首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
A quantitative ultrastructural radioautographic study of in vitro protein synthesis has been carried out in rat synaptosomal fractions incubated with tritiated leucine or a tritiated amino acid mixture. Analysis of grain density distribution demonstrated that presynaptic endings are labeled. 30–50% of the developed grains, representing tritiated amino acids incorporated into proteins, were related to presynaptic endings which accounted for 75–77% of the total processes. 34–45% of the grains were related to processes containing ribosomes which accounted for only 4–7% of the total processes. The relative specific activity of these ribosome-containing processes, some of which could be identified as postsynaptic elements, was up to ten times higher than that of the presynaptic ending. These findings indicate that protein synthesis takes place in vitro in presynaptic terminals although to a significantly lesser degree than that occurring in ribosome-containing processes, which, with other nonpresynaptic processes, are at the present time unavoidable contaminants of synaptosomal fractions. Presynaptic endings that in radioautographs contained no mitochondria were labeled. Also, presynaptic endings were labeled after incubation in the presence of chloramphenical which inhibited 20% of the protein synthesis of the synaptosomal fraction. It is concluded that besides mitochondrial protein synthesis, another protein synthesizing system operates in presynaptic endings in vitro.  相似文献   

2.
The distribution of muscarinic cholinergic receptors, choline acetyl-transferase and acetylcholinesterase activities were measured in subcellular fractions of the rat striatum on the 5th and 15th days postnatally and in adulthood. The receptor density in the striatum of 5 and 15-day-old rats was 15%, respectively, of the adult value. Similar increases of the receptors could be detected in the synaptosomal and microsomal fractions in the postnatal life of rat. The activity of choline acetyltransferase on the same days was 15% and 28%. In the subcellular fractions, the enzyme activity was the highest in the microsomal fraction on both the 5th and 15th days postnatally. The activity of acetylcholinesterase in the homogenate was 6% of the adult value in the 5-day-old rat striatum, while in the synaptosomal fraction it was 11% and 47% of the adult value on the 5th and 15th days, respectively. Our results show that the development of the muscarinic cholinergic receptors precedes that of the two cholinergic enzymes in both 5 and 15-day-old rat striatum. This may suggest an early perikaryonal synthesis and the fast translocation of receptors to the axon terminals during ontogenetic development.  相似文献   

3.
The development of cholinergic synapses in the rat olfactory bulb was investigated by measuring changes in the activity of choline acetyltransferase (ChAT; EC 2.3.1.6.), a presynaptic cholinergic marker, and in the concentration of muscarinic receptors, components of cholinoceptive membranes. Three biochemical properties of the muscarinic system also were examined for possible differentiation: ligand binding, molecular weight, and isoelectric point. Receptors from embryonic (day 18), neonatal (postnatal day 3), and adult rat olfactory bulbs exhibited identical complex binding (nH = 0.45) of the agonist carbachol. For each age, the relative proportions of high-affinity (Ki approximately equal to 1.0 microM) and low-affinity (Ki approximately equal to 100 microM) binding states were 60% and 40%, respectively. The antagonist pirenzepine also bound to high-affinity (Ki approximately equal to 0.15 microM, RH approximately equal to 70%) and low-affinity (Ki approximately equal to 2.0 microM, RL approximately equal to 30%) sites in neonatal and adult rats. Sodium dodecyl sulfate/urea-polyacrylamide gel electrophoresis of [3H]propylbenzilylcholine mustard-labeled receptors from neonatal and adult rats showed a single electrophoretic form with an apparent molecular weight of 65,000. In contrast, analytical isoelectric focusing indicated high pI (4.50) and low pI (4.00) receptor forms were present. Neonatal rats contained approximately equal proportions of the two receptor forms, whereas adult rats contained mainly the low pI form, indicating that molecular alteration of the receptor population had occurred during development. Comparison of postnatal changes in acetylcholine receptors and ChAT activity showed a striking correlation between the development of cholinergic terminals and muscarinic receptors. Throughout the first postnatal week, ChAT activity remained at 5% of adult levels; activity began to rise on postnatal day 6 and gradually reached adult levels (56 +/- 4 mumol of [3H]acetylcholine/h/g) during the fourth week. Similarly, muscarinic receptor concentration was low (30-50 fmol/mg) throughout the first week, began to rise at postnatal day 7; and reached 90% of adult levels (317 +/- 17 fmol/mg) by the fourth week. In contrast, there was little increase in the concentration of nicotinic acetylcholine receptors (30 fmol/mg) during this period. The parallel postnatal development of ChAT activity and muscarinic receptors suggests the existence of factors that couple the differentiation of presynaptic cholinergic terminals and postsynaptic cholinoceptive elements.  相似文献   

