首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
1. The development of glycerolkinase before and after birth was investigated in liver and kidney of rat and hamster. In rat liver, enzyme activity increased very slowly before birth and rapidly thereafter, reaching adult values at the 6th day of postnatal life. In hamster liver, glycerolkinase was considerably elevated already in utero, increased dramatically within the 1st day of postnatal life and reached adult values at the end of the 1st week. The development of hepatic glycerolkinase was compared with that of hepatic phosphoenolpyruvate carboxykinase of rat and hamster up to the 20th day of postnatal life. The different time-courses of the levels of these two enzymes before and after birth as well as the known kinetics of serum insulin, glucagon and corticosterone during that time suggested that none of these hormones is involved in the perinatal development of hepatic glycerolkinase activity. In contrast to liver, kidney glycerolkinase activity in both, rat and hamster, showed a delayed increase during the first week of postnatal life followed by a more pronounced elevation to adult values within the following 2 weeks. 2. When liver and kidney glycerolkinase activity was investigated during starvation (+/- refeeding), in alloxan diabetes(+/- insulin) and after adrenalectomy (+/- cortisol) no significant change in enzyme activity per g tissue could be detected either in liver or in kidney. However, total hepatic glycerolkinase activity was diminished during starvation as a consequence of decreasing liver weight. 3. Incorporation of U-[14C]-glycerol into CO2, lipids and glucose + glycogen by rat liver and kidney cortex slices was studied under the above gluconeogenetic conditions. Despite unchanged glycerolkinase activity in both organs, gluconeogenesis from glycerol was enhanced during starvation and in chronic alloxan diabetes, and could be reversed by refeeding and insulin replacement, respectively. 4. Feeding 20% of linolic acid to normal, alloxan-diabetic or adrenalectomized rats resulted in a significant increase in glycerolkinase activity in liver but not in kidney. 5. From the present findings it is suggested that the first step of gluconeogenesis from glycerol in liver and kidney is not influenced by glucagon, insulin and glucocorticoids, which are generally believed to regulate the rate of gluconeogenesis from non-glycerol precursors, but probably by the change in blood glycerol concentration.  相似文献   

2.
The content of cytochromes c + c1, b and a in brain and liver mitochondria in 7-day-old rats reaches the level seen in adult animals. Administration of L-T4 in a dose of 0.7 micrograms/g rat bw for 4 days before sacrifice results in activation of cytochrome synthesis in both test organs within the first week of the suckling rats' life. On the 20th day of the postnatal period the effect of T4 is seen only in the liver while the brain tissue turns out indifferent to the thyroid hormone. Thus, T4 activates cytochrome biosynthesis in brain mitochondria during the first week of the rats' life, that leads to the acceleration of the functional activity and higher differentiation of the developing brain mitochondria.  相似文献   

3.
The distribution of muscarinic cholinergic receptors, choline acetyl-transferase and acetylcholinesterase activities were measured in subcellular fractions of the rat striatum on the 5th and 15th days postnatally and in adulthood. The receptor density in the striatum of 5 and 15-day-old rats was 15%, respectively, of the adult value. Similar increases of the receptors could be detected in the synaptosomal and microsomal fractions in the postnatal life of rat. The activity of choline acetyltransferase on the same days was 15% and 28%. In the subcellular fractions, the enzyme activity was the highest in the microsomal fraction on both the 5th and 15th days postnatally. The activity of acetylcholinesterase in the homogenate was 6% of the adult value in the 5-day-old rat striatum, while in the synaptosomal fraction it was 11% and 47% of the adult value on the 5th and 15th days, respectively. Our results show that the development of the muscarinic cholinergic receptors precedes that of the two cholinergic enzymes in both 5 and 15-day-old rat striatum. This may suggest an early perikaryonal synthesis and the fast translocation of receptors to the axon terminals during ontogenetic development.  相似文献   

4.
A A Karelin 《Ontogenez》1978,9(2):154-159
The activity of enzymes of creatin biosynthesis in the rat liver and kidneys has been studied during the postnatal development. The activity of transamidinase of kidneys (E.C. 2.1.4.1.) increases gradually and linearly up to the 20th day after birth, then decreases on the 12th--25th days and increases again up to the level characteristic of the adult organism. The activity of guanidine acetate-N-methyl transferase (E.C. 2.1.1.2.) is rather high during the first days of postnatal development, then decreases and from the 15th day on increases again attaining the maximal level by the 23rd--25th day. The second period of the increase in the enzyme activity begins on the 29th--30th day of postnatal development. The results obtained suggest that the sharp increase of activity of guanidine acetate-N-methyl transferase of the rat liver during the early postnatal development is realized with the participation of cyclic 3',5'-AMP which appears to mediate the glucagon action.  相似文献   

