首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that evodiamine could trigger apoptosis in human malignant melanoma A375-S2 cells within 24 h. To further investigate the biochemical basis of this activity, the roles of reactive oxygen species (ROS) and mitochondrial permeability transition (MPT) were evaluated. Exposure to evodiamine led to a rapid increase in intracellular ROS followed by an onset of mitochondrial depolarization. ROS scavenger rescued the ΔΨm dissipation and cell death induced by evodiamine, whilst MPT inhibitor blocked the second-time ROS formation as well as cell death. Expressions of key proteins in Fas- and mitochondria-mediated pathways were furthermore examined. Both pathways were activated and regulated by ROS and MPT and were converged to a final common pathway involving the activation of caspase-3. These data suggested that a phenomenon termed ROS-induced ROS release (RIRR) was involved in evodiamine-treated A375-S2 cells and greatly contributed to the apoptotic process through both extrinsic and intrinsic pathways.  相似文献   

2.
The mitochondrial permeability transition (MPT) pore is a calcium-sensitive channel in the mitochondrial inner membrane that plays a crucial role in cell death. Here we show that cytochrome bc(1) regulates the MPT in isolated rat liver mitochondria and in CEM and HL60 cells by two independent pathways. Glutathione depletion activated the MPT via increased production of reactive oxygen species (ROS) generated by cytochrome bc(1). The ROS producing mechanism in cytochrome bc(1) involves movement of the "Rieske" iron-sulfur protein subunit of the enzyme complex, because inhibition of cytochrome bc(1) by pharmacologically blocking iron-sulfur protein movement completely abolished ROS production, MPT activation, and cell death. The classical inhibitor of the MPT, cyclosporine A, had no protective effect against MPT activation. In contrast, the calcium-activated, cyclosporine A-regulated MPT in rat liver mitochondria was also blocked with inhibitors of cytochrome bc(1). These results indicate that electron flux through cytochrome bc(1) regulates two distinct pathways to the MPT, one unregulated and involving mitochondrial ROS and the other regulated and activated by calcium.  相似文献   

3.
The redox environment of the cell is currently thought to be extremely important to control either apoptosis or autophagy. This study reported that reactive oxygen species (ROS) and nitric oxide (NO) generations were induced by evodiamine time-dependently; while they acted in synergy to trigger mitochondria-dependent apoptosis by induction of mitochondrial membrane permeabilization (MMP) through increasing the Bax/Bcl-2 or Bcl-xL ratio. Autophagy was also stimulated by evodiamine, as demonstrated by the positive autophagosome-specific dye monodansylcadaverine (MDC) staining as well as the expressions of autophagy-related proteins, Beclin 1 and LC3. Pre-treatment with 3-MA, the specific inhibitor for autophagy, dose-dependently decreased cell viability, indicating a survival function of autophagy. Importantly, autophagy was found to be promoted or inhibited by ROS/NO in response to the severity of oxidative stress. These findings could help shed light on the complex regulation of intracellular redox status on the balance of autophagy and apoptosis in anti-cancer therapies.  相似文献   

4.
Reactive oxygen species (ROS) play a key role in promoting mitochondrial cytochrome c release and induction of apoptosis. ROS induce dissociation of cytochrome c from cardiolipin on the inner mitochondrial membrane (IMM), and cytochrome c may then be released via mitochondrial permeability transition (MPT)-dependent or MPT-independent mechanisms. We have developed peptide antioxidants that target the IMM, and we used them to investigate the role of ROS and MPT in cell death caused by t-butylhydroperoxide (tBHP) and 3-nitropropionic acid (3NP). The structural motif of these peptides centers on alternating aromatic and basic amino acid residues, with dimethyltyrosine providing scavenging properties. These peptide antioxidants are cell-permeable and concentrate 1000-fold in the IMM. They potently reduced intracellular ROS and cell death caused by tBHP in neuronal N(2)A cells (EC(50) in nm range). They also decreased mitochondrial ROS production, inhibited MPT and swelling, and prevented cytochrome c release induced by Ca(2+) in isolated mitochondria. In addition, they inhibited 3NP-induced MPT in isolated mitochondria and prevented mitochondrial depolarization in cells treated with 3NP. ROS and MPT have been implicated in myocardial stunning associated with reperfusion in ischemic hearts, and these peptide antioxidants potently improved contractile force in an ex vivo heart model. It is noteworthy that peptide analogs without dimethyltyrosine did not inhibit mitochondrial ROS generation or swelling and failed to prevent myocardial stunning. These results clearly demonstrate that overproduction of ROS underlies the cellular toxicity of tBHP and 3NP, and ROS mediate cytochrome c release via MPT. These IMM-targeted antioxidants may be very beneficial in the treatment of aging and diseases associated with oxidative stress.  相似文献   