4.
An increase of synaptic density has been found in the hippocampus, the dendate gyrus and in the entorhinal cortex of 6-week-old rats after 7 days of treatment with the peptidergic drug Cerebrolysin, its peptide preparation E021 and the diluted peptide preparation E021dil. Rats received drugs on postnatal days 1–7 (2.5ml/kg, each day). Controls received saline. The animals were sacrificed on days 42–48 of their life, after they had undergone behavioural testing in a Morris water maze. Slices of brain were stained immunohistochemically with anti-synaptophysin, a specific marker of presynaptic terminals. The synaptophysin-immunoreactivity of presynaptic terminals was quantified using light microscopy and a computerised image analysis system. Our results showed that rats benefit from the treatment with both drugs. A significant increase in the number of synaptophysin-immunoreactive presynaptic terminals was found in the entorhinal cortex and the hippocampal subfields CA1, CA2, CA3 stratum radiatum and CA3 stratum lucidum. The increased immunoreactive presynaptic terminals found in the present study are in accordance with the positive effects of the drugs on spatial learning and memory in young rats (Gschanes & Windisch 1999).  相似文献   

5.
《The Journal of cell biology》1989,109(6):3425-3433
Nerve endings of the posterior pituitary are densely populated by dense- core neurosecretory granules which are the storage sites for peptide neurohormones. In addition, they contain numerous clear microvesicles which are the same size as small synaptic vesicles of typical presynaptic nerve terminals. Several of the major proteins of small synaptic vesicles of presynaptic nerve terminals are present at high concentration in the posterior pituitary. We have now investigated the subcellular localization of such proteins. By immunogold electron microscopy carried out on bovine neurohypophysis we have found that three of these proteins, synapsin I, Protein III, and synaptophysin (protein p38) were concentrated on microvesicles but were not detectable in the membranes of neurosecretory granules. In addition, we have studied the distribution of the same proteins and of the synaptic vesicle protein p65 in subcellular fractions of bovine posterior pituitaries obtained by sucrose density centrifugation. We have found that the intrinsic membrane proteins synaptophysin and p65 had an identical distribution and were restricted to low density fractions of the gradient which contained numerous clear microvesicles with a size range the same as that of small synaptic vesicles. The peripheral membrane proteins synapsin I and Protein III exhibited a broader distribution extending into the denser part of the gradient. However, the amount of these proteins clearly declined in the fractions preceding the peak of neurosecretory granules. Our results suggest that microvesicles of the neurohypophysis are biochemically related to small synaptic vesicles of all other nerve terminals and argue against the hypothesis that such vesicles represent an endocytic byproduct of exocytosis of neurosecretory granules.  相似文献   

6.
Summary The ontogenetic development of catecholamine (CA)-and LHRH-containing nerve endings in the median eminence of the rat was investigated by combining fluorescence histochemistry and immunohistochemistry in the same tissue section. LHRH-terminals appeared earlier than CA-terminals and were already detectable in the lateral part of the external layer of the central ME on the first day after birth. CA-nerve endings were first seen in a corresponding region of the ME on the seventh postnatal day. At this stage both types of terminals showed the earliest manifestation of a correlative pattern of their distribution. Subsequently the development of both types of nerve endings proceeded rapidly, and at 14 days their distribution pattern corresponded to that in adult animals. The authors conclude that at this stage the CA-neurons play a constant and significant role in the release of LHRH into the portal capillaries. The correlation between both types of nerve endings and the ontogenetic development of the capillary plexuses of the hypophysial portal system is discussed.This work was supported in part by a grant (No. 248093, 321426) from the Ministry of Education, Science and Culture, Japan  相似文献   

