首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Based on their lithologic characteristics and stratal geometries, the Middle Cambrian Fasham and Deh-Sufiyan Formations of the lower Mila Group in the Central Alborz, northern Iran, exhibit 39 lithofacies representing several supratidal to deep subtidal facies belts. The siliciclastic successions of the Fasham Formation are divided into two facies associations, suggesting deposition in a tide-dominated, open-mouthed estuarine setting. The mixed, predominantly carbonate successions of the Deh-Sufiyan Formation are grouped into ten facies associations. Four depositional zones are recognized on the Deh-Sufiyan ramp: basinal, outer ramp (deep subtidal associations), mid ramp (shallow subtidal to lower intertidal associations), and inner ramp (shoal and upper intertidal to supratidal associations). These facies associations are arranged in small-scale sedimentary cycles, i.e., peritidal, shallow subtidal, and deep subtidal cycles. These cycles reflect spatial differences in the reaction of the depositional system to small-scale relative sea-level changes. Small-scale cycles are stacked into medium-scale cycles that in turn are building blocks of large-scale cycles. Systematic changes in stacking pattern (cycle thickness, cycle type, and facies proportion) allow to reconstruct long-term changes in sea-level. Six large-scale cycles (S1–S6) have been identified and are interpreted as depositional sequences showing retrogradational (transgressive systems tract) and progradational (highstand systems tract) packages of facies associations. The six depositional sequences provide the basis for inter-regional sequence stratigraphic correlations and have been controlled by eustatic sea-level changes.  相似文献   

2.
Due to a long-term transgression since the Early Cambrian, an extensive shallow-water carbonate platform was developed in the entire Tarim Basin (NW China). During the deposition of the Yingshan Formation (Early-Middle Ordovician), a carbonate ramp system was formed in the intrashelf basin in the Bachu-Keping area of the western basin. Four well-exposed outcrop sections were selected to investigate their depositional facies, cycles, and sequences, as well as the depositional evolution. Detailed facies analyses permit the recognition of three depositional facies associations, including peritidal, semi-restricted subtidal, and open-marine subtidal facies, and eleven types of lithofacies. These are vertically arranged into meter-scale, shallowing-upward peritidal, semi-restricted subtidal, and open-marine subtidal cycles, in the span of Milankovitch frequency bands, suggesting a dominant control of Earth’s orbital forcing on the cyclic sedimentation on the platform. On the basis of vertical facies (or lithofacies) and cycle stacking patterns, as well as accommodation changes illustrated graphically by Fischer plots at all studied sections, six third-order depositional sequences are recognized and consist of lower transgressive and upper regressive parts. In shallow depositional settings, the transgressive packages are dominated by thicker-than-average, shallow subtidal cycles, whereas the regressive parts are mainly represented by thinner-than-average, relatively shallow subtidal to peritidal cycles. In relatively deep environments, however, the transgressive and regressive successions display the opposite trends of cycle stacking patterns, i.e., thinner-than-average subtidal cycles of transgressive packages. Sequence boundaries are mainly characterized by laterally traceable, transitional zones without apparent subaerial exposure features. Good correlation of the long-term changes in accommodation space inferred from vertical facies and cycle stacking patterns with sea-level fluctuations elsewhere around the world suggests an overriding eustatic control on cycle origination, platform building-up and evolution during the Early-Middle Ordovician, although with localized influences of syndepositional faulting and depositional settings.  相似文献   

3.
In this paper, the sedimentology and the stratigraphic architecture of the Devonian Santa Lucia Formation in the Cantabrian Mountains of NW-Spain are described. The Santa Lucia Formation consists of 11 different facies that can be attributed to peritidal/lagoonal, intertidal and subtidal facies associations. These facies associations are arranged in small-scale sedimentary cycles. Three different settings of small-scale sedimentary cycles are recognized: intertidal/supratidal, shallow subtidal/intertidal and subtidal cycles. These cycles reflect spatial differences in the reaction of the depositional system to small-scale relative sea-level changes. Small-scale stratigraphic cycles are stacked into seven medium-scale cycles that in turn are integral parts of three larger-scale cycles. Most of the Santa Lucia Formation (sequences 2–6) forms one major large-scale cycle, whereas sequences 1 and 7 are part of an underlying and an overlying cycle, respectively. Eustatic sea-level changes exerted major control on the formation of these large-scale sequences, whereas the medium-scale cycles seem to be co-controlled by regional tectonism and eustasy. Small-scale cycles seem to be the product of high frequency, eustatic sea-level changes. During the deposition of the Santa Lucia Formation, the morphology of the carbonate platform changed from a gently south-dipping ramp to a rimmed shelf and back to a gently dipping ramp.  相似文献   