5.
We have shown previously that mitochondrial ROS production is essential to turn growth factor (GF) removal into cell death. Activated RAF, AKT, Bcl-2 and antioxidants protected equally well against ROS accumulation and subsequent death. Here we investigated whether protection by survival signaling and antioxidants utilizes shared or distinct targets. Using serum deprivation from NIH 3T3 fibroblasts and IL-3 withdrawal from promyeloid 32D cells, we showed that pro-survival signaling by activated RAF but not AKT prevented the decline in Mcl-1 following GF abrogation. GF starvation increased levels of Bim in both model systems, which was prevented by RAF in 32D cells but not in NIH 3T3 fibroblasts. RAF and AKT suppressed activation and mitochondrial translocation of BAX. Also, antioxidant treatment efficiently prevented BAX activation and death of 32D cells but showed little effect on its mitochondrial translocation. No significant impact of antioxidant treatment on Bim or Mcl-1 expression was observed. ROS produced during GF abrogation also did not alter the activity of intracellular signaling pathways, which have been implicated previously in cell killing by pro-oxidants. Together these data suggest Bcl-2 family proteins as convergence point for RAF and ROS in life and death decisions.  相似文献   

6.
Nitric oxide (NO) has been identified as a fundamental molecule that interplays with reactive oxygen species (ROS) in determining cell fate. As a previous study indicated that ROS was stimulated in evodiamine-induced human melanoma A375-S2 cell apoptosis, the goal of this study was to investigate the role of NO in the cells. In this study, it was found that evodiamine has a strong inductive effect on NO production synthesized by inducible NOS (iNOS) enzyme in a positive-feedback manner. The generated NO was further showed to induce apoptosis and cell cycle arrest and linked to the activation of p53 and p21. After interruption of p38 and nuclear factor-κB (NF-κB) by pre-treatment with SB203580 and PDTC, iNOS expression, NO synthesis and cell damage were all significantly blocked. It was concluded that p38 and NF-κB were critical to the NO producing system, which contributed greatly to the apoptosis and cell cycle arrest in evodiamine-incubated cells.  相似文献   

7.
Onset of the mitochondrial permeability transition (MPT) is the penultimate event leading to lethal cellular ischemia-reperfusion injury, but the mechanisms precipitating the MPT after reperfusion remain unclear. Here, we investigated the role of mitochondrial free Ca(2+) and reactive oxygen species (ROS) in pH- and MPT-dependent reperfusion injury to hepatocytes. Cultured rat hepatocytes were incubated in anoxic Krebs-Ringer-HEPES buffer at pH 6.2 for 4 h and then reoxygenated at pH 7.4 to simulate ischemia-reperfusion. Some cells were loaded with the Ca(2+) chelators, BAPTA/AM and 2-[(2-bis-[carboxymethyl]aono-5-methoxyphenyl)-methyl-6-methoxy-8-bis[carboxymethyl]aminoquinoline, either by a cold loading protocol for intramitochondrial loading or by warm incubation for cytosolic loading. Cell death was assessed by propidium iodide fluorometry and immunoblotting. Mitochondrial Ca(2+), inner membrane permeability, membrane potential, and ROS formation were monitored with Rhod-2, calcein, tetramethylrhodamine methylester, and dihydrodichlorofluorescein, respectively. Necrotic cell death increased after reoxygenation. Necrosis was blocked by 1 μM cyclosporin A, an MPT inhibitor, and by reoxygenation at pH 6.2. Confocal imaging of Rhod-2, calcein, and dichlorofluorescein revealed that an increase of mitochondrial Ca(2+) and ROS preceded onset of the MPT after reoxygenation. Intramitochondrial Ca(2+) chelation, but not cytosolic Ca(2+) chelation, prevented ROS formation and subsequent necrotic and apoptotic cell death. Reoxygenation with the antioxidants, desferal or diphenylphenylenediamine, also suppressed MPT-mediated cell death. However, inhibition of cytosolic ROS by apocynin or diphenyleneiodonium chloride failed to prevent reoxygenation-induced cell death. In conclusion, Ca(2+)-dependent mitochondrial ROS formation is the molecular signal culminating in onset of the MPT after reoxygenation of anoxic hepatocytes, leading to cell death.  相似文献   

