RAR dimerization. Finally, we observed that RAR interaction with RXR silenced RXR ligand-dependent activation function. We propose that ligand-controlled dimerization of RAR with RXR is an important step in the RXR.RAR activation process. This interaction is dependent upon adequate remodeling of the AF-2 structure and amenable to pharmacological inhibition by structurally modified retinoids.  相似文献   

11.
In mouse embryonic cells, ligand-activated retinoic acid receptors (RARs) play a key role in inhibiting pluripotency-maintaining genes and activating some major actors of cell differentiation.To investigate the mechanism underlying this dual regulation, we performed joint RAR/RXR ChIP-seq and mRNA-seq time series during the first 48 h of the RA-induced Primitive Endoderm (PrE) differentiation process in F9 embryonal carcinoma (EC) cells. We show here that this dual regulation is associated with RAR/RXR genomic redistribution during the differentiation process. In-depth analysis of RAR/RXR binding sites occupancy dynamics and composition show that in undifferentiated cells, RAR/RXR interact with genomic regions characterized by binding of pluripotency-associated factors and high prevalence of the non-canonical DR0-containing RA response element. By contrast, in differentiated cells, RAR/RXR bound regions are enriched in functional Sox17 binding sites and are characterized with a higher frequency of the canonical DR5 motif. Our data offer an unprecedentedly detailed view on the action of RA in triggering pluripotent cell differentiation and demonstrate that RAR/RXR action is mediated via two different sets of regulatory regions tightly associated with cell differentiation status.  相似文献   

12.
The vitamin D receptor (VDR) forms homo- or heterodimers on response elements composed of two hexameric half-sites separated by 3 bp of spacer DNA. We describe here the crystal structures at 2.7-2.8 A resolution of the VDR DNA-binding region (DBD) in complex with response elements from three different promoters: osteopontin (SPP), canonical DR3 and osteocalcin (OC). These structures reveal the chemical basis for the increased affinity of VDR for the SPP response element, and for the poor stability of the VDR-OC complex, relative to the canonical DR3 response element. The homodimeric protein-protein interface is stabilized by van der Waals interactions and is predominantly non-polar. An extensive alpha-helix at the C-terminal end of the VDR DBD resembles that found in the thyroid hormone receptor (TR), and suggests a mechanism by which VDR and TR discriminate among response elements. Selective structure-based mutations in the asymmetric homodimeric interface result in a VDR DBD protein that is defective in homodimerization but now forms heterodimers with the 9-cis retinoic acid receptor (RXR) DBD.  相似文献   

13.
The receptors for retinoic acid (RA) and for 1α,25-dihydroxyvitamin D3 (VD), RAR, RXR, and VDR are ligand-inducible members of the nuclear receptor superfamily. These receptors mediate their regulatory effects by binding as dimeric complexes to response elements located in regulatory regions of hormone target genes. Sequence scanning of the tumor necrosis factor-α type I receptor (TNFαRI) gene identified a 3′ enhancer region composed of two directly repeated hexameric core motifs spaced by 2 nucleotides (DR2). On this novel DR2-type sequence, but not on a DR5-type RA response element, VD was shown to act through its receptor, the vitamin D receptor (VDR), as a repressor of retinoid signalling. The repression appears to be mediated by competitive protein–protein interactions between VDR, RAR, RXR, and possibly their cofactors. This VDR-mediated transrepression of retinoid signaling suggests a novel mechanism for the complex regulatory interaction between retinoids and VD. J. Cell. Biochem. 67:287–296, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
15.
16.
Retinoic acid (RA) suppresses alpha 2(I) collagen expression in hepatic stellate cells through the binding of retinoic acid receptor beta (RAR beta) and retinoid X receptor alpha (RXR alpha) to RA response elements (RAREs) in the alpha 2(I) collagen promoter. This study determined the influence of coactivators and corepressors to RAR beta and RXR alpha on the regulation of the alpha 2(I) collagen promoter. The coactivators, steroid receptor coactivator-1 (SRC-1) and growth hormone receptor interacting protein-1 (GRIP-1), enhanced, while the nuclear receptor corepressor (N-CoR) abolished the inhibitory effect of RAR beta and RXR alpha on the promoter activity. In the presence of RA, the coactivators SRC-1 and GRIP-1 formed complexes with RAR beta and RXR alpha which are bound to an oligonucleotide specifying a RARE site in the promoter. In conclusion, this study shows that in the presence of retinoic acid, the coactivators SRC-1 and GRIP-1 augment, while the corepressor N-CoR abolishes, the suppressive effects of RAR beta and RXR alpha on alpha 2(I) collagen promoter activity.  相似文献   

17.
18.
19.
20.
V-erbA is thought to be an antagonist of thyroid hormone receptor (T3R) function. Here we show that unliganded T3R, but not v-erbA, suppresses retinoic acid (RA)-dependent induction of the RAR-beta 2 promoter by competing for the common dimerization partner, the retinoid X receptor (RXR). Firstly, T3R suppression can be alleviated by co-transfection of RXR. Secondly, T3R, but not v-erbA, competes with RAR for RXR and causes the dissociation of a preformed RAR/RXR-RARE ternary complex in vitro. A single point mutation located in the dimerization interface of v-erbA (Pro349 to Ser) abolishes the transdominant phenotype when introduced at the respective position in T3R. The hypertransforming v-erbA variant r12, in which this mutation is reversed (Ser349 to Pro) suppresses RA-induced differentiation in chicken erythroid progenitors, while v-erbA does not. Our data thus suggest that unliganded T3R and v-erbA act as dominant suppressors through mechanistically distinct pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号