首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This is the first report on the successful induction of somatic embryogenesis in swamp white oak from leaf and shoot apex explants excised from in vitro shoot cultures derived from 6- to 7-year-old trees. We demonstrated that arabinogalactan from larch wood (2–4 mg/L) promoted embryogenesis in the three genotypes evaluated by increasing the frequency of somatic embryogenesis, the embryogenic sites per explant, and by speeding the onset of embryo initiation. The explants were cultured sequentially on three culture media consisting of Murashige and Skoog (MS) salts and vitamins supplemented with 500 mg/L casein hydrolysate and different concentrations of α-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BA). Somatic embryogenesis induction frequencies of up to 12.4, 4.5, and 0.7 % were obtained for the three genotypes. Clonal embryogenic lines were maintained by repetitive embryogenesis following culture on MS medium containing 0.44 μM BA with or without 0.27 μM NAA. Before germination, cotyledonary-stage embryos were cultured for 4 weeks in maturation medium (MS medium with half-strength macronutrients) containing 6 % sorbitol. Germination response was significantly improved by applying a 2-month cold storage as a post-maturation treatment. The mineral formulation and plant growth regulator content of the germination medium influenced the frequency of plantlet conversion with the best results achieved on Gresshoff and Doy medium with BA (0.25–0.44 μM). This procedure resulted in over 50–60 % of germinating embryos exhibiting continuous root growth and either epicotyl elongation or shoot development.  相似文献   

2.
Summary The effects of ancymidol, abscisic acid (ABA), uniconazole, and paclobutrazol on asparagus somatic embryogenesis were evaluated. Calli induced from seedlings of genotype G447 were transferred to embryo induction medium (MS plus 3% sucrose, 0.1 mg L–1 NAA, 0.5 mg L–1 kinetin and 3% gelrite), with different concentrations of these compounds. After 8 weeks, the recovered bipolar or globular embryos were placed on germination medium (MS plus 6% sucrose, 0.1 mg L–1 NAA, 0.1 mg L–1 kinetin, 0.75 mg L–1 ancymidol, 40 mg L–1 adenine sulphate dihydrate, 0.17 mg L–1 sodium phosphate monobasic and 3% gelrite) for conversion to plantlets. Inclusion of ancymidol, ABA, uniconazole and paclobutrazol in the embryo induction medium did not affect the total number of somatic embryos produced relative to the control without these compounds. However, ancymidol, ABA and uniconazole significantly improved embryo development by increasing the production of bipolar embryos 250–750% and decreasing that of globular embryos 8–35% relative to the control. The bipolar embryos produced with any of the four compounds in the embryo induction medium converted to plantlets at rates 700–1100% greater than the control. None of the globular embryos converted to plantlets. Ancymidol (0.75 mg L–1) and ABA (0.05 mg L–1) were the most effective treatments; 61 and 46 bipolar embryos g–1 callus were produced, and 38% and 37% of the bipolar embryos converted to plantlets, respectively. These results indicated that ancymidol, ABA, uniconazole and paclobutrazol significantly enhanced the production of asparagus somatic embryos and their conversion to plantlets, and ancymidol and ABA were more effective than uniconazole and paclobutrazol.Abbreviations Ancymidol a-cyclopropyl-a(4-methoxyphenyi)-5-pyrimidine methanol - NAA 1-naphthaleneacetic acid - Paclobutrazol I-(4-chlorophenyl)-4,4-dimethyl-2(1H-1,2,4-triazol-1-yl)-pentan-3-ol - Uniconazole (E)-(p-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-pentan-3-ol - ABA abscisic acid - GA gibberellic acid  相似文献   

3.
Changes in protein profiles associated with somatic embryogenesis in peanut   总被引:6,自引:0,他引:6  
The somatic embryogenesis potential of zygotic embryo axes of peanut (Arachis hypogaea L. cv. DRG-12) at different stages of development was evaluated by culturing on MS medium with 18.1 μM 2,4-dichlorophenoxyacetic acid (2,4-D). A 100 % frequency with 18.3 somatic embryos per explant was observed from 4 mm long immature zygotic embryo axes collected 31 – 40 d after pollination. Medium supplemented with 16.6 μM picloram resulted in slow development of somatic embryos whereas in the presence of 21.5 μM α-naphthaleneacetic acid (NAA), the explants underwent maturation with induction of roots after 30 d. The changes in protein profiles in zygotic embryo axes at different stages of development correlated with their potential to form somatic embryos. Immature zygotic embryo axes exhibited high frequency somatic embryogenesis in the stage preceding abundant accumulation of 22 and 65 kDa proteins. The content of 22 and 65 kDa proteins decreased immediately after culture on medium fortified with 18.1 μM 2,4-D and increased again after 12 d of culture coinciding with the development of somatic embryos on the explants. The content of 22 and 65 kDa proteins was low at 15 d of culture on medium supplemented with 16.6 μM picloram possibly due to slow development of the somatic embryos on the explant. On maturation medium containing 21.5 μM NAA, a marked increase in the content of 22 and 65 kDa proteins in 15 d-old cultures was observed.  相似文献   