5.
We have investigated the expression of Doublecortin (Dcx) protein in the developing cerebellum of mouse from postnatal 2nd day to postnatal 22nd day and in young adults by immunohistochemistry. Strong expression of Dcx was present in the inner zone of the external granule cell layer, and remained strong while postmitotic granule cell precursors were present in this transitory layer. Descending granule cell precursors exhibited Dcx immunostaining not only while migrating but for a short time also after their settlement. Dcx-immunostained cells appeared in deep cerebellocortical territories and in the cerebellar white matter during the first postnatal week. These bipolar cells were arranged in the sagittal plane and built up transitory migratory streams during the second postnatal week and their number gradually decreased during the third postnatal week. Upward migration of bipolar cells was observed while leaving the migratory streams, penetrating the internal granule cell layer and the molecular layer. These cells were considered as precursors of late migrating molecular layer interneurons. However, a proportion of Dcx-immunostained cells underwent a bipolar-to-multipolar dendritic remodellation and - on the basis of strong morphological similarities - was taken for "multipotent progenitor cells", described recently in the neocortex of adult rat.  相似文献   

6.
The appearance of presumptive NO-ergic nerve cells and their differentiation in the rat neocortex were studied. For this purpose, a comparative analysis of the development and differentiation of NADPH-D-positive neurons in the neocortex transplants taken from the embryos of different ages and transplanted in the occipital cortex of adult rats and in the normally developing cerebral cortex. The nervous tissue was stained histochemically for NADPH-D. The results we obtained suggest that no NADPH-D-containing neurons were found in the transplants from 15-day embryos, while they developed in those from 18-day embryos. Hence, precursors of NO-ergic neurons were still absent in the presumptive neocortex of 15-day embryos and appeared only on day 16-18 of embryogenesis. Expression of NADPH-D begins in them only within four to five days, but the neurons are differentiated during a relatively short period of time. Most NADPH-D-positive neurons reach their structural-functional maturity already by the end of the first week of postnatal development, while their complete maturation takes place by the end of the second week of postnatal development.  相似文献   

7.
A biochemical and quantitative morphologic study of presynaptic endings during postnatal development was carried out in subcellular fractions from cerebral cortex of 1, 4, 8, 12, and 18 day old and adult rats. Crude mitochondrial fractions were subfractionated in Ficoll gradients and all resulting fractions were examined in the electron microscope. Presynaptic terminals and other intact processes were counted. Protein content and enzyme activities were assayed in the fractions and in total brain homogenate. In the first and fourth day of life, most of the presynaptic terminals were found in two "light" fractions, between supernatant and 7.5% Ficoll, where they accounted, respectively, for 6 and 22% of all the processes. Progressively with age, more presynaptic terminals were found in the traditional "synaptosomal" fractions between 7.5 and 13% Ficoll. In that region of the gradient, 40, 54, 75, and 89% of the processes were presynaptic endings at 8, 12, and 18 postnatal days and in the adult animal, respectively. A similar shift from the lighter to the heavier fractions was observed in the distribution of choline acetyltransferase and acetylcholinesterase between days 8 and 12. The rate of increase of the specific activity of these two enzymes paralleled that of the percentage of the presynaptic endings after day 8. This study indicates that subcellular fractions can be used to study formation and maturation of synapses during postnatal development.  相似文献   

8.
We studied the spatial and temporal pattern of basic fibroblast growth factor (bFGF) immunoreactivity in the rat adrenal gland during postnatal development. In the cortex the glomerulosa zone reveals a strong anti-bFGF immunoreactivity at all developmental ages studied. In the fasciculata zone the high number of anti-bFGF immunoreactive cells in the first week decreases during the second and third week. The late developing reticularis zone shows only few anti-bFGF labeled cells at all postnatal ages. This distributional pattern of bFGF immunoreactivity matches that of mitotic activity in the rat adrenal cortex strengthening the role of bFGF as an autocrine growth factor for adrenocortical cells. In the medulla anti-bFGF positive chromaffin cells become detectable at postnatal day (P) 8 and increase in number during the second and third week. In the adult rat the staining intensity of the chromaffin cells was higher than at P18. In the adult medulla bFGF colocalizes with noradrenaline suggesting its presence in a chromaffin cell subpopulation. In accordance with previous results the role of the chromaffin cell bFGF as a neurotrophic factor for preganglionic sympathetic neurons is discussed.  相似文献   

