首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cháb D  Kolár J  Olson MS  Storchová H 《Planta》2008,228(6):929-940
FLOWERING LOCUS T (FT) like genes are crucial regulators (both positive and negative) of flowering in angiosperms. We identified two FT homologs in Chenopodium rubrum, a short-day species used as a model plant for the studies of photoperiodic flower induction. We found that CrFTL1 gene was highly inducible by a 12-h dark period, which in turn induced flowering. On the other hand, photoperiodic treatments that did not induce flowering (short dark periods, or a permissive darkness interrupted by a night break) caused only a slight increase in CrFTL1 mRNA level. We demonstrated diurnal oscillation of CrFTL1 expression with peaks in the middle of a light period. The oscillation persisted under constant darkness. Unlike FT homologs in rice and Pharbitis, the CrFTL1 expression under constant darkness was very low. The CrFTL2 gene showed constitutive expression. We suggest that the CrFTL1 gene may play a role as a floral regulator, but the function of CrFTL2 remains unknown.  相似文献   

2.
Blackleg (stem canker) caused by the fungus Leptosphaeria maculans is one of the most damaging diseases of oilseed rape (Brassica napus). Crop relatives represent a valuable source of “new” resistance genes that could be used to diversify cultivar resistance. B. rapa, one of the progenitors of B. napus, is a potential source of new resistance genes. However, most of the accessions are heterozygous so it is impossible to directly detect the plant genes conferring specific resistance due to the complex patterns of avirulence genes in L. maculans isolates. We developed a strategy to simultaneously characterize and introgress resistance genes from B. rapa, by homologous recombination, into B. napus. One B. rapa plant resistant to one L. maculans isolate was used to produce B. rapa backcross progeny and a resynthesized B. napus plant from which a population of doubled haploid lines was derived after crossing with natural B. napus. We then used molecular analyses and resistance tests on these populations to identify and map the resistance genes and to characterize their introgression from B. rapa into B. napus. Three specific genes conferring resistance to L. maculans (Rlm1, Rlm2 and Rlm7) were identified in B. rapa. Comparisons of genetic maps showed that two of these genes were located on the R7 linkage group, in a region homologous to the region on linkage group N7 in B. napus, where these genes have been reported previously. The results of our study offer new perspectives for gene introgression and cloning in Brassicas.  相似文献   

3.
4.
Resistance to six known races of black rot in crucifers caused by Xanthomonas campestris pv. campestris (Pammel) Dowson is absent or very rare in Brassica oleracea (C genome). However, race specific and broad-spectrum resistance (to type strains of all six races) does appear to occur frequently in other brassica genomes including B. rapa (A genome). Here, we report the genetics of broad spectrum resistance in the B. rapa Chinese cabbage accession B162, using QTL analysis of resistance to races 1 and 4 of the pathogen. A B. rapa linkage map comprising ten linkage groups (A01–A10) with a total map distance of 664 cM was produced, based on 223 AFLP bands and 23 microsatellites from a F2 population of 114 plants derived from a cross between the B. rapa susceptible inbred line R-o-18 and B162. Interaction phenotypes of 125 F2 plants were assessed using two criteria: the percentage of inoculation sites in which symptoms developed, and the severity of symptoms per plant. Resistance to both races was correlated and a cluster of highly significant QTL that explained 24–64% of the phenotypic variance was located on A06. Two additional QTLs for resistance to race 4 were found on A02 and A09. Markers closely linked to these QTL could assist in the transference of the resistance into different B. rapa cultivars or into B. oleracea.  相似文献   

5.
Although the CONSTANS gene and its CONSTANS-LIKE1 (COL1) orthologs are known to control the photoperiod-dependent floral transition in many plant species, the role of these genes in Solanum development has not been sufficiently elucidated. Previously we characterized two forms of CONSTANS-LIKE1 genes, sCOL1 and lCOL1, in potato (Solanum tuberosum ssp. tuberosum). To prove that these genes were functional, we followed their expression in potato cv. Early Rose with the real-time PCR technique. Both sCOL1 and lCOL1 displayed characteristic day-night patterns of expression under long-day and short-day conditions. The profiles and amplitudes of expression dramatically differed in two genes, with the maximum sCOL1 expression exceeding that of lCOL1 by an order of magnitude.  相似文献   