8.
The mitochondrial permeability transition (MPT) is a key event in apoptotic and necrotic cell death and is controlled by the cellular redox state. To further investigate the mechanism(s) involved in regulation of the MPT, we used diethylmaleate to deplete GSH in HL60 cells and increase mitochondrial reactive oxygen species (ROS) production. The site of mitochondrial ROS production was determined to be mitochondrial respiratory complex III (cytochrome bc1), because 1). stigmatellin, a Qo site inhibitor, blocked ROS production and prevented the MPT and cell death and 2). cytochrome bc1 activity was abolished in cells protected from the redox-dependent MPT by stigmatellin. We next investigated the effect of pretreating cells with coenzyme Q10 analogs decylubiquinone (dUb) and ubiquinone 0 (Ub0) on the redox-dependent MPT. Pretreatment of HL60 cells with dUb blocked ROS production induced by GSH depletion and prevented activation of the MPT and cell death, whereas Ub0 did not. Since we also found that dUb did not inhibit cytochrome bc1 activity, the mechanism of protection against redox-dependent MPT by dUb may depend on its ability to scavenge ROS generated by cytochrome bc1. These results indicate that dUb, like the clinically used ubiquinone analog idebenone, may serve as a candidate antioxidant compound for the development of pharmacological agents to treat diseases where there is an oxidative stress component.  相似文献   

9.
Irreversible mitochondrial permeability transition and the resultant cytochrome c release signify the commitment of a cell to apoptotic death. However, the role of transient MPT (tMPT) because of flickering opening of the mitochondrial permeability transition pore remains elusive. Here we show that tMPT and the associated superoxide flashes (i.e. tMPT/superoxide flashes) constitute early mitochondrial signals during oxidative stress-induced apoptosis. Selenite (a ROS-dependent insult) but not staurosporine (a ROS-independent insult) stimulated an early and persistent increase in tMPT/superoxide flash activity prior to mitochondrial fragmentation and a global ROS rise, independently of Bax translocation and cytochrome c release. Selectively targeting tMPT/superoxide flash activity by manipulating cyclophilin D expression or scavenging mitochondrial ROS markedly impacted the progression of selenite-induced apoptosis while exerting little effect on the global ROS response. Furthermore, the tMPT/superoxide flash served as a convergence point for pro- and anti-apoptotic regulation mediated by cyclophilin D and Bcl-2 proteins. These results indicate that tMPT/superoxide flashes act as early mitochondrial signals mediating the apoptotic response during oxidative stress, and provide the first demonstration of highly efficacious local mitochondrial ROS signaling in deciding cell fate.  相似文献   

10.
We investigated the role of pH, reactive oxygen species (ROS), Ca2+, and the mitochondrial permeability transition (MPT) in pH-dependent ischemia-reperfusion injury to adult rat myocytes. Myocytes were incubated in anoxic Krebs-Ringer-HEPES buffer at pH 6.2 for 3 h to simulate ischemia. To simulate reperfusion, myocytes were reoxygenated at pH 6.2 or 7.4 for 2 h. Some myocytes were treated with MPT blockers (cyclosporin A and N-methyl-4-isoleucine cyclosporin) and antioxidants (desferal, diphenylphenylene diamine, and 2-mercaptopropionyl glycine). Mitochondrial membrane potential, inner membrane permeabilization, and ROS formation were imaged with tetramethylrhodamine methyl ester, calcein, and chloromethyldichlorofluorescein diacetate, respectively. For Ca2+ imaging, myocytes were coloaded with rhod-2 and fluo-4 to evaluate mitochondrial and cytosolic Ca2+, respectively. After 10 min of reperfusion at pH 7.4, calcein redistributed across the mitochondrial inner membrane, an event preceded by mitochondrial ROS formation and accompanied by hypercontracture, mitochondrial depolarization, and then cell death. Acidotic reperfusion, antioxidants, and MPT blockers each prevented the MPT, depolarization, hypercontraction, and cell killing. Antioxidants, but neither MPT blockers nor acidotic reperfusion, inhibited ROS formation after reperfusion. Furthermore, anoxic reperfusion at pH 7.4 prevented cell death. Both mitochondrial and cytosolic Ca2+ increased during ischemia but recovered in the first minutes of reperfusion. Mitochondrial and cytosolic Ca2+ overloading again occurred late after reperfusion. This late Ca2+ overloading was blocked by MPT inhibition. Intramitochondrial Ca2+ chelation by cold loading/warm incubation of BAPTA did not prevent cell death after reperfusion. In conclusion, mitochondrial ROS, together with normalization of pH, promote MPT onset and subsequent myocyte death after reperfusion. In contrast, Ca2+ overloading appears to be the consequence of bioenergetic failure after the MPT and is not a factor promoting MPT onset.  相似文献   