9.
The effects of weaning on the level of glycogen and the activities of glycogen synthase and phosphorylase were determined in rat liver. Glycogen levels in rat liver increased at the start of the weaning period and reached a plateau on postnatal day 20. The active form of glycogen synthase increased until postnatal day 19 and then declined. Total glycogen synthase (active + inactive) remained high during the suckling period and declined to a new low level during the weaning period. The activity ratio (active/total) increased from day 16 to days 18-22 and then decreased to the same level as found during the suckling period. At the onset of weaning the active form of phosphorylase decreased, whereas total phosphorylase initially increased and then decreased after postnatal day 20. Both forms of phosphorylase increased again at the end of the weaning period. The activity ratio decreased at the start of weaning and remained low throughout the rest of the weaning period. The effects of premature weaning were similar to those observed in normally weaned animals, but the changes occurred sooner and were more pronounced.  相似文献   

10.
Summary We studied the spatial and temporal pattern of basic fibroblast growth factor (bFGF) immunoreactivity in the rat adrenal gland during postnatal development. In the cortex the glomerulosa zone reveals a strong anti-bFGF immunoreactivity at all developmental ages studied. In the fasciculata zone the high number of anti-bFGF immunoreactive cells in the first week decreases during the second and third week. The late developing reticularis zone shows only few anti-bFGF labeled cells at all postnatal ages. This distributional pattern of bFGF immunoreactivity matches that of mitotic activity in the rat adrenal cortex strengthening the role of bFGF as an autocrine growth factor for adrenocortical cells. In the medulla anti-bFGF positive chromaffin cells become detectable at postnatal day (P) 8 and increase in number during the second and third week. In the adult rat the staining intensity of the chromaffin cells was higher than at P18. In the adult medulla bFGF colocalizes with noradrenaline suggesting its presence in a chromaffin cell subpopulation. In accordance with previous results the role of the chromaffin cell bFGF as a neurotrophic factor for preganglionic sympathetic neurons is discussed.  相似文献   

11.
12.
Summary Inner ears from neonatal and adult Mongolian gerbils were examined to determine developmental changes in the content of glycogen and glycoconjugates as shown by histochemical application of the jack bean lectin, concanavalin A (con A). Sections of fixed paraffin-embedded inner ears were stained using the con A-horseradish peroxidase sequence in conjunction with prior treatments including periodate oxidation with or without subsequent reduction and diastase digestion. In adult inner ear, brief periodate oxidation followed by reduction and con A-horseradish peroxidase staining demonstrated abundant glycogen in Deiters' cells and in fibrocytes of the spiral ligament and submacular plaque. This procedure also detected diastase-resistant glycoprotein, probably containing N-linked complex-type saccharides, in the basal and marginal regions of the tectorial membrane and in the otolithic membrane. During morphogenesis and maturation, various cochlear cells showed changes in their glycogen content possibly related to stage-specific energy requirements. Cellular glycogen storage reached adult levels by postnatal day 14. The tectorial membrane gradually acquired con A reactivity during the first postnatal week. Thus, application of modified con A staining procedures has provided further knowledge for comparison with data from previous biochemical and histochemical studies of carbohydrate-rich components in the inner ear.  相似文献   

13.
We have investigated the intracellular distribution of several enzymes on homogenates of late foetal, early postnatal and adult rat livers. Homogenates were subjected to differential centrifugations in 0.25 M sucrose and four fractions were isolated which corresponded to the N (nuclear) ML (total mitochondrial) P (microsomal) and S (soluble) fractions of de Duve et al. (1955). In general the age of the animal did not significantly affect the distribution pattern. Reference enzymes of mitochondria, lysosomes and peroxisomes were mainly recovered in the total mitochondrial fraction (ML). Glucose-6-phosphatase and esterase, both located in the endoplasmic reticulum, were chiefly associated with the microsomal fraction P together with galactosyltransferase (a reference enzyme of the Golgi apparatus). 5'-Nucleotidase, (a plasma membrane enzyme) exhibits a bimodal distribution and is mainly recovered in the N and the P fractions. Such results indicate that the membrane composition of the fractions isolated by the fractionation scheme was used, does not appreciably differ for the late foetal, early postnatal and adult rat livers. An analytical fractionation of the mitochondrial (ML) fraction of livers at different stages of development was performed by isopycnic centrifugation in sucrose gradients and in glycogen gradients using sucrose solutions of various concentrations as the solvents. The distribution of mitochondria, lysosomes and peroxisomes were assessed by establishing the distribution of their reference enzymes. Some physical characteristics of the particles were deduced from the manner in which the distributions were influenced by the sucrose concentration of the centrifugation medium. The distribution of liver mitochondrial enzymes one day prenatal differs strikingly from that of enzymes one day postnatal; foetal mitochondria seem characterized by a high osmotic space and a high hydrated matrix density; neonatal mitochondria seem devoid of an osmotic space and the density of their hydrated matrix is markedly lower than that of the foetal mitochondria. As ascertained by the distribution of mitochondrial enzymes in a sucrose 2H2O gradient, the high density of a foetal mitochondria matrix does not mainly originate from a lower amount of hydration water. The behavior of lysosomal enzymes in media with increasing concentrations of sucrose suggests that lysosomes originating from late foetal rat liver are endowed with a very small osmotic space. As for the peroxisomes, our results do not display significant behavior differences in centrifugations that would indicate physicochemical changes of these particles during the perinatal period.  相似文献   