6.
7.
Crop to weed transgene flow, which could result in more competitive weed populations, is an agricultural biosafety concern. Crop Brassica napus to weedy Brassica rapa hybridization has been extensively characterized to better understand the transgene flow and its consequences. In this study, weedy accessions of B. rapa were transformed with Bacillus thuringiensis (Bt) cry1Ac- and green fluorescence protein (gfp)-coding transgenes using Agrobacterium to assess ecological performance of the wild biotype relative to introgressed hybrids in which the transgenic parent was the crop. Regenerated transgenic B. rapa events were characterized by progeny analysis, Bt protein enzyme-linked immunosorbent assay (ELISA), Southern blot analysis, and GFP expression assay. GFP expression level and Bt protein concentration were significantly different between independent transgenic B. rapa events. Similar reproductive productivity was observed in comparison between transgenic B. rapa events and B. rapa × B. napus introgressed hybrids in greenhouse and field experiments. In the greenhouse, Bt transgenic plants experienced significantly less herbivory damage from the diamondback moth (Plutella xylostella). No differences were found in the field experiment under ambient, low, herbivore pressure. Directly transformed transgenic B. rapa plants should be a helpful experimental control to better understand crop genetic load in introgressed transgenic weeds.  相似文献   

8.
The FLC gene product is an inhibitor of flowering in Arabidopsis. FLC homologs in Brassica species are thought to control vernalization. We cloned four FLC homologs (BoFLCs) from Brassica oleracea. Three of these, BoFLC1, BoFLC3 and BoFLC5, have been previously characterized. The fourth novel sequence displayed 98% sequence homology to the previously identified gene BoFLC4, but also showed 91% homology to BrFLC2 from Brassica rapa. Phylogenetic analysis showed that this clone belongs to the FLC2 clade. Therefore, we designated this gene BoFLC2. Based on the segregation of RFLP, SRAP, CAPS, SSR and AFLP loci, a detailed linkage map of B. oleracea was constructed in the F2 progeny obtained from a cross of B. oleracea cv. Green Comet (broccoli; non-vernalization type) and B. oleracea cv. Reiho (cabbage; vernalization type), which covered 540 cM, 9 major linkage groups. Six quantitative trait loci (QTL) controlling flowering time were detected. BoFLC1, BoFLC3 and BoFLC5 were not linked to the QTLs controlling flowering time. However, the largest QTL effect was located in the region where BoFLC2 was mapped. Genotyping of F2 plants at the BoFLC2 locus showed that most of the early flowering plants were homozygotes of BoFLC-GC, whereas most of the late- and non-flowering plants were homozygotes of BoFLC-Rei. The BoFLC2 homologs present in plants of the non-vernalization type were non-functional, due to a frameshift in exon 4. Moreover, duplications and deletions of BoFLC2 were detected in broccoli and a rapid cycling line, respectively. These results suggest that BoFLC2 contributes to the control of flowering time in B. oleracea.  相似文献   

9.
The ATP-binding cassette transporter genes include the pleiotropic drug resistance (PDR) family found only in fungi and plants. These transporters transport toxic compounds across biological membranes. Here, we investigated the evolution of the PDR1 gene in Brachypodium distachyon, a widely distributed temperate grass species that belongs to the Poaceae (Gramineae) family, which also contains the domesticated cereal crops. Because this species has multiple ploidy levels, investigating PDR1 evolution in B. distachyon will offer insights into the formation and evolution of polyploidy. From 23 B. distachyon ecotypes, 39 PDR1 homologs were identified. All ecotypes had either one or two PDR1 copies. Based on restriction site analysis, the PDR1 homologs were classified as E or H type. All but one diploid and tetraploid ecotypes had only a single H type PDR1. All but one hexaploid ecotypes had both an E and a H type PDR1. Phylogenetic analysis revealed that each type formed a well-supported cluster. The two PDR1 types appeared to evolve differently. These different evolutionary patterns could indicate a difference in age between the two types or might indicate different mutation rates or selection pressures on the two types. The phylogenetic analysis also revealed that the hexaploid ecotypes shared a genomic origin for their E type PDR1, but there were multiple origins for hexaploid H type PDR1 homologs. Overall, the results suggest that tetraploid and hexaploid might be misnomers in B. distachyon and suggest a complex polyploidization history during B. distachyon evolution.  相似文献   