4.
 Indirect somatic embryogenesis was induced on leaf explants of greenhouse-grown Helianthus maximiliani plants. Leaves of the regenerated plants were used as starting explants for the induction of direct somatic embryogenesis. Another cycle of somatic embryogenesis was induced on the leaves of regenerated plants. In both cases, leaf explants were cultured on media containing different auxin/cytokinin ratios. The auxin/cytokinin ratio had an influence on the intensity of embryo formation, germination and the capability to regenerate plants. Somatic embryogenesis was generally more intensive on the medium with lower concentrations of 6-benzylamino-purine. Further, the percentage of regenerated plants was higher when embryos were induced on high-cytokinin, low-auxin medium. Secondary somatic embryogenesis was induced on embryos by culture in liquid hormone-free medium. Similar to direct embryogenesis the efficiency of secondary embryogenesis depended on the medium used for the induction of the primary embryos. In contrast to the mostly low frequencies of conversion of secondary embryos into plants that has been observed in other species, the percentage of regenerated plants from secondary embryos of H. maximiliani was quite high, although slightly lower than that obtained in primary embryos. Received: 28 March 2000 / Revision received: 1 September 2000 / Accepted: 2 October 2000  相似文献   

5.
Callus cultures of Encephalartos cycadifolius were established from zygotic embryo explants on a modified B5 medium containing 1 mg l–1 2,4-D and 1 mg l–1 kinetin. Callus was transferred to media containing various combinations of 2,4-D and kinetin for improvement of somatic embryogenesis. Somatic embryos were produced on media with several growth regulator combinations. The somatic embryos developed from proembryos, which developed long suspensors. A dicotyledonary embryo formed at the distal end of the suspensor. The embryos turned green in light. When transferred to a medium containing 1 mg l–1 ABA the somatic embryos matured. The suspensors desiccated and these embryos rooted when transferred to a medium without phytohormones.Abbreviations ABA abscisic acid - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

6.
Immature embryos of thirty-three genotypes of wheat were cultured on 2,4-D containing medium. Occurrence of precocious germination of the zygotic and somatic embryos simultaneously on the same medium was a striking feature observed during the course of work. The percentage of precocious germination was seen to vary extensively from 0–88% and 0–84% for zygotic and somatic embryos respectively. In the genotypes NI-5439 and NI-5643 which are characterized by a high tillering capacity, the phenomenon of precocious germination seems to take a different path from that observed in the other genotypes. This is evident since these two genotypes require total absence of hormone for shoot elongation although multiple shoot primordia are formed on auxin containing medium.Precocious germination also seems to be relevant to somatic embryogenesis and plantlet regeneration. This conclusion stems from the observation that a majority of the genotypes that show precocious germination of zygotic embryos have greater embryogenic potential. Consecutively, most of the genotypes that show precocious germination of somatic embryos exhibit a higher frequency and faster rate of plantlet regeneration.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - Ki Kinetin - thi - HCl Thiamine hydrochloride - E calli Embryogenic calli NCL Communication No. 4456  相似文献   

7.
Organogenesis and somatic embryogenesis were induced from megagametophyte and zygotic embryo explants of 2 cycad species, Ceratozamia hildae and C. mexicana, cultured on modified B5 medium containing kinetin (0–13.9 M) and 2,4-d (0–9.0 M). Organogenesis occurred from megagametophyte explants of both species on the range of media tested. Somatic embryogenesis was largely restricted to zygotic embryo explants. Somatic embryos germinated in vitro: however, rooting of adventitious shoots was unsuccessful.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid R-014515.  相似文献   