7.
The total activity and range of the creatine kinase (CK) isozymes have been studied in the homogenate and subcellular fractions (nuclei, mitochondria, cytoplasm) of the rat brain and heart during postnatal ontogenesis. The total activity of CK in the brain and heart of newborn rats was found to be 4 and 2 times less, resp., than in those of adults. The age patterns were established in the activity of cytoplasmic (CK-1, CK-2 and CK-3) and mitochondrial (CK-4) isozymes. During the whole postnatal development the rat brain contains only one cytoplasmic isozyme, CK-1. In the heart of newborn rats, as compared with adults, the content of CK-1 and CK-2 is much higher and that of CK-3 lower. On the 12-15th day of life the range of the CK isozymes approaches that characteristic of adult animals. The activity of CK-4 was found in the brain on the 5-7th day of life and in the heart on 12-15th day. In the range of the CK isozymes in the adult brain the content of mitochondrial CK amounts to 19.3% and in the heart to 16.5%. The data obtained complement the literary ones suggesting the low level of energy-forming processes in the brain and heart cells at the early stages of the rat postnatal development.  相似文献   

8.
Zonal centrifuge and flotation–fractionation profile analysis of neonatal mouse brain homogenates in iso-osmotic Ficoll–sucrose density–gradients demonstrates the presence of four light density fractions. In msd neurological mutant mice with a myelin-synthesizing deficiency syndrome, the bands appear to be relatively normal until after the 10th day of postnatal brain development. With the onset of visible neurological symptoms after the 11th day, the four density bands begin to disappear from the zonal profiles and are all but absent at the time of death at about the 21st postnatal day. In normal littermates of the mutants, the bands persist with age and intensify. Although their identities remain unknown, the top three identify by their density with adult myelin and the fourth with the lighter of two adult synaptosome fractions. Mixtures of brain homogenates between mutant and normal littermates give rise to zonal and banding profiles intermediate between the separate profiles but somewhat less than their average in intensity.  相似文献   

9.
The incidence of coated vesicles under sarcolemmal surfaces of equatorial, juxta-equatorial and polar regions in developing and adult spindles of the rat soleus muscle was examined by quantitative morphometry of transverse ultrathin sections. Coated vesicles were more numerous: 1) under primary sensory endings than under other types of neuromuscular contacts; 2) under the appositional sarcolemma between neighbouring intrafusal fibres than under free surfaces of the sarcolemma; and 3) in developing than in mature spindles. Factors such as location and age of the animal often interacted to produce an additive effect on the incidence of coated vesicles. Although there was a high incidence of coated vesicles at the postsynaptic surface under sensory terminals of bag2 fibres in 18 and 19 day gestational embryonic rats, it peaked in 4 day postnatal animals. The high incidence of coated vesicles at sensory endings supports the view that coated vesicles mediate neurotrophic interactions between afferents and intrafusal fibres during the critical late gestation and early postnatal time period, as sensory axons first contact their target fibres and exert a maximal directing influence on the differentiation of intrafusal fibre types. In addition, the preferential localization of coated vesicles under appositional rather than free surfaces of developing intrafusal fibres in 0-4 day rats suggests that they play a role in the transport of active substances among intrafusal fibres exhibiting different stages of maturity.  相似文献   

10.
Ontogenic relationships between levels of cyclic AMP-binding activity and protein kinase activity were examined in subcellular fractions of the cerebellum during the first 3 weeks of neonatal life. A progressive increase in cyclic AMP levels was paralleled by an increase in cyclic AMP bindign by the nuclear and cytosol fractions, but not by the mitochondrial or microsomal fractions. Utilization of heat-stable protein kinase inhibitor permtited distinction of the cyclic AMP-dependent from the cyclic AMP-independent form of the protein kinase population. Cyclic AMP-dependent protein kinase increased between days 4 and 20 to represent a progressively greater proportion of the protein kinase population. In all subcellular fractions alterations of cyclic AMP-dependent protein kinase during neonatal development paralleled changes in binding of cyclic AMP to protein in these fractions. In both the nuclear and cytosol fractions cyclic AMP-dependent protein kinase activity increased progressively between days 4 and 20, i.e. 64 ± 6 to 176 ± 16 and 79 ± 12 to 340 ± 12 pmol/min per mg protein, respectively. Cyclic AMP-dependent protein kinase activity in the mitochondrial fraction declined during the postnatal period studied, and in the microsomal fraction it rose to a non-sustained peak at 14 days and fell thereafter. Unlike the cyclic AMP-dependent form, cyclic AMP-independent protein kinase activity did not follow the ontogenetic pattern of cyclic AMP-binding activity. The specific activity of nuclear cyclic AMP-independent protein kinase did not change during days 4–20, and a non-sustained rise of cyclic AMP-independent protein kinase activity in both cytosol and microsomal fractions during the 7th–12th day tended to parallel more closely known patterns of postnatal proliferative growth. The findings reported herein indicate that the ontogenic pattern of cyclic AMP-dependent protein kinase varies between different subcellular fractions of the neonatal cerebellum, that these patterns parallel the changes in cyclic AMP-bidign activity, and suggest that the component parts of the cyclic AMP system may develop as a functional unit.  相似文献   