4.
The Lower Cretaceous Fahliyan Formation, part of the Khami Group, unconformably overlies the Hith Formation and is conformably overlain by the Gadvan Formation in the study area in southern Iran. The Fahliyan Formation is a reservoir rock in Zagros Basin. This formation was investigated by a detailed petrographic analysis in order to clarify the depositional facies and sedimentary environment in the Kuh-e Siah Anticline in Boushehr Province. Petrographic studies led to the recognition of 25 microfacies that were deposited in four facies belts: tidal flat, lagoon, and shoal in inner ramp and shallow open-marine in mid-ramp environment. An absence of turbidite deposits, reefal facies, and gradual facies changes indicate that the Fahliyan Formation was deposited on a carbonate ramp. Calcareous algae and benthic foraminifera are abundant in the shallow marine carbonates of the Fahliyan Formation. These skeletal grains have been studied in order to increase the understanding of their distributions in time and space. A total of ten genera belonging to different groups of calcareous algae and 16 genera of benthic foraminifera are recognized from the Fahliyan Formation at Kuh-e Siah section.  相似文献   

5.
Summary The Middle Ordovician Duwibong Formation (about 100 m thick), Korea, comprises various lithotypes deposited across a carbonate ramp. Their stacking patterns constitute several kinds of meter-scale, shallowing-upward carbonate cycles. Lithofacies associations are grouped into four depositional facies: deep- to mid-ramp, shoal-complex, lagoonal, and tidal-flat facies. These facies are composed of distinctive depositional cycles: deep subtidal, shallow subtidal, restricted marine, and peritidal cycles, respectively. The subtidal cycles are capped by subtidal lithofacies and indicate incomplete shallowing to the peritidal zone. The restricted marine and peritidal cycles are capped by tidal flat lithofacies and show evidence of subaerial exposure. These cycles were formed by higher frequency sea-level fluctuations with durations of 120 ky (fifth order), which were superimposed on the longer term sea-level events, and by sediment redistribution by storm-induced currents and waves. The stratigraphic succession of the Duwibong Formation represents a general regressive trend. The vertical facies change records the transition from a deep- to mid-ramp to shoal, to lagoon, into a peritidal zone. The depositional system of the Duwibong Formation was influenced by frequent storms, especially on the deep ramp to mid-ramp seaward of ooid shoals. The storm deposits comprise about 20% of the Duwibong sequence.  相似文献   

6.
The depositional geometry and facies distribution of an Early Miocene (Burdigalian) carbonate system in the Perfugas Basin (NW Sardinia) comprise a well-exposed example of a transition from a ramp to a steep-flanked platform. The carbonate succession (Sedini Limestone Unit) is composed of two depositional sequences separated by a major erosional unconformity. The lower (sequence 1) records a ramp dominated by heterozoan producers and the upper (sequence 2) is dominated by photozoan producers and displays a gradual steepening of the depositional profile into a steep-flanked platform. This paper shows the process of creating a digital outcrop model including a facies model. This process consists of combining field data sets, including 17 sedimentary logs, and a spatial dataset consisting of differential global positioning system data points measured along key stratigraphic surfaces and sedimentary logs, with the goal of locking traditional field observations into a 3D spatial model. Establishing a precise geometrical framework and visualizing the overall change in the platform geometry and the related vertical and lateral facies variations of the Sedini carbonate platform, allows us to better understand the sedimentary processes leading to the geometrical turn-over of the platform. Furthermore, a detailed facies modeling helps us to gain insight into the detailed depositional dynamics. The final model reproduces faithfully the depositional geometries observed in the outcrops and helps in understanding the relationships between facies and architectural framework at the basin scale. Moreover, it provides the basis to characterize semiquantitatively regional sedimentological features and to make further reservoir and subsurface analogue studies.  相似文献   