14.
Costameres, vinculin-containing structures found in skeletal and cardiac muscle, are thought to anchor the Z-discs of the peripheral myofibrils to the sarcolemma. Several lines of evidence indicate that two different sets of costameres, integrin- and N-cadherin-based, are present in cardiac muscles. In this study, immunoblot analysis was used to study the expression of N-cadherin, alpha-catenin, beta-catenin, vinculin, talin, and laminin in rat cardiac muscles at embryonic days 15 and 19, the day of birth (postnatal day 0), postnatal weeks 1, 2, 3, and 4, and in the adult. Double immunofluorescence microscopy was performed to study the spatial and temporal distribution of these two sets of costameres in rat cardiomyocytes. Costameric staining for N-cadherin, codistributed with beta-catenin, was strong from embryonic day 15 up to postnatal week 2, gradually decreased after postnatal week 3, and was undetectable at postnatal week 4 and in the adult. Confocal microscopy showed that N-cadherin colocalized with alpha-actinin at cortical myofibrils. Double-labeling of beta-catenin and talin indicated the coexistence of N-cadherin/catenin- and integrin/talin-based costameres in rat cardiac muscle. Although beta-catenin and vinculin were co-localized at the costamere of cardiomyocytes from embryonic day 15 to postnatal week 3, staining for beta-catenin or talin was mutually exclusive at all stages examined. These results demonstrate the simultaneous, but mutually exclusive, existence of N-cadherin/catenin- and integrin/talin-based costameres in rat cardiomyocytes between late embryonic stages and postnatal week 3, while only integrin/talin-based costameres were found in adult rats. The N-cadherin/catenin-based costameres in rat cardiac muscles may play a role in myofibrillogenesis similar to that of their counterparts in cultured cardiomyocytes.  相似文献   

15.
Differential ontogeny of type 1 and type 2 benzodiazepine receptors   总被引:9,自引:0,他引:9  
The postnatal development of Type 1 and Type 2 benzodiazepine receptors in rat cerebral cortex was studied using CL 218,872, a novel triazolopyridazine. On postnatal day 1 most 3H-flunitrazepam binding sites appeared to be Type 2 receptors, which increased rapidly during the first week of life and reached adult levels by 3–4 weeks of age. Type 1 receptors, on the other hand, represented only a small percentage of the binding sites on postnatal day 1 and did not begin to increase in number until approximately 7–16 days of age. These results demonstrate a differential postnatal development of two sub-populations of benzodiazepine receptors.  相似文献   

16.
We have investigated developmental profiles of ATP-dependent palmityl-CoA synthetase, acetyl-CoA synthetase, palmitylcarnitine transferase, and fatty acid oxidation in heart and liver of developing chicks and rats. Palmityl-CoA synthetase activity of rat liver and heart homogenates increased 6- to 10-fold during the first postnatal week. Chick embryo heart activity peaked between 13 and 16 days of development. The activity of embryonic chick livers was bimodal with highest activity seen at 7 and 16 days of development. Posthatching values were approximately 50–75% of the peak embryonic levels. Acetyl-CoA synthetase activity of rat liver and heart homogenates was low but also showed developmental increases following birth. Acetyl-CoA synthetase activity of chick embryonic hearts was greatest at 16 days of development. Palmitylcarnitine transferase activity of rat liver and heart homogenates showed a striking increase during the first week of life. Chick heart activity was similar to that observed for palmityl-CoA synthetase with a peak between 13 and 16 days of embryonic development. Coincident with the postnatal rise in fatty acid activation and palmitylcarnitine transferase activity in developing rats, the oxidation of palmityl-CoA plus carnitine and of palmitylcarnitine increased from barely measurable levels at birth to adult levels by 30 days of age. The increases that we observe probably relate to changes in the specific activity of the enzymes as well as to an increase in the absolute number of mitochondria during development.  相似文献   