8.
This study describes a protocol for the induction of high frequency somatic embryogenesis directly from immature inflorescence explants in three sorghum genotypes (SPV-462, SPV-839, and M35-1). The effect of various growth regulators on somatic embryogenesis was investigated. High frequency somatic embrogenesis was obtained on Murashige and Skoog (MS) medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D), and addition of 0.5 mg l−1 kinetin (KN) in the medium further improved the formation of somatic embryos per explant in all genotypes. The presence of 1.5 mg l−1 6-benzylaminopurine plus 1.0 mg l−1 KN in MS medium was most efficient for maturation and germination of somatic embryos. The genotype SPV-462 performed better than SPV-839 and M35-1 in terms of induction and germination of somatic embryos. Organogenesis also occurred in callus of all genotypes at the frequency of 20–25%. Regenerated plants from somatic embryos were successfully acclimatized in soil in the greenhouse where plants were grown to maturity, flowered, and set seeds. Regenerated plants appeared normal like that of the seed-raised plants.  相似文献   

9.
Peanut (Arachis hypogaea L.) somatic embryos were produced from the embryo axes of mature, dry seeds of cultivar GK-7. Percent embryogenic explants ranged from 88–100% using 10–40 mg/1 of 2,4-D in the induction medium. Neither 2,4-D concentration nor photoperiod during the induction period had a large effect on percent embryogenesis, mean number of embryos per explant, or embryo morphology. However, embryos obtained from cultures grown in the dark were easier to remove from the explant than those under a 16-h photoperiod. Somatic embryos developed on the epicotyl portion of the embryo axis, primarily on the young, expanding leaves. A survey of 14 genotypes indicated that genotype had a large influence on embryogenic capacity, with all genotypes being embryogenic to some extent. The ability to recover somatic embryos from axes of harvested, stored seeds represents significant advantages for the establishment of peanut embryogenic cultures, including the use of simple sterilization procedures and a constant source of explant tissue.Abbreviations B5 medium of Gamborget al. (1968) - 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog (1962) salts medium  相似文献   

10.
Influence of auxin type and concentration on peanut somatic embryogenesis   总被引:8,自引:0,他引:8  
Somatic embryogenesis in peanut (Arachis hypogaea L.) using immature cotyledonary explants was induced on a wide range of 2,4-dichlorophenoxyacetic acid (2,4-D) (5 to 60mg l–1) and naphthaleneacetic acid (NAA) (20 to 50 mg l–1) levels. Percent embryogenesis ranged from 31 to 94%. As auxin level increased in induction medium, percent embryogenesis decreased and was associated with browning of explants. However, with higher 2,4-D induction levels (40 mg l–1 and over), embryogenic explants had dense masses of embryogenic areas and repetitive embryogenesis was enhanced. Higher auxin concentrations during induction decreased precocious germination of embryos, but had no marked effect on somatic embryo morphology. The use of 2,4-D compared to NAA in the induction medium resulted in greater per cent embryogenesis and mean number of embryos. Embryos induced on NAA were harder, less pliant, and less succulent; cultures exhibited more extensive root development and nonembryogenic callus proliferation.Abbreviations B5 Gamborg et al. (1968) - BA benzyladenine - 2,4-D dichlorophenoxyacetic acid - IAA indole-3-acetic acid - MS Murashige & Skoog (1962) - NAA naphthaleneacetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid  相似文献   

11.
We report, an efficient protocol for plantlet regeneration from the cell suspension cultures of cowpea through somatic embryogenesis. Primary leaf-derived, embryogenic calli initiated in MMS [MS salts (Murashige and Skoog 1962) with B5 (Gamborg et al. 1968) vitamins] medium containing 2,4-Dichlorophenoxyacetic acid (2,4-D), casein hydrolysate (CH), and l-Glutamic acid-5-amide (Gln). Fast-growing embryogenic cell suspensions were established in 0.5 mg l–1 2,4-D, which resulted in the highest recovery of early stages of somatic embryos in liquid MMS medium. Embryo development was asynchronous and strongly influenced by the 2,4-D concentration. Mature monocotyledonary-stage somatic embryos were induced in liquid B5 medium containing 0.1 mg l–1 2,4-D, 20 mg l–1 l-Proline (Pro), 5 M Abscisic acid (ABA), and 2% mannitol. B5 medium was found superior for the maturation of somatic embryos compared to MS and MMS media. The importance of duration (5 d) for effective maturation of somatic embryos is demonstrated. A reduction in the 2,4-D level in suspensions increased the somatic embryo induction and maturation with decreased abnormalities. Sucrose was found to be the best carbon source for callus induction while mannitol for embryo maturation and maltose for embryo germination. Extension of hypocotyls and complete development of plantlet was achieved in half-strength B5 medium supplemented with 3% maltose, 2500 mg l–1 potassium nitrate, and 0.05 mg l–1 thidiazuron (TDZ) with 32% regeneration frequency. Field-established plants were morphologically normal and fertile. This regeneration protocol assures a high frequency of embryo induction, maturation, and plantlet conversion.  相似文献   