11.
Ca2+-dependent activator protein for secretion (CAPS) 1 is an essential cytosolic component of the protein machinery involved in large dense-core vesicle (LDCV) exocytosis and in the secretion of a subset of neurotransmitters. In the present study, we report the identification, cloning, and comparative characterization of a second mammalian CAPS isoform, CAPS2. The structure of CAPS2 and its function in LDCV exocytosis from PC12 cells are very similar to those of CAPS1. Both isoforms are strongly expressed in neuroendocrine cells and in the brain. In subcellular fractions of the brain, both CAPS isoforms are enriched in synaptic cytosol fractions and also present on vesicular fractions. In contrast to CAPS1, which is expressed almost exclusively in brain and neuroendocrine tissues, CAPS2 is also expressed in lung, liver, and testis. Within the brain, CAPS2 expression seems to be restricted to certain brain regions and cell populations, whereas CAPS1 expression is strong in all neurons. During development, CAPS2 expression is constant between embryonic day 10 and postnatal day 60, whereas CAPS1 expression is very low before birth and increases after postnatal day 0 to reach a plateau at postnatal day 21. Light microscopic data indicate that both CAPS isoforms are specifically enriched in synaptic terminals. Ultrastructural analyses show that CAPS1 is specifically localized to glutamatergic nerve terminals. We conclude that at the functional level, CAPS2 is largely redundant with CAPS1. Differences in the spatial and temporal expression patterns of the two CAPS isoforms most likely reflect as yet unidentified subtle functional differences required in particular cell types or during a particular developmental period. The abundance of CAPS proteins in synaptic terminals indicates that they may also be important for neuronal functions that are not exclusively related to LDCV exocytosis.  相似文献   

12.
–From a pool of hemispheres, optic lobes and cerebellum of chick 3 fractions containing synaptosomes have been prepared. They were obtained by subcellular fractionation of a homogenate and centrifugation of a crude mitochondrial suspension on a discontinuous Ficoll density gradient in iso-osmoticsucrose. The synaptosomal fractions were isolated from bands at the interface of 5–9, 9–12 and 12–16% Ficoll. The characterization of these fractions by marker enzymes, such as lactate dehydrogenase, acetyl-cholinesterase, monoamine oxidase, acid phosphatase and rotenone-sensitive and -insensitive NADH: cytochrome c reductase is reported. Electron microscopic analyses showed that the first fraction (AB) at the 5–9% Ficoll interface contained myelin and other membrane fragments as well as synaptosomes, the second fraction (C) at the 9–12% Ficoll interface contained mainly synaptosomes, and the third fraction (D) at the 12–16% Ficoll interface contained synaptosomes and free mitochondria. A fourth fraction (E) was obtained as a pellet, and was enriched in free mitochondria. There was fair agreement between the distribution pattern of the marker enzyme activities and the particles of the fractions seen by electron microscopy. The content of glycoprotein-bound N-acetylneuraminic acid and total phospholipid of these fractions has been determined. Relative to the mitochondrial fraction (E) the synaptosome fraction contained on basis of particulate protein, respectively, 2–3 times as much protein-bound N-acetylneuraminic acid and 10–20 per cent more total phospholipid.  相似文献   