7.
When quantifying sedimentary processes on shallow carbonate platforms, it is important to know the high-frequency accommodation changes through time. Accommodation changes in cyclic successions are often analysed by simply converting cycle thickness to Fischer plots. This approach is not satisfactory, because it does not account for differential compaction, possible erosion, sea-level fall below the depositional surface, or subtidal cycles. An attempt is made here to reconstruct a realistic, high-frequency accommodation and sea-level curve based on a detailed facies and cyclostratigraphical analysis of Middle Berriasian to Lower Valanginian sections in the French Jura Mountains. The general depositional environment was a shallow-marine carbonate platform on a passive margin. Our approach includes the following steps: (1) facies interpretation; (2) cyclostratigraphical analysis and identification of Milankovitch parameters in a well-constrained chronostratigraphic framework; (3) differential decompaction according to facies; (4) estimation of depth ranges of erosion and vadose zone; (5) estimation of water-depth ranges at sequence boundaries and maximum flooding intervals; (6) estimation of mean subsidence rate; (7) classification of depositional sequences according to types of facies evolution: ‘catch-up’, ‘catch-down’, ‘give-up’, or ‘keep-up’; (8) classification of depositional sequences according to long-term sea-level evolution: ‘rising’, ‘stable’, ‘falling’; (9) calculation of ‘eustatic’ sea-level change for each depositional sequence using the parameters inferred from these scenarios, assuming that sea-level cycles were essentially symmetrical (which is probable in Early Cretaceous greenhouse conditions); (10) calculation of a sea-level curve for each studied section; (11) comparison of these curves among each other to filter out differential subsidence; (12) construction of a ‘composite eustatic’ sea-level curve for the entire studied platform; (13) spectral analysis of the calculated sea-level curves. Limitations of the method are those common to every stratigraphic analysis. However, the method has the potential to improve the original cyclostratigraphical interpretations and to better constrain the high-frequency sea-level changes that control carbonate production and sediment fluxes.  相似文献   

8.
The Lower Devonian reefs of the Urals were formed in two different environmental settings: (1) the Novaya Zemlya-West-Uralian reefs were rigid organic structures that grew at a passive platform at the eastern margin of Baltica; (2) reefal limestones from the Eastern Urals developed in an island arc during a phase of volcanism. The reef belts can be traced for more than 2,500 km. The largest barrier reefs (up to 1,500 m thick) formed during the Pragian-Lower Emsian (West-Urals zone) and Emsian (East-Urals zone). They are characterized by rather uniform faunal and sedimentary features from the Arctic Ocean as south as near the Aral Lake. The Uralian reef facies was constructed mainly with algal and microbial communities (calcimicrobes and cyanobacteria) in association with low-diverse metazoan assemblages. In the Lower Devonian reefs of both regions, there are similar groups of organisms comprising some of the major taxa of reef-builders and reef-dwellers. The distinctive feature of the Lower Devonian reefs of both regions is the stromatolite-like framework structure. A clear palaeobiogeographic link is obvious between West-Uralian and East-Uralian environment settings during the Early Devonian.  相似文献   

9.
An unusual Pleistocene patch reef is exposed in a coastal cliff at Grotto Beach, San Salvador, Bahamas. The reef is a coralline framestone constructed mainly by Porites astreoides together with a few large heads of Diploria strigosa and Montastrea annularis, and is capped by a dense thicket of Neogoniolithon strictum that is interpreted as marking the subtidal/intertidal boundary. The reef is flanked to the northeast by laminated to low-angle cross-laminated intraclastic grainstones and to the southwest by skeletal rudstone of reefal and interreefal derivation. Uranium-series dating of pure aragonite from a Diploria corallum yielded an age of 123 000±9000 years. Reef growth began on an erosional surface underlain by steeply crossbedded eolian grainstone. As the reef grew upward, it also grew laterally over adjacent penecontemporaneous subtidal sediments. The reef was eventually buried by 2.3 m of shallow subtidal and beach sediments that apparently prograded seaward during a highstand, or possibly while sea level was still rising. The shallow subtidal sediments are mainly peloidal, ooidal and skeletal grainstones that are pervasively bioturbated. The overlying beach facies comprises predominantly laminated, sparsely burrowed grainstone. The beach and shallow subtidal facies contain boulders of fine-grained laminated grainstone that are interpreted as storm-tossed blocks of beachrock. Living analogs of the Grotto Beach fossil reef lie off East Beach, San Salvador. Several of these have a flourishing cap of Neogoniolithon that extends above low-tide level and we believe that the Neogoniolithon cap of Grotto Beach reef did likewise. Wherever found in the stratigraphic record this facies should serve to identify the subtidal/intertidal boundary. The uppermost Pleistocene beach sediments associated with Grotto Beach fossil reef lie 5.8 m above present-day mean sea level, which ist strong evidence that this portion of San Salvador has undergone little subsidence since the Grotto Beach section was deposited.  相似文献   