12.
The induction of somatic embryogenesis from shoot apices and leaf explants of shoot cultures derived from 6- to 7-year-old white oak (Quercus alba L.) trees is reported in this study. Embryogenic response was obtained in two out of the three genotypes evaluated with embryo induction frequencies up to 50.7% for WOQ-1 and 3.4% for WOQ-5 genotypes. The embryogenic explants formed translucent nodular structures and cotyledonary-stage somatic embryos, which developed from callus tissue, indicating an indirect embryogenesis process. An efficient procedure was developed for WOQ-1 material on the basis of the most appropriate leaf developmental stage. Growing leaves excised from two nodes below the shoot apex showed the highest embryogenic induction index. These leaves contain cells in an undifferentiated state, as shown by the presence of precursor cells of stomata, absence of intercellular spaces and low starch content in the mesophyll cells. Nodular structures and/or somatic embryos began to arise 7–8 weeks after culture initiation, although most emerged after 9–12 weeks in culture. The sequence of application of media for somatic embryo induction was optimized with a two-step procedure consisting of culturing the explants in medium supplemented with 21.48 μM NAA and 2.22 μM BA for 8 weeks and transfer of explants into plant growth regulator-free medium for another 12 weeks. Clonal embryogenic lines were established and maintained by secondary embryogenesis. Embryo germination (30%) and plantlet conversion (16.6%) were achieved after cold storage for 2 months.  相似文献   

13.
The aim of the study was to evaluate the influence of light conditions,physical state of the induction medium and the mutagenic treatment on theembryogenic ability of Arabidopsis thaliana (L.) immaturezygotic embryos differing in developmental stage. The efficiency of directsomatic embryogenesis (DSE) was analysed in a culture of immature zygoticembryos at an early (ES) and a late (LS) developmental stage. The efficiency ofDSE was scored as a percentage of the explants producing somatic embryos. Theexperiments indicated that the physical state of the induction medium (solid orliquid) did not influence the embryogenic ability of the cultured explants. Inthe cultures on both solid and liquid induction medium, the ES explantsproducedsomatic embryos with a frequency of 25.8–37.3% i.e. 2.5–3-timeslower than LS explants. However, an increase in the embryogenic ability of ESexplants (up to 69.8%) was observed when DSE was induced in darkness. Moreover,the stimulation of DSE efficiency in culture of ES explants was also observedafter mutagenic treatment. The chemical mutagens, MNH and EMS, applied forexplant treatment, both stimulated efficiency of somatic embryo formation inculture of ES explants. The most effective DSE induction was observed when MNHand EMS were applied in doses of 0.125–1.0 mM × 3h and0.05–0.2% × 18h, respectively. In these treatment combinations thefrequency of ES explants forming somatic embryos was found to be about 2 timeshigher than in the control culture.  相似文献   

14.
This study describes for the first time in Pinus genus a plant regeneration system via a combined pathway of somatic embryogenesis and organogenesis from immature seeds of radiata pine. Somatic embryos were obtained from embryogenic line 2162 of Pinus radiata D. Don on EDM basal medium containing 60 μM ABA and 6% sucrose. The explants used for organogenesis experiments were either freshly collected somatic embryos or somatic embryos germinated for 1 week. Germination medium was half-strength LP medium, supplemented with 0.2% activated charcoal. Different induction periods and BA concentrations were assayed for shoot induction. After induction treatments, explants were elongated on the same medium used for germination stage. Rooting medium was quarter-strength LP medium supplemented with three different auxin treatments: 1.5 mg L−1 1-naphthalene acetic acid (NAA), 1.5 mg L−1 indole-3-butyric acid (IBA) and 1 mg L−1 IBA with 0.5 mg L−1 NAA (MIX). The effect of the photon flux (120 mmol m−2 s−1 and darkness) in the first week of the explants in the rooting media was also tested. This methodology could offer an alternative to overcome some problems associated with somatic embryogenesis such as the seasonality of embryogenic tissue (ET) initiation or a low embryo production from the ET, a particularly important issue in the case of genetically transformed ETs.  相似文献   