10.
Many novel lines were established from an intergeneric mixoploid between Brassica rapa (2n = 20) and Orychophragmus violaceus (2n = 24) through successive selections for fertility and viability. Pedigrees of individual F2 plants were advanced to the 10th generation by selfing. Their breeding habit was self-compatible and different from the self-incompatibility of their female parent B. rapa, and these lines were reproductively isolated to different degrees from B. rapa and B. napus. The lines with high productivity showed not only a wide spectrum of phenotypes but also obvious variations in fatty acid profiles of seed oil and glucosinolate contents in seed meal. These lines had 2n = 36, 37, 38, 39 and 40, with 2n = 38 being most frequent (64.56%), and no intact O. violaceus chromosomes were detected by genomic in situ hybridization (GISH) analysis. Amplified fragment length polymorphism (AFLP) analyses revealed a high extent of variation in genomic compositions across all the lines. O. violaceus-specific bands, deleted bands in B. rapa and novel bands for two parents were detected in these lines, with novel bands being the most frequent. The morphological and genetic divergence of these novel types derived from a single hybrid is probably due to rapid chromosomal evolution and introgression, and provides new genetic resources for rapeseed breeding.  相似文献   

11.
Nucleotide-binding site (NBS)-encoding resistance genes are key plant disease-resistance genes and are abundant in plant genomes, comprising up to 2% of all genes. The availability of genome sequences from several plant models enables the identification and cloning of NBS-encoding genes from closely related species based on a comparative genomics approach. In this study, we used the genome sequence of Brassica rapa to identify NBS-encoding genes in the Brassica genome. We identified 92 non-redundant NBS-encoding genes [30 CC-NBS-LRR (CNL) and 62 TIR-NBS-LRR (TNL) genes] in approximately 100 Mbp of B. rapa euchromatic genome sequence. Despite the fact that B. rapa has a significantly larger genome than Arabidopsis thaliana due to a recent whole genome triplication event after speciation, B. rapa contains relatively small number of NBS-encoding genes compared to A. thaliana, presumably because of deletion of redundant genes related to genome diploidization. Phylogenetic and evolutionary analyses suggest that relatively higher relaxation of selective constraints on the TNL group after the old duplication event resulted in greater accumulation of TNLs than CNLs in both Arabidopsis and Brassica genomes. Recent tandem duplication and ectopic deletion are likely to have played a role in the generation of novel Brassica lineage-specific resistance genes.  相似文献   

12.
Prevention of transgene flow from genetically modified crops to food crops and wild relatives is of concern in agricultural biotechnology. We used genes derived from food crops to produce complete male sterility as a strategy for gene confinement as well as to reduce the food purity concerns of consumers. Anther-specific promoters (A3, A6, A9, MS2, and MS5) were isolated from Brassica oleracea and B. rapa and fused to the β-glucuronidase (GUS) reporter gene and candidate genes for male sterility, including the cysteine proteases BoCysP1 and BoCP3, and negative regulatory components of phytohormonal responses involved in male development. These constructs were then introduced into Arabidopsis thaliana. GUS analyses revealed that A3, A6, and A9 had tapetum-specific promoter activity from the anther meiocyte stage. Male sterility was confirmed in tested constructs with protease or gibberellin insensitive (gai) genes. In particular, constructs with BoCysP1 driven by the A3 or A9 promoter most efficiently produced plants with complete male sterility. The tapetum and middle layer cells of anthers expressing BoCysP1 were swollen and excessively vacuolated when observed in transverse section. This suggests that the ectopic expression of cysteine protease in the meiocyte stage may inhibit programmed cell death. The gai gene also induced male sterility, although at a low frequency. This is the first report to show that plant cysteine proteases and gai from food crops are available as a novel tool for the development of genetically engineered male-sterile plants. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Plants have evolved several defense mechanisms, including resistance genes. Resistance to the root-knot nematode Meloidogyne incognita has been found in wild plant species. The molecular basis for this resistance has been best studied in the wild tomato Solanum peruvianum and it is based on a single dominant gene, Mi-1.2, which is found in a cluster of seven genes. This nematode attacks fiercely several crops, including potatoes. The genomic arrangement, number of copies, function and evolution of Mi-1 homologs in potatoes remain unknown. In this study, we analyzed partial genome sequences of the cultivated potato species S. tuberosum and S. phureja and identified 59 Mi-1 homologs. Mi-1 homologs in S. tuberosum seem to be arranged in clusters and located on chromosome 6 of the potato genome. Previous studies have suggested that Mi-1 genes in tomato evolved rapidly by frequent sequence exchanges among gene copies within the same cluster, losing orthologous relationships. In contrast, Mi-1 homologs from cultivated potato species (S. tuberosum and S. phureja) seem to have evolved by a birth-and-death process, in which genes evolve mostly by mutations and interallelic recombinations in addition to sequence exchanges.  相似文献   