11.
High fluence low‐power laser irradiation (HF‐LPLI) can induce cell apoptosis via the mitochondria/caspase‐3 pathway. Here, we further investigated the mechanism involved in the apoptotic process in human lung adenocarcinoma cells (ASTC‐a‐1) at a laser irradiation fluence of 120 J/cm2 (633 nm). Cytochrome c release was ascribed to mitochondrial permeability transition (MPT) because the release was prevented by cyclosporine (CsA), a specific inhibitor of MPT. Furthermore, mitochondrial permeability for calcein (~620 Da) was another evidence for the MPT induction under HF‐LPLI treatment. A high‐level intracellular reactive oxygen species (ROS) generation was observed after irradiation. The photodynamically produced ROS caused onset of MPT, as the ROS scavenger docosahexaenoic acid (DHA) prevented the MPT. However, CsA failed to prevented cell death induced by HF‐LPLI, indicating the existence of other signaling pathways. Following laser irradiation, Bax activation occurred after mitochondrial depolarization and cytochrome c release, indicating Bax activation was a downstream event. In the presence of CsA, Bax was still activated at the end‐stage of apoptotic process caused by HF‐LPLI, suggesting that Bax was involved in an alternative‐signaling pathway, which was independent of MPT. Under HF‐LPLI treatment, cell viabilities due to pre‐treatment with DHA, CsA, or Bax small interfering RNA (siRNA) demonstrated that the MPT signaling pathway was dominant, while Bax signaling pathway was secondary, and more importantly ROS mediated both pathways. Taken together, these results showed that HF‐LPLI induced cell apoptosis via the CsA‐sensitive MPT, which was ROS‐dependent. Furthermore, there existed a secondary signaling pathway through Bax activation. The observed link between MPT and triggering ROS could be a fundamental phenomenon in HF‐LPLI‐induced cell apoptosis. J. Cell. Physiol. 218: 603–611, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
Calcium ions (Ca(2+)) are involved in a number of physiological cellular functions including apoptosis. An elevation in intracellular levels of Ca(2+) in A23187-treated HL-60 cells was associated with the generation of both intracellular and extracellular reactive oxygen species (ROS) and induction of apoptotic cell death. A23187-induced apoptosis was prevented by cyclosporin A, a potent inhibitor of mitochondrial permeability transition (MPT). The generation of extracellular ROS was suppressed by the NADPH oxidase inhibitor diphenylene iodonium, and by superoxide dismutase, but these agents had no effect on A23187-induced apoptosis. In contrast, the blocking of intracellular ROS by a cell-permeant antioxidant diminished completely the induction of MPT and apoptosis. In isolated mitochondria, the addition of Ca(2+) induced a typical MPT concomitant with the generation of ROS, which leads to augmentation of intracellular ROS levels. These results indicate that intracellular not extracellular ROS generated by A23187 is associated with the opening of MPT pores that leads to apoptotic cell death.  相似文献   

13.
J Liu  H M Shen  C N Ong 《Life sciences》2001,69(16):1833-1850
Recent studies have demonstrated that induction of apoptosis is related to the cell growth inhibition potential of Salvia Miltiorrhiza (SM), a traditional herbal medicine. In the present study, we further explore the mechanistic pathway involved in SM-induced apoptosis in human hepatoma HepG2 cells. A rapid decline of intracellular glutathione (GSH) and protein thiol content was found in SM-treated cells. Moreover. SM exposure resulted in mitochondrial dysfunction as demonstrated by: (i) the onset of mitochondrial permeability transition (MPT); (ii) the disruption of mitochondrial membrane potential (MMP); and (iii) the release of cytochrome c from mitochondria into the cytosol. Subsequently, elevated level of intracellular reactive oxygen species (ROS) was observed prior to the onset of DNA fragmentation. However, no caspase-3 cleavage was observed throughout the whole period of SM treatment, while a caspase-3-independent poly(ADP-ribose) polymerase (PARP) cleavage was noted at the late stage in SM-induced apoptosis. Pretreatment of cells with N-acetylcysteine (NAC), the GSH synthesis precursor, conferred complete protection against MMP loss, ROS generation and apoptosis induced by SM. MPT inhibitors, cyclosporin A plus trifluoperazine, partially restored intracellular GSH content, and reduced SM-induced ROS formation and subsequently inhibited cell death. Moreover, antioxidants NAC, deferoxamine and catalase had little effect on GSH depletion and mitochondrial dysfunction, yet still were able to completely protect cells from SM-induced apoptosis. Taken together, our results suggest that SM deplete intracellular thiols, which, in turn, causes MPT and subsequent increase in ROS generation, and eventually apoptotic cell death.  相似文献   