15.
The frequency of long-term secondary somatic embryogenesis and shoot meristem development from embryogenic masses of the cherry rootstock `Colt' ( Prunus avium × P. pseudocerasus), differentiated from transgenic roots containing the T-DNA of Agrobacterium rhizogenes, has opened the way for genetic improvement by biotechnological techniques. Whole plants were produced by stimulating shoot meristem development from somatic embryos. The combination of 4 mg l–1 of kinetin and 2% of maltose under illumination stimulated shoot development and, subsequently, whole plants have been recovered by applying 1.5 mg l–1 kinetin to the rooting medium. Although numerous treatments have been tested involving both embryogenic masses and whole embryos, normal embryo germination was observed sporadically. Cold treatment was effective in stimulating secondary somatic embryogenesis with embryo development to the cotyledonary stage, but did not promote their germination. Similarly, a higher concentration (44–55 mg l–1) of chelated iron than that commonly used in tissue culture media (36.7 mg l–1) produced, after 3 weeks in culture, almost a 50% increase in the number of embryos at the cotyledonary stage per embryogenic mass. Among the cytokinins tested, 1 mg l–1 of 6-benzylaminopurine and 0.1 mg l–1 of thidiazuron were effective in inducing secondary somatic embryogenesis; however, each of them expressed highest efficiency with specific medium and environmental conditions. Furthermore, application of 1 mg l –1 thidiazuron reverted morphogenic callus to non-morphogenic callus, particularly in medium containing 2% sucrose. Finally, hormone free medium with 2% maltose enhanced maturation of the emb-ryos to the normal cotyledonary stage. This paper has improved knowledge of embryo culture and plant production in this important genotype, opening the way for genetic improvement by biotechnological techniques, mainly with the aim of modifying the growth pattern of the canopy of sweet cherry grafted on it.  相似文献   

16.
Summary A procedure for the regeneration of cacao (Theobroma cacao) plants from staminode explants via somatic embryogenesis was developed. Rapidly growing calli were induced by culturing staminode explants on a DKW salts-based primary callus growth (PCG) medium supplemented with 20 g glucose per L, 9 μM 2,4-D, and thidiazuron (TDZ) at various concentrations. Calli were subcultured onto a WPM salts-based secondary callus growth medium supplemented with 20 g glucose per L, 9 μM 2,4-D, and 1.4 nM kinetin. Somatic embryos were formed from embryogenic calli following transfer to a hormone-free DKW salts-based embryo development medium containing sucrose. The concentration of TDZ used in PCG medium significantly affected the rate of callus growth, the frequency of embryogenesis, and the number of somatic embryos produced from each responsive explant. A TDZ concentration of 22.7 nM was found to be the optimal concentration for effective induction of somatic embryos from various cacao genotypes. Using this procedure, we recovered somatic embryos from all 19 tested cacao genotypes, representing three major genetic group types. However, among these genotypes, a wide range of variation was observed in both the frequency of embryogenesis, which ranged from 1 to 100%, and the average number of somatic embryos produced from each responsive explant, which ranged from 2 to 46. Two types of somatic embryos were identified on the basis of their visual appearance and growth behavior. A large number of cacao plants have been regenerated from somatic embryos and established in soil in a greenhouse. Plants showed morphological and growth characteristics similar to those of seed-derived plants. The described procedure may allow for the practical use of somatic embryogenesis for clonal propagation of elite cacao clones and other applications that require the production of a large number of plants from limited source materials.  相似文献   

17.
An efficient propagation system via somatic embryogenesis and shoot organogenesis and plant regeneration system for endangered species Primulina tabacum Hance was established. Thidiazuron (TDZ) was the key plant growth regulator for inducing somatic embryogenesis and kinetin (KIN) and 6-benzylaminopurine (BAP) were the key cytokinins for inducing shoot organogenesis from leaf explants. TDZ combined with BAP or KIN in the induction Murashige and Skoog medium induced both somatic embryos and adventitious shoots. Leaf explants with abaxial site in contact with the medium induced less somatic embryos or adventitious shoots compared to inversely placed leaf explants and the optimum pH was 6.5–7.0. Secondary somatic embryos or adventitious shoot could be induced from primary somatic embryos using TDZ and BAP. Shoots developed adventitious roots on rooting medium containing 0.5 μM indole-3-butyric acid and 0.2 % activated carbon. Over 90 % of plantlets survived following acclimatization and transfer to potting mixture (sand:Vermiculite:limestone; 1:2:1).  相似文献   