10.
The internal facies and sedimentary architecture of an Upper Jurassic inner carbonate ramp were reconstructed after the analysis and correlation of 14 logs in a 1 × 2 km outcrop area around the Mezalocha locality (south of Zaragoza, NE Spain). The studied interval is 10–16 m thick and belongs to the upper part of the uppermost Kimmeridgian–lower Tithonian Higueruelas Fm. On the basis of texture and relative proportion of the main skeletal and non-skeletal components, 6 facies and 12 subfacies were differentiated, which record subtidal (backshoal/washover, sheltered lagoon and pond/restricted lagoon) to intertidal subenvironments. The backshoal/washover subenvironment is characterized by peloidal wackestone–packstone and grainstone. The lagoon subenvironment includes oncolitic, stromatoporoid, and oncolitic-stromatoporoid (wackestone and packstone) facies. The intertidal subenvironment is represented by peloidal mudstone and packstone–grainstone with fenestral porosity. Gastropod-oncolitic (wackestone–packstone and grainstone) facies with intercalated marl may reflect local ponds in the intertidal or restricted lagoon subenvironments. Detailed facies mapping allowed us to document 7 sedimentary units within a general shallowing-upward trend, which reflect a mosaic distribution, especially for stromatoporoid and fenestral facies, with facies patches locally more than 500 m in lateral extent. External and internal factors controlled this heterogeneity, including resedimentation, topographic relief and substrate stability, combined with variations in sea-level. This mosaic facies distribution provides useful tools for more precise reconstructions of depositional heterogeneities, and this variability must be taken into account in order to obtain a solid sedimentary framework at the kilometer scale.  相似文献   

11.
Summary Following the demise of the stromatoporoid-coral reef community in Late Frasnian time, Lower Carboniferous carbonate shelf profiles possessed a ramp geometry, with major organic buildups represented by mud-rich mounds. Microfacies petrography of the exceptionally well-preserved Upper Viséan (Lower Carboniferous) carbonate ramp of the Béchar Basin, Algerian Sahara, may well contribute significantly to our understanding of the paleoecological zonation of Carboniferous non-rimmed platforms, and of the still enigmatic mounds commonly referred to as Waulsortian banks or mounds. Facies are grouped into two broad groups: (a) a mound facies group which comprises sponge wackestone-bafflestone, sponge-fenestellid bafflestone-wackestone, crinoid wackestone-packstone, and bedded flanks of intraclastic wackestone-packstone, all four facies composing the actual mud-rich mounds, and (b) a supramound facies group composed of coral-microbial framestone, crinoid packstone-grainstone, algal-foraminiferal grainstone and oolite grainstone. Calcareous algae are important bathymetric indicators and are used to delineate three bathymetric zones based on light penetration: the aphotic zone, which contains no calcareous algae; the dysphotic zone, where there is little ambient light, and which is characterized by the presence of red algae (Fasciella, Ungdarella, Stacheia, Epistacheoides) and absence of green algae; and the euphotic zone, which receives the full spectrum of sunlight, and is characterized by the occurrence of both green algae (Koninckopora, Kamaenella, Kamaena, Palaeoberesella, Calcisphaera, Anthracoporellopsis, Issinella, Exvotarisella) and red algae. Integration of algal zonation, distribution of the other biota, and recurrence of distinct assemblages, enable recognition of seven depth-related benthic assemblages. Together with the physical properties of the facies, the benthic assemblages were used to define seven bathymetric zones, from upper to lower ramp: (1) algal assemblage (upper ramp); (2) crinoid-ramose bryozoan assemblage (mid-ramp); and (3) productid brachiopod assemblage, (4) colonial rugose coral-microbial encruster assemblage, (5) crinoid-fenestellid assemblage, (6) sponge-fenestellid, and (7) sponge assemblage (lower ramp). The vertical zonation of the mud-rich mounds and associated facies differ from that reported from the classical Upper Tournaisian-Lower Viséan Waulsortian mound-bearing successions.  相似文献   