14.
Mitochondria, the main source of reactive oxygen species (ROS), are required for cell survival; yet also orchestrate programmed cell death (PCD), referring to apoptosis and autophagy. Autophagy is an evolutionarily conserved lysosomal degradation process implicated in a wide range of pathological processes, most notably cancer. Accumulating evidence has recently revealed that mitochondria may generate massive ROS that play the essential role for autophagy regulation, and thus sealing the fate of cancer cell. In this review, we summarize mitochondrial function and ROS generation, and also highlight ROS-modulated core autophagic pathways involved in ATG4–ATG8/LC3, Beclin-1, p53, PTEN, PI3K–Akt–mTOR and MAPK signaling in cancer. Therefore, a better understanding of the intricate relationships between mitochondrial ROS and autophagy may ultimately allow cancer biologists to harness mitochondrial ROS-mediated autophagic pathways for cancer drug discovery.  相似文献   

15.
The mitochondrial permeability transition (MPT) is a calcium and oxidative stress sensitive transition in the permeability of the mitochondrial inner membrane that plays a crucial role in cell death. However, the mechanism regulating the MPT remains controversial. To study the role of oxidative stress in the regulation of the MPT, we used diethyl maleate (DEM) to deplete glutathione (GSH) in human leukemic CEM cells. GSH depletion increased mitochondrial calcium and reactive oxygen species (ROS) levels in a co-dependent manner causing loss of mitochondrial membrane potential (deltapsi(m)) and cell death. These events were inhibited by the calcium chelator BAPTA-AM and the antioxidants N-acetylcysteine (NAC) and the triphenyl phosphonium-linked ubiquinone derivative MitoQ. In contrast, the MPT inhibitor cyclosporine A (CsA) and small interference RNA (siRNA) knockdown of cyclophilin D (Cyp-D) were not protective. These results indicate that mitochondrial permeabilization induced by GSH depletion is not regulated by the classical MPT.  相似文献   

16.
We have previously reported that, in leukemia cells, the cytotoxicity of the anticancer agent N-(4-hydroxyphenyl)retinamide (4-HPR) is mediated by mitochondria-derived reactive oxygen species (ROS) and cardiolipin peroxidation. Here, we have analyzed at greater depth the 4-HPR-triggered molecular events, demonstrating that 4-HPR induces an early (15 min) increase in ceramide levels by sphingomyelin hydrolysis and later (from 1 h) by de novo synthesis. Using specific inhibitors of both pathways, we demonstrate that ceramide accumulation is responsible for early ROS generation, which act as apoptotic signalling intermediates leading to conformational activation of Bak and Bax, loss of mitochondrial membrane potential (ΔΨm), mitochondrial membrane permeabilization (MMP) and cell death. Enforced expression of Bcl-2 has no effect on 4-HPR-induced oxidative stress, but notably prevents mitochondrial alterations and apoptosis, indicating that Bcl-2 functions by regulating events downstream of ROS generation. In conclusion, our study delineates for the fist time the sequence and timing of the principal events induced by 4-HPR in leukemia cells and points to the potential use of modulators of ceramide metabolism as enhancers in 4-HPR-based therapies.  相似文献   

