首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The level of ethylene accumulated in morphogenic callus cultures of Heliconia psittacorum L.f. was only one quarter that of non-morphogenic cultures. The rate of ethylene production in the morphogenic callus cultures during early stages of differentiation of protocorm-like bodies leading to plantlet regeneration was 10-fold higher than that during callus proliferation. In cultures sealed with gastight serum caps, fresh weight gain was reduced 2-to 3-fold compared to those that were closed with Kaputs. Treatment with 1-aminocyclopropane-1-carboxylic acid ( 100 M) caused complete inhibition of plant regeneration from the morphogenic callus on subsequent culture under inductive conditions. Silver nitrate and aminoethoxyvinylglycine also reduced plant regeneration. These results indicate that while high levels of ethylene were inhibitory, a low level of endogenous ethylene production may be necessary during the plant regeneration phase in callus cultures of Heliconia.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - AC activated charcoal - ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - BM basal medium - CH casein hydrolysate - DM development medium - MM maintenance medium - PLB protocorm-like body  相似文献   

2.
Summary This report describes the regeneration response of excised seedling roots of silktree (Albizzia julibrissin) to added ethylene precursors/generators (1-amino-cyclopropane-1-carboxylic acid [ACC], 2-chloroethylphosphonic acid [CEPA]), biosynthesis inhibitors (aminoethoxyvinylglycine [AVG], an oxime ether derivative [OED={[(ispropylidene)-amino]oxy}-acetic acid-2-(methoxy)-2-oxoethyl ester], CoCl2 [Co++]), and an ethylene action inhibitor (AgNO3 [Ag+]). When placed on B5 medium, about 50% of the control explants formed shoot buds within 15 days. Addition of ACC or CEPA (1–10 µM) to the culture medium decreased both the percentage of cultures forming shoots and the number of shoots formed per culture. In contrast, AVG and OED (1–10 µM) increased shoot formation to almost 100% and increased the number of shoots formed per culture. Likewise, both Co++ and Ag+ (1–10 µM) increased shoot regeneration, but the number of shoots produced after 30 days was less than with AVG or OED. The inhibitors of ethylene biosynthesis were partially effective in counteracting the inhibitory effect of ACC on shoot formation. These results suggest that modulation of ethylene biosynthesis and/or action can strongly influence the formation of adventitious shoots from excised roots of silktree.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - CEPA 2-chloroethylphosphonic acid - OED oxime ether derivative  相似文献   

3.
Chi GL  Pua EC  Goh CJ 《Plant physiology》1991,96(1):178-183
The promotive effect of AgNO3 and aminoethoxyvinylglycine (AVG) on in vitro shoot regeneration from cotyledons of Brassica campestris ssp. pekinensis in relation to endogenous 1-amino-cyclopropane-1-carboxylic acid (ACC) synthase, ACC, and ethylene production was investigated. AgNO3 enhanced ACC synthase activity and ACC accumulation, which reached a maximum after 3 to 7 days of culture. ACC accumulation was concomitant with increased emanation of ethylene which peaked after 14 days. In contrast, AVG was inhibitory to endogenous ACC synthase activity and reduced ACC and ethylene production. The promotive effect of AVG on shoot regeneration was reversed by 2-chloroethylphosphonic acid at 50 micromolar or higher concentrations, whereas explants grown on AgNO3 medium were less affected by 2-chloroethylphosphonic acid. The distinctive effect of AgNO3 and AVG on endogenous ACC synthase, ACC, and ethylene production and its possible mechanisms are discussed.  相似文献   

4.
Ethylene accumulation in four different rose in vitro culture containers was evaluated. Multiplication rate was the highest, and axes most elongated, in the two containers where ethylene accumulation was limited. Pulse treatments of ethylene at various concentrations enhanced proliferation depending on concentration (5 ppm generally was the most favourable) and time of application, while reducing elongation of the shoots. An ethylene trap in the flask atmospheres of the cultures reduced rose shoot proliferation rate but increased elongation of the axes. Inhibitors of ethylene biosynthesis, aminoethoxyvinylglycine (AVG) and cobalt chloride (CoCl2), increased multiplication rate by providing a higher number of axes of a suitable size for subculture. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) had a beneficial effect on multiplication rate, although reducing longitudinal growth of the axes.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - BA benzyladenine - GA3 gibberellic acid - IBA indolyl-3-butyric acid  相似文献   