12.
Summary Shallow marine tropical Devonian carbonates commonly were deposited in two major geologic settings, i.e., shallow shelf with shelf margin reef, and gently sloping ramp that grades into peritidal to supratidal, in places evaporitic facies. The facies types within these two settings can be grouped into a few distinct zones on the basis of water, energy, texture, amount of micrite, porosity, fossil assemblages, and indicaton fossils. These zones have been integrated into a composite facies model for shallow marine, tropical Devonian carbonates. The facies zones are easily recognizable in hand specimen and core, and can be used for fast and accurate facies analysis. Some facies recognizable in hand specimen or core do not easily fit into the integrated model and represent facies of short-lived depositional events, such as hurricanes or slump deposits, or spatially restricted areas, such as channel fills. Such facies have to be interpreted on a case-by-case basis by comparison to the surrounding facies and depositional framework through time. Comparisons with Cenozoic reefs reveal a number of similarities. In particular, large metazoans in both Devonian and Cenozoic reefs display a range of growth forms that is not species-specific. Furthermore, several metazoans display comparable growth forms in equivalent facies zones. For example, dendroid stromatoporoids, such asStachyodes, and branching coral, such asPorites porites, occur in equivalent facies zones.  相似文献   

13.
Abstract

Integrated ichnology, sedimentology and sequence stratigraphy of the Lower Quartzite Member to the Arkosic Sandstone Member of the Koti Dhaman Formation (Cambrian Series 2, Stage 4), Tal Group, Nigali Dhar Syncline, Lesser Himalayan lithotectonic zone are presented. Trilobite traces of Gondwanan affinity i.e., Cruziana salomonis, Cruziana fasciculata, Rusophycus dispar and Rusophycus burjensis are recorded along with Arenicolites isp. and Skolithos isp. from the Lower Quartzite Member. A rich and diverse ichnoassemblage attributed to the Cruziana ichnofacies is described for the first time from the Arkosic Sandstone Member of the same formation. Seven ichnofossil assemblages, i.e., Cruziana-Rusophycus, Planolites-Palaeophycus, Cruziana problematica, Diplichnites, Cochlichnus anguineus, Bergaueria perata and Psammichnites gigas have been recognized in the Lower Quartzite to Arkosic Sandstone members of the Koti Dhaman Formation. Seven sedimentary facies i.e., sandstone–shale facies (FT1), cross-bedded (trough and planar) sandstone (FT2), bedded sandstone facies (FT3), shale facies (FT4), shale–sandstone facies (FT5), shale-rippled sandstone facies (FT6) and planar and trough cross-laminated sandstone (FT7) and four facies associations FA1-FA4 are identified in the Koti Dhaman Formation. The formation contains shallowing upward parasequences of a tidal flat complex. Overall, two major events are recognized: i) the break in sedimentation between the Lower Quartzite Member and the overlying Shale Member probably related to forced-regressive event and ii) the facies shift from FT6 to FT7 of the Arkosic Sandstone Member represents an erosive transgressive event; the surface is interpreted as wave ravinement surface, which also serves as a sequence boundary. Integrated ichnology, sedimentology and sequence stratigraphic studies indicate that the Lower Quartzite Member was deposited in a shallow subtidal sand sheet complex and tidal flat complex; the Shale Member was deposited in a mud flat setting of a tidal flat complex, and the Arkosic Sandstone Member in a mixed-flat (tidal flat complex) to sand sheet complex front and margin (subtidal sand sheet complex). Overall, the lower to middle part of the Koti Dhaman Formation represents a tide-dominated shallow subtidal–intertidal to mud-flat subenvironments of the tidal flat complex. A palaeogeographic reconstruction of lower Cambrian (516–514?Ma) is presented based on the distribution of trilobite traces from the Lesser Himalaya and the Bikaner–Nagaur area of Peninsular India (eastern Gondwana), Egypt, Jordan, Turkey (western Gondwana) and Canada (Avalonia).  相似文献   

14.
Detailed facies analysis and event stratigraphy of an Upper Ordovician (Rocklandian–Edenian) cratonic ramp succession in eastern North America yields insights into eustatically driven sequence architecture and localized tectonic instability. Seven, predominantly subtidal, mixed carbonate-siliciclastic depositional sequences (3rd order) are identified and correlated across the length of a 275-km ramp–to–basin profile. Within the larger depositional sequences (3rd order) at least two smaller orders (4th and 5th) of cyclicity are recognizable. Three systems tracts occur within each sequence (transgressive, TST; highstand, HST; regressive, RST) and are considered in terms of their component parasequences (5th order). Generally, TSTs are composed of skeletal grainstone–rudstone facies, HSTs are dominated by shaly nodular wacke-packstone facies, and RSTs are mostly calcarenite facies. Systems tracts, sequence boundaries and their correlative conformities, maximum flooding surfaces, and forced regression surfaces were traced from shallow shelf to basinal settings. This high-resolution framework also provides insight into the timing of tectonic fluctuations on this cratonic ramp during the Taconic Orogeny and documents the relative influence of tectonism on lateral facies distributions and eustatically derived cyclicity.  相似文献   