17.
活性氧、线粒体通透性转换与细胞凋亡   总被引:2,自引:0,他引:2  
线粒体是真核细胞中非常重要的细胞器,细胞中的活性氧等自由基主要来源于此,线粒体膜的通透性转换(mitochondrial permeability transition,MPT)及其孔道(mitochondrialpermeability transition pore,MPTP)更是在内源性细胞凋亡中发挥了关键作用。持续性的线粒体膜通透性转换在凋亡的效应阶段起决定性作用,可介导细胞色素c等促凋亡因子从线粒体释放到胞浆中,进一步激活下游的信号通路,导致细胞不可逆地走向凋亡。瞬时性的线粒体膜通透性转换及其偶联的线粒体局部的活性氧爆发同样具有促凋亡的作用。线粒体通透性孔道的开放释放出大量活性氧,这些活性氧又能够进一步激活该孔道,以正反馈的形式进一步加剧孔道的打开,放大凋亡信号。活性氧、线粒体通透性转换与细胞凋亡之间具有密不可分的联系,本文根据已知的研究结果集中讨论了这三者的关系,并着重论述了该领域中的最新发现和成果。  相似文献   

18.
《Free radical research》2013,47(7):792-802
Abstract

A previous study indicated that reactive oxygen species (ROS) and nitric oxide (NO) played pivotal roles in mediating cytotoxicity of evodiamine in human cervix carcinoma HeLa cells. This study suggested that G2/M cell cycle arrest was triggered by ROS/NO productions with regulations of p53, p21, cell division cycle 25C (Cdc25C), Cdc2 and cyclin B1, which were able to be prevented by protein tyrosine kinase (PTK) activity inhibitor genistein or JNK inhibitor SP600125. The decreased JNK phosphorylation by addition of Ras or Raf inhibitor, as well as the increased cell viability by addition of insulin-like growth factor-1 receptor (IGF-1R), Ras, Raf or c-Jun N-terminal kinase (JNK) inhibitor, further demonstrated that the Ras-Raf-JNK pathway was responsible for this PTK-mediated signalling. These observations provide a distinct look at PTK pathway for its suppressive effect on G2/M transition by inductions of ROS/NO generations.  相似文献   

19.
A fraction of attenuated Leishmanial lipid (ALL) rich in sphingolipids, previously shown to have apoptosis inducing activity in mouse melanoma (B16F10) and human melanoma (A375) cells, was resolved to isolate the bioactive sphingolipid. The mechanism of apoptosis induction by this bioactive attenuated Leishmanial sphingolipid (ALSL) was studied in A375 cells. Apoptosis induced by ALSL in A375 cells was found to be dose and time-dependent. Exposure of cells to ALSL resulted in a rapid increase in reactive oxygen species generation. Pretreatment of cells with the antioxidant N-acetyl-cystein reduced ROS generation and attenuated apoptosis induced by ALSL. Again, ALSL sensitization resulted in the activation of caspase-3 and -9 but not caspase-8. However, inhibitors of these caspases could not protect the cells completely from ALSL-induced apoptosis. N-acetyl-cystein pretreatment was again found to attenuate the activation of caspase-3 and -9. ALSL treatment also resulted in the alteration of mitochondrial membrane potential, and release of pro-apoptotic factors such as cytochrome c and apoptosis inducing factor (AIF) from mitochondria. Furthermore, c-Jun N-terminal kinase was activated that resulted in apoptosis of A375 cells, whereas p38 MAPK was activated to counteract the stress generated in cells in response to ALSL treatment. Taken together, our results indicate that ALSL-induced apoptosis of A375 cells is mediated by both mitochondrial caspase-dependent and -independent pathways and it involves ROS and JNK activation in the mitogen-activated protein kinase cascade.  相似文献   

20.
Oxidative stress-induced apoptotic cell death has been implicated to play a critical role in the mechanism of corpus luteum regression and follicular atresia. Recent studies suggests that reactive oxygen species (ROS) might play important roles in the regulation of luteal function. The present work describes the inhibitory effect of 17beta-estradiol (E2) on ROS-induced mitochondrial membrane permeability transition (MPT) and apoptosis of Chinese hamster ovary (CHO) cells. ROS generated by Fe2+ and H2O2 induced mitochondrial lipid peroxidation, depolarization, activation of caspase-3 and DNA fragmentation in CHO cells by some E2-inhibitable mechanism. E2 suppressed the Fe2+/H2O2-induced lipid peroxidation and MPT of isolated mitochondria that was characterized by cyclosporin A-inhibitable swelling, depolarization and cytochrome c release. Furthermore, E2 scavenged the xanthine oxidase generated ROS. These results suggests that Fe2+/H2O2 induced MPT and apoptosis of CHO cells by a mechanism that could be suppressed by antioxidant properties of E2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号