13.
We have investigated the development of Ca2+-dependent gamma-[3H]aminobutyric acid [( 3H]GABA) release in superfused growth cone fractions isolated from rats between the postnatal ages of 1 and 11 days. We have compared this release with the overall morphology of the subcellular fractions, and identified those structures taking up [3H]GABA by electron microscopical autoradiography. In fractions isolated from rats between 1 and 5 days, K+-evoked [3H]GABA release was completely independent of extracellular Ca2+. After 5 days a Ca2+ dependency appeared, which increased with age, such that by 10 days approximately 50% of the K+-evoked release was Ca2+ dependent. Electron microscopical analysis showed that, at all ages, large numbers of GABAergic growth cones were present in the subcellular fractions. Up to postnatal day 5, the growth cones were synaptic vesicle sparse but, after this age, increasing numbers of synaptic vesicle-containing growth cones were seen. These results suggest that during maturation of GABAergic growth cones into synapses there is, initially, a mechanism for release that is independent of extracellular Ca2+ and that the appearance of a Ca2+-dependent [3H]GABA release from growth cones correlates with the appearance of synaptic vesicles.  相似文献   

14.
A rabbit antiserum to mediatophore, a nerve terminal membrane protein involved in calcium dependent ACh release, was raised after immunization with the purified protein. An immunological assay for mediatophore was then developed and the subcellular distribution of this protein in Torpedo electric organ fractions was studied. A good agreement was obtained between the distribution in the different fractions of the antigen and of mediatophore related acetylcholine releasing activity as determined by reconstitution in proteoliposomes. Mediatophore was highly concentrated in presynaptic plasma membranes of electric organ, while very low contents were observed in electric nerves and electric lobes. Although some mediatophore was found in synaptic vesicle fractions, this most probably resulted from presynaptic membrane contamination as evaluated with other presynaptic membrane markers. Nerve terminals of motor end-plates were strongly stained with anti-mediatophore antibodies.  相似文献   

15.
The postnatal sialylation of individual neural cell adhesion molecule (N-CAM) polypeptides by a developmentally regulated sialyltransferase in Golgi-enriched fractions isolated from rat brain is described. The 120-kilodalton polypeptide of N-CAM was found to be sialylated at each developmental age examined. This was in contrast to the 140- and 180-kilodalton N-CAM polypeptides which were only sialylated until postnatal day 10 and from postnatal day 12, respectively. Immunoblotting procedures demonstrated that all N-CAM polypeptides were expressed in the Golgi fractions at each developmental stage examined. The heavily sialylated "embryonic" form of N-CAM was found to be reexpressed at postnatal days 10 and 12, a time coincident with extensive fibre outgrowth. The "embryonic" form of N-CAM incorporated similar amounts of [14C]sialic acid into its constituent polypeptides reflecting the difference in sialic acid to protein ratio, as this form of N-CAM was virtually undetectable in the immunoblots of postnatal material.  相似文献   

16.
A cytofluorometric study of the total glycogen and its fractions in rat liver cells using the fluorescent PAS reaction was made during 1--7 days of the postnatal development. It was established that glycogen content was small on the first two days of development. The glycogen content increases only on the third day after birth. The glycogen of the rat liver cells during a first week of the postnatal development is different from that detected in adult liver cells in two aspects: in 3 day old hepatocytes soluble and stable glycogen fractions are equal, while in adult rat liver cells the former makes 80--90%; during the first week of the postnatal development, the stable fraction of rat liver cell is more labile, while in the adult rat liver the soluble fraction of glycogen is more labiles.  相似文献   

17.
Electron microscopy was used to study the process of ingrowth of nerve terminals in the primordia of sympathetic ganglia and the formation of specialized contacts. Nerve terminals appeared first in 12 day old embryos. In the forming ganglia of 13 day old embryos there are many preganglionic nerve terminals and processes of principal neuroblasts. The growth cones of nerve endings are usually distended and with transparent cytoplasm. The plasmalemmas of growth cones are lacking often the trilaminar structure. Synapses were observed first in 16 day old fetuses. They are axo-dendritic and axo-somatic ones. The number of synaptic contacts does not increase much during prenatal period. Presumptive afferent nerve terminals were found in the late fetuses.  相似文献   