14.
15.
The effects of Chinese cabbage (Brassica rapa subsp. pekinensis) carrying cry1AC derived from Bacillus thuringiensis (Bt) on leaf bacterial community were examined by analyzing the horizontal transfer of trans-gene fragments from plants to bacteria. The effect of plant pathogenic bacteria on the gene transfer was also examined using Pseudomonas syringae pathovar. maculicola. The frequency of hygromycin-resistant bacteria did not alter in Bt leaves, though slight increase was observed in Pseudomonas-infected Bt leaves with no statistical significance. The analysis of bacterial community profiles using the denaturing gradient gel electrophoresis (DGGE) fingerprinting indicated that there were slight differences between Bt and control Chinese cabbage, and also that infected tissues were dominated by P. syringae pv. maculicola. However, the cultured bacterial pools were not found to contain any transgene fragments. Thus, no direct evidence of immediate gene transfer from plant to bacteria or acquisition of hygromycin resistance could be observed. Still, long-term monitoring on the possibility of gene transfer is necessary to correctly assess the environmental effects of the Bt crop on bacteria.  相似文献   

16.
17.
Controlled reciprocal crosses between B. rapa and F1-hybrids (B. napus (♀) × B. rapa), giving 20 pair-crossings, were made to reveal possible irregularities in chloroplast inheritance during production of BC1s. Despite the close relationship of chloroplasts in B. rapa and B. napus, development of PCR-based molecular markers specific to B. rapa chloroplasts and B. napus chloroplasts was successful. Offspring from each cross were investigated and among these, we found no irregular chloroplast inheritance, since their plastid genotypes in all cases were identical to that of their mother. With a certainty of 95% our data indicate that the probability that chloroplasts are being inherited paternally is less than 0.015. In oilseed rape, pollen-mediated transgene-dispersal poses a well-known risk. Our results support development of transplastomic oilseed rape as an approach to reduce transgene dispersal.  相似文献   

18.
FLOWERING LOCUS T (FT), a major effect gene, regulates flowering time in Arabidopsis. We analyzed evolutionary changes distinguishing two FT homeologous loci in B. rapa, described genetic variation in homologs isolated and reported expression pattern of FT in B. juncea. Synteny analysis confirmed presence of two FT genomic copies in B. rapa ssp. pekinensis and resolved pre-existing anomalies regarding copy number in “AA” genome. Synteny analysis of B. rapa homeologous regions CR1 (129 kb) and CR2 (232 kb) revealed differential gene fractionation and wide-spread re-arrangements. Seven genomic DNA (gDNA) variants (2.1–2.2 kb) and 10 complementary DNA (cDNA) variants (528 bp) were isolated from 6 Brassica species. The gDNA variants shared 72–99 % similarity within Brassica and 58–60 % between Arabidopsis and Brassica. FT cDNA variants shared 92–100 % similarity within Brassica and 87 % between Arabidopsis and Brassica. Phylogenetic analysis of FT gDNA, cDNA and protein sequences revealed two major clades, differentiating homologs derived from species containing shared “BB” and “CC” genomes. Phylogram based on Brassica FT gDNA differentiated homeologs derived from AA-LF (Least fractioned) and AA-MF1 (Moderately fractioned) sub-genomes. Analysis of FT expression pattern in B. juncea revealed increasing levels correlating with attainment of physiological maturity; highest levels were detected in older leaves implying conservation in spatio-temporal expression pattern vis-à-vis Arabidopsis. In conclusion, our study reveals that polyploidy in Brassicas resulted in expansion of FT gene copies with homologs charting independent evolutionary course through accumulation of mutations. However, expression domains of FT remained conserved across Brassicaceae to preserve the critical function of FT in controlling flowering time.  相似文献   

19.
20.
In F1 hybrid breeding of Brassica vegetables utilizing the self-incompatibility system, identification of S genotypes in breeding lines is required. In the present study, we developed S-tester lines of 87 S haplotypes, i.e., 42 S haplotypes in B. rapa and 45 S haplotypes in B. oleracea. With these materials, we established a simple, efficient, and reliable dot-blot technique for S genotyping for 40 S haplotypes of B. rapa and and 33 of B. oleracea using allele-specific oligonucleotide probes and allele-specific primer pairs designed from sequences of each SP11 allele. In this method, DNA fragments amplified using multiplex primer pairs with digoxigenin-dUTP were hybridized with dot-blotted allele-specific oligonucleotide probes with distinct signals. In addition, we developed a screening method for identification of plants harboring a particular S haplotype using a labeled allele-specific oligonucleotide probe. This method is considered to be useful for purity testing of F1 hybrid seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号