15.
Research on the influence of sea level variations on the benthic faunas have been carried out in the Upper Ordovician of Sardinia. Study of the depositional facies and sequence analysis of the upper part (Lower Ashgill) of the Portixeddu Formation led to the identification of the sedimentary environments. Cystoids and crinoids are associated to bryozoans and brachiopods in most levels. The numerical analysis of associations and megaguilds shows that crinoids and cystoids have a higher frequency in the proximal and median facies of the upper offshore. The columnal association characterized by Conspectocrinus celticus and the coronoid Mespilocystites tregarvanicus has been discovered in the upper part of the formation. This material and complementary samples from Upper Ordovician of Sardinia and Kabylia (Algeria) bring additional data on the systematic and show the wide distribution of this fauna outside of the Ibero-armorican domain. The distribution of this echinoderm association supports a palaeogeographical position of the Ibero-armorican domain and Sardinia within the north gondwanan margin during the Lower Palaeozoic.  相似文献   

16.
Summary The factors controlling the localization and growth of Lower Mississippian Waulsortian mounds have been difficult to establish because of limited exposure of individual mounds and mound-bearing platforms in western Europe, where the Waulsortian facies have been studied most intensively. Mounds on the Lower Mississippian homoclinal ramp of the Lake Valley Formation in the Sacramento Mountains, however, are exposed exceptionally well at platform, outcrop, and mound scales in an area roughly 5 km by 20 km, and provide the opportunity to better understand these aspects of Waulsortian mounds. Mounds occur in the northern 2/3 of the essentially continuous 32 km dip transect of the ramp. Mounds grew in an outer ramp setting below wave base, predominantly in the deeper part of the photic zone. Mounds range from broad composites of laterally back-stepping subunits on the shallow part of the ramp to taller and more vertically stacked composite structures down-ramp. The composite nature of the mounds is documented by distinct stratal units that have characteristic facies and geometries common to mounds throughout the transect. As a result, mound growth and form can be described in terms of several primary controlling parameters—submarine topography, water circulation (upwelling of nutrients and oxygen rich waters; oxygen deficient bottom waters), light penetration and the distribution of phototrophic microorganisms, and fluctuations in accommodation. Episodic mound growth is documented by diastems bounding the stratal units within the mounds as well as by the long-established useage of Alamogordo, Nunn, and Tierra Blanca phases of mound growth, correlative with the contemporaneous level-bottom units. However, mound growth that has been correlated with the level-bottom Nunn Member in reality took place during the late stage of deposition of the Alamogordo Member, and nondeposition or erosion occurred on the mounds during deposition of the Nunn Member. Mounds in the shallower (northern) part of the ramp grew primarily on the margins of a broad, low, intra-ramp topographic high, which had been defined previously from facies and isopach trends in underlying strata. Both the margins and the irregular topography of the high are reflected in the distribution, growth geometries, and facies patterns of the mounds, and by the facies and thickness trends of the strata enclosing the mounds. The siting of individual mounds on the shallower part of the ramp was controlled by local topography on and along the margins of the intra-ramp high. Mound growth along the margin began at or just behind local highs, retrograded onto the intra-ramp high, and then prograded onto the basinward side of the initial mound. The lesser height and more pronounced backstepping of mounds on the shallower part of the ramp, in contrast to mounds that grew more vertically and with less back-stepping down ramp suggest that growth and overall morphology were also controlled by accommodation.  相似文献   