18.
Synaptophysin and syntaxin-1 are membrane proteins that associate with synaptic vesicles and presynaptic active zones at nerve endings, respectively. The former is known to be a good marker of synaptogenesis; this aspect, however, is not clear with syntaxin-1. In this study, the expression of both proteins was examined in the developing human retina and compared with their distribution in postnatal to adult retinas, by immunohistochemistry. In the inner plexiform layer, both were expressed simultaneously at 11–12 weeks of gestation, when synaptogenesis reportedly begins in the central retina. In the outer plexiform layer, however, the immunoreactivities were prominent by 16 weeks of gestation. Their expression in both plexiform layers followed a centre-to-periphery gradient. The immunoreactivities for both proteins were found in the immature photoreceptor, amacrine and ganglion cells; however, synaptophysin was differentially localized in bipolar cells and their axons, and syntaxin was present in some horizontal cells. In postnatal-to-adult retinas, synaptophysin immunoreactivity was prominent in photoreceptor terminals lying in the outer plexiform layer; on the contrary, syntaxin-1 was present in a thin immunoreactive band in this layer. In the inner plexiform layer, however, both were homogeneously distributed. Our study suggests that (i) syntaxin-1 appears in parallel with synapse formation; (ii) synaptogenesis in the human retina might follow a centre-to-periphery gradient; (iii) syntaxin-1 is likely to be absent from ribbon synapses of the outer plexiform layer, but may occur at presynaptic terminals of photoreceptor and horizontal cells, as is apparent from its localization in these cells, which is hitherto unreported for any vertebrate retina.  相似文献   

19.
SYNTHESIS, MIGRATION AND TURNOVER OF PROTEIN IN RETINAL GANGLION CELLS   总被引:21,自引:7,他引:14  
Abstract— The synthesis, migration and turnover of proteins in retinal ganglion cells of the adult rabbit was studied after intraocular injections of [3H]leucine. It was shown that the isotope was rapidly incorporated into proteins of the retina and some of the proteins were subsequently transported out into the axons of the retinal ganglion cells down to the terminals. This intra-axonal transport of protein occurred at four different velocities; 150, 40, 6-12 and 2 mm/day respectively. The two most rapidly migrating phases of axonal transport were predominantly associated with light particulate fractions and had a relatively rapid turnover in the nerve terminals in the lateral geniculate body. The third phase of axonal transport which had a rate of 6-12 mm/day was possibly associated with the migration of mitochondria. The most slowly migrating proteins in the axon which moved at an average rate of 2 mm/day carried predominantly soluble proteins down to the nerve terminals. A minor part of this phase was metabolized locally in the axon with a half-life of about 14 days. When this slowly migrating phase had reached the nerve terminals in the lateral geniculate body, it was degraded with a half-life of 9-6 days. The different phases of axonal transport were of different magnitudes. As measured from the maximal amount of radioactivity present in the nerve terminals the relative amounts of radioactivity of the four phases were: 1,1 -8,1 -5 and 8-5.  相似文献   

20.
The chronology of development of spindle neural elements was examined by electron microscopy in fetal and neonatal rats. The three types of intrafusal muscle fiber of spindles from the soleus muscle acquired sensory and motor innervation in the same sequence as they formed--bag2, bag1, and chain. Both the primary and secondary afferents contacted developing spindles before day 20 of gestation. Sensory endings were present on myoblasts, myotubes, and myofibers in all intrafusal bundles regardless of age. The basic features of the sensory innervation--first-order branching of the parent axon, separation of the primary and secondary sensory regions, and location of both primary and secondary endings beneath the basal lamina of the intrafusal fibers--were all established by the fourth postnatal day. Cross-terminals, sensory terminals shared by more than one intrafusal fiber, were more numerous at all developmental stages than in mature spindles. No afferents to immature spindles were supernumerary, and no sensory axons appeared to retract from terminations on intrafusal fibers. The earliest motor axons contacted spindles on the 20th day of gestation or shortly afterward. More motor axons supplied the immature spindles, and a greater number of axon terminals were visible at immature intrafusal motor endings than in adult spindles; hence, retraction of supernumerary motor axons accompanies maturation of the fusimotor system analogous to that observed during the maturation of the skeletomotor system. Motor endings were observed only on the relatively mature myofibers; intrafusal myoblasts and myotubes lacked motor innervation in all age groups. This independence of the early stages of intrafusal fiber assembly from motor innervation may reflect a special inherent myogenic potential of intrafusal myotubes or may stem from the innervation of spindles by sensory axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号