5.
The four Helianthus annuus (sunflower) inbred lines examined showed different abilities to convert 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene and different morphological responses to exogenous ACC, however, ACC had no effect on precocious flowering. The greatest effect of ACC was seen with inbred SS405B where it suppressed shoot growth and induced hypocotyl enlargement and callus induction. The greatest response did not correlate with the highest ethylene production. Although each inbred responded differently, callus induction and hypocotyl enlargement observed in hypocotyl segments treated with naphthalene acetic acid and benzyladenine could be partially explained as ethylene-mediated effects of the two hormones. It is suggested that inbred differences could be due to different endogenous hormone levels and/or different sensitivities to them.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - BA benzyladenine - NAA naphthalene acetic acid  相似文献   

6.
Summary The role of ethylene and putrescine on shoot regeneration from hypocotyl explants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey cv. Red Coat) was investigated. Explants were recalcitrant in culture, but exogenous application of ethylene inhibitor [20–30 M aminoethoxyvinylglycine (AVG) or AgNO3] enhanced shoot regeneration of explants grown on medium supplemented with 2 mg/l N6-benzyladenine and 1 mg/l 1-naphthaleneacetic acid. The best regeneration occurred in the medium containing AgNO3 in combination with AVG. Culture medium solidified with agarose in the presence of AgNO3 but not AVG was also beneficial to shoot regeneration. Exogenous putrescine, 2-chloroethylphosphonic acid and 1-aminocyclopropane-1-carboxylate had no effect on shoot regeneration. However, regeneration was greatly promoted by 10–25 mM putrescine in combination with 30 M AgNO3 or AVG. Explants with high regenerability grown in the presence of AgNO3 or in combination with putrescine emanated high levels of ethylene throughout the 21-d culture period. By contrast, AVG or putrescine alone resulted in a decrease in ethylene production. For rooting of shoot cuttings, IAA and IBA at 1–5 mg/l were more effective than NAA.Abbreviations ACC 1-aminocyclopropane-1-carboxylate - AVG aminoethoxyvinylglycine - BA N6-benzyladenine - CEPA 2-chloroethylphosphonic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid - MS Murashige and Skoog (1962) medium - NAA 1-naphthaleneacetic acid - PAs polyamines - SAM S-adenosyl-L-methionine  相似文献   

7.
Hypocotyl-derived callus from the Helianthus annuus L. inbred line SS415B regenerated significantly more plants if the seedlings were grown in the light. The difference between light- and dark-grown seedlings was not correlated with differences in seedling ethylene production, but seemed to be due to a difference in sensitivity to ethylene at a specific time during seedling growth. Treating 3-day-old dark-grown seedlings with 10 μ M aminoethoxyvinylglycine (AVG) effectively inhibited ethylene production for at least 7 days. Hypocotyl callus derived from AVG-treated seedlings gave the same amount of regeneration as callus from light-grown seedlings. Promotion of regeneration by AVG was not seen unless the 3-day-old seedlings were grown for 4 additional days prior to culturing hypocotyl explants. The effects of AVG could be reversed by treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) during these 4 days. After the 4 days, ACC was no longer effective.  相似文献   

8.
Jennifer F. Jones  Hans Kende 《Planta》1979,146(5):649-656
1-Aminocyclopropane-1-carboxylic acid (ACC) stimulated the production of ethylene in subapical stem sections of etiolated pea (cv. Alaska) seedlings in the presence and absence of indole-3-acetic acid (IAA). No lag period was evident following application of ACC, and the response was saturated at a concentration of 1 mM ACC. Levels of endogenous ACC paralleled the increase in ethylene production in sections treated with different concentrations of IAA and with selenoethionine or selenomethionine plus IAA. The IAA-induced formation of both ACC and ethylene was blocked by the rhizobitoxine analog aminoethoxyvinylglycine (AVG). Labelling studies with L-[U-14C]methionine showed an increase in the labelling of ethylene and ACC after treatment with IAA. IAA had no specific effect on the incorporation of label into S-methylmethionine or homoserine. The specific radioactivity of ethylene was similar to the specific radioactivity of carbon atoms 2 and 3 of ACC after treatment with IAA, indicating that all of the ethylene was derived from ACC. The activity of the ACC-forming enzyme was higher in sections incubated with IAA than in sections incubated with water alone. These results support the hypothesis that ACC is the in-vivo precursor of ethylene in etiolated pea tissue and that IAA stimulates ethylene production by increasing the activity of the ACC-forming enzyme.