17.
Early Cambrian subtidal shelf substrates were characterized by low water content and steep chemical gradients, conditions likely facilitated by the presence of microbial mats as reflected by an abundance of microbially-mediated sedimentary structures in Lower Cambrian strata. Such substrate conditions would have been unfavourable for burrowing by benthic metazoans. A combination of environmental restrictions and a lack of adaptations to vertical burrowing likely prevented most benthic metazoans from burrowing infaunally in Early Cambrian subtidal shelf substrates. The eventual acquisition of burrowing adaptations by benthic metazoans later in the Cambrian promoted an increase in the depth and intensity of bioturbation and initiated a transition toward well-hydrated substrates in which extensive infaunal activity was possible.Siliciclastic units of the Lower Cambrian succession in the White–Inyo Mountains, eastern California, contain abundant horizontal bioturbation on bedding planes, as documented by bedding plane bioturbation indices, but little vertical bioturbation, as shown by ichnofabric indices and x-radiography. Planolites, a simple horizontal trace fossil, represents the dominant type of bioturbation in these units. Planolites is found in a range of diameters, indicating that more than one species of tracemaker likely produced this type of trace. Although these Planolites do not have a vertical component, their abundance on bedding planes indicates that the activities of Planolites tracemakers had a significant impact on subtidal shelf substrates, represented by Lower Cambrian units in the White–Inyo Mountains, early in the Cambrian substrate revolution.  相似文献   

18.
The Asmari Formation is a thick carbonate succession of the Oligo-Miocene in Zagros Mountains (southwest Iran). In order to interpret the facies and depositional environment of the Asmari Formation, three measured sections were studied in Fars area for microfacies analyses. There, 12 microfacies types are distinguished based on their depositional textures, petrographic analysis, and fauna. Thus, three major depositional environments were identified in the Asmari Formation including open-marine, reef/shoal, and lagoon. These depositional environments correspond to inner, middle, and outer ramp.  相似文献   

19.
This paper re-examines unsolved problems concerning the relationships between skeletal benthic communities, the skeletal carbonate sediments they produce and how these are preserved in the subsurface. Recent work based on shelf-wide datasets of modern shallow-marine carbonate sediments of South Florida suggest that the boundaries between facies occur randomly and that facies occurrence bears little relation to water depth. This is at variance with earlier work from the region that indicated facies occurrence related to different environments and which helped establish the basis for palaeoenvironmental analysis of ancient limestones.A windward-facing depositional margin of a carbonate mound in the back-reef area of the Florida Keys is used as a small-scale, case study to examine whether surface peritidal facies occur in an ordered or random fashion and whether they are depth related. Lateral facies transition analysis along transects from the shoreline to the shallow subtidal indicates that peritidal facies occur in a very well-ordered (i.e. non-random) arrangement of zones and patches. Surface facies are generally well-preserved and recognisable in the shallow subsurface and in cores through the Holocene carbonates and shoreline mangrove peats. Analysis of upward facies transitions in cores also indicates common facies trends reflecting the evolution of the sediment mound in response to rising Holocene sea level. However, even though the modern facies occur in an ordered and depth-related pattern, subsurface facies do not show a simple relation to the known sea-level curve in the area. Rather, they relate to a complex of different rates of sea-level rise, sea-floor topography, carbonate production rates, wave/storm energy input, and bioturbation.  相似文献   

20.
Richly fossiliferous marine sediments exposed along the Sonoran coastline of the Gulf of California near Punta Chueca provide an excellent setting in which to test (a) the strength of the association of skeletal concentrations with sedimentary hiatuses, (b) the utility of taphonomic evidence for reconstructing detailed histories of those non-depositional episodes, and thus (c) the largely unexploited potential of skeletal concentrations in the identification and interpretation of lithologically obscure unconformities and condensed sequences in shallow marine deposits. Sequence analysis based on discontinuity surfaces is possible in the complex, alluvial fan-to-shallow marine transition at Punta Chueca despite rapid facies changes. Progradation of depositional sequences that contain cobbles reworked from older terrace deposits indicates accumulation during a fall in eustatic sea level. The supratidal to subtidal conglomerates and sands contain a variety of predominantly molluscan shell concentrations that, on the basis of postmortem histories of shells, formed during periods of low net sedimentation (i.e. depositional hiatuses); the majority of these shell beds lie along discontinuity surfaces identified by independent physical stratigraphic evidence. Although not all discontinuity surfaces in the terrace are paved by shell material. and not all relative concentrations of shells indicate distinct discontinuities, the strength of the association between skeletal concentrations and stratigraphic hiatuses reveals the high degree of control on fossil occurrence by sedimentation rates, and indicates that skeletal concentrations can provide good clues to stratigraphically significant surfaces. Moreover, the detailed dynamics of non-depositional episodes are reliably revealed by taphonomic analysis of the associated fossil assemblages, improving interpretations of non-depositional episodes in local sedimentary history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号