18.
A high-efficiency two-step culture procedure for direct somaticorganogenesis in loblolly pine (Pinus taeda L.) resulting inthe formation of multiple shoot structures induced on cotyledons andhypocotyls of mature zygotic embryos is described. Mature zygoticembryos of eight genotypes of loblolly pine were used as explants toinduce direct somatic organogenesis with this two-step culture method,involving the induction and the differentiation of direct adventitiousshoots. After mature zygotic embryos of eight genotypes of loblolly pinewere cultured on induction medium containing 2,4-dichlorophenoxyaceticacid (2,4-D) or -naphthaleneacetic acid (NAA), 6-benzyladenine(BA), and kinetin for 2–3 weeks, embryos were transferred todifferentiation medium. Adventitious shoot regeneration via directsomatic organogenesis with the frequency of 8.7–27.8% wasobtained from mature zygotic embryo cultures of the genotypes tested.The highest mean number of 32.6 adventitious shoots per mature zygoticembryo was produced from genotype La. The tissue culture protocol of invitro shoot regeneration via direct somatic embryogenesis was optimizedafter examining the periods of the induction culture, chillingtreatment, glutamine concentration, and basic medium levels. Rooting wasachieved on TE medium supplemented with 0.5 mg/l indole-3-butyric acid(IBA), 0.5 mg/l gibberellic acid (GA3), and 1 mg/l6-benzyladenine (BA), and regenerated plantlets were established insoil. These results suggested that adventitious shoot regeneration viadirect somatic organogenesis could be useful for clonal micropropagationof some genotypes of loblolly pine and for establishing a transformationsystem of this coniferous species.  相似文献   

19.
High Frequency Somatic Embryogenesis in Cotton   总被引:3,自引:1,他引:2  
A highly reproducible system for efficient somatic embryogenesis was developed to regenerate plantlets from cotton (Gossypium hirsutum L.) cultivars (Nazilli M-503 and Nazilli 143). Shoot apices, hypocotyls and nodes of 10-d-old seedlings were used as explants. High frequency (100 %) embryogenic calli was initiated from all tested explants on Murashige and Skoog (1962) (MS) media supplemented with 1 g dm–3 polyvinylpyrrolidone (PVP), 1 mg dm–3 6-benzylaminopurine (BAP), 0.5 mg dm–3 kinetin for Nazilli M-503 and 1 g dm–3 PVP, 2 mg dm–3 BAP, 0.5 mg dm–3 kinetin for Nazilli-143. Globular stage somatic embryos were produced 4 months after transfer to hormone-free MS medium supplemented with 1 g dm–3 PVP. Subsequent subculture of globular embryos every 3 weeks on hormone-free MS medium led to the development of torpedo and cotyledonary stage embryos with the frequency of 75 and 83.2 % from hypocotyl explants of Nazilli M-503 and Nazilli-143, respectively. Afterwards, mature somatic embryos were isolated and cultured on hormone-free MS medium for germination and development into plantlets. The highest germination frequency (42.9 %) for Nazilli M-503 somatic embryos were obtained on hormone-free MS medium after 5 months with hypocotyl explants, whereas germination frequencies of Nazilli-143 embryos from hypocotyl, node and apex explants varied between 22 – 30 %.  相似文献   

20.
Somatic embryos were induced on peanut (Arachis hypogaea) leaflets from aseptically germinated embryo axes. Leaflet size influenced percent somatic embryogenesis; 5–8 mm long cut leaflets were superior to 2–3 mm long uncut leaflets. Maximum embryogenesis of 14.6% was obtained after a 15 d incubation on induction medium (modified MS with B5 vitamins, 30 g/l sucrose, 4 g/l Gel-Gro, 40 mg/l 2,4-D +0.2 mg/l kinetin) followed by transfer to a secondary medium with 5 mg/l 2,4-D+0.2 mg/l kinetin. Primary somatic embryos were fused along the axes with no distinct cotyledons, but secondary embryos had single axes with two cotyledons. Other treatments had lower percent embryogenesis, no secondary embryogenesis, and embryos with single axes with two cotyledons. Some somatic embryos converted into normal plants capable of greenhouse survival.Abbreviations MS Murashige and Skoog (1962) medium - B5 Gamborg et al. (1968) B5 medium - 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6benzylaminopurine - NAA 1-naphthaleneacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号