17.
Catalytic activity and immunoreactivity of glycogen phosphorylase were studied in pre- and postnatal rat brain. The catalytic activity was assayed in brain homogenates; immunoreactivity was investigated by immunoblot analysis using a monoclonal anti-bovine brain glycogen phosphorylase antibody. The cellular localization and intensity of immunoreactivity were analysed on paraffin-embedded sections utilizing the same monoclonal antibody. The catalytic activity increased 10-fold from embryonic day 16 to adult; immunoreactivity became detectable on embryonic day 16 and increased in intensity as the enzyme activity rose to adult values. The first cellular elements to be stained immunohistochemically were ependymal cells lining the ventricles, ependymal cells of the choroid plexus, meningeal cells and a selected population of neurons in the brain stem. The immunoreactivity of plexus cells and meningeal cells was reduced or absent in the adult rat brain. The earliest appearance of glycogen phosphorylase immunoreactivity in astroglial cells was seen at postnatal day 9 in the hippocampus. The staining pattern of the adult brain was reached at day 22 post partum. The developmental changes in glycogen deposition and in glycogen phophorylase activity and immunoreactivity may indicate a variable physiological role of glycogen metabolism for different cell types in the pre- and postnatal periods.Dedicated to Professor Helmut Leonhardt on the occasion of his 75th birthday  相似文献   

18.
Hormonal regulation of glycogen metabolism in neonatal rat liver   总被引:5,自引:3,他引:2  
1. The development of active and inactive phosphorylase was determined in rat liver during the perinatal period. No inactive form could be found in tissues from animals less than 19 days gestation or older than the fifth postnatal day. 2. The regulation of phosphorylase in organ cultures of foetal rat liver was examined. None of the agents examined [glucagon, insulin or dibutyryl cyclic AMP (6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate)] changed the amount of phosphorylase activity. 3. Glycogen concentration in these explants were nevertheless decreased more than twofold by 4h of incubation with glucagon or dibutyryl cyclic AMP. Incubation with insulin for 4h increased the glycogen content twofold. 4. Glycogen synthetase activity was examined in these explants. I-form activity (without glucose 6-phosphate) was found to decrease by a factor of two after 4h of incubation with dibutyryl cyclic AMP, whereas I+D activity (with glucose 6-phosphate) remained nearly constant. Incubation for 4h with insulin increased I-form activity threefold, with only a slight increase in I+D activity. 5. When explants were incubated with insulin followed by addition of dibutyryl cyclic AMP, the effects of insulin on glycogen concentration and glycogen synthetase activity were reversed. 6. These results indicate that the regulation of glycogen synthesis may be the major factor in the hormonal control of glycogen metabolism in neonatal rat liver.  相似文献   

19.
Changes in cyclic AMP, protein kinase, phosphorylase kinase, and phosphorylase levels were examined during development in the rat. In liver, cyclic AMP increased prenatally and for the first 10 postnatal days; protein kinase levels (both cyclic AMP-dependent and independent activities) were high prenatally and declined during the first 10 postnatal days. Both phosphorylase and phosphorylase kinase in liver increased rapidly prenatally and more slowly postnatally. In heart and skeletal muscle cyclic AMP increased prenatally and for the first 10 days after birth, then declined. Protein kinase in both these tissues was highest prenatally and declined perinatally. In heart and skeletal muscle phosphorylase and phosphorylase kinase activities were extremely low prenatally although both enzymes were largely in their activated forms. Postnatally the nonactive form of both enzymes increased greatly throughout 30 postnatal days. In all three tissues, particularly heart and skeletal muscle, these changes could not be correlated with levels of tissue glycogen.  相似文献   

20.
Phosphorylation and decarboxylation of mevalonate in chick liver and brain was investigated during early post hatching stages of development. In chick liver, both mevalonate kinase and mevalonate-5-phosphate kinase increased their activity from day 5 of age while pyrophosphate decarboxylase activity remained low during the first days after hatching, increased sharply up to day 9 of age, and remained practically unchanged thereafter. The developmental pattern obtained in brain shows a slight decrease in the phosphorylation and decarboxylation of mevalonate after the first week of postnatal development. Further studies were performed using the specific substrate of mevalonate-5-pyrophosphate decarboxylase, corroborating the results obtained using mevalonate as substrate. Changes in hepatic decarboxylase were more pronounced than those observed in mevalonate-phosphorylating enzymes, thus suggesting an important role for decarboxylase in the control of cholesterogenesis during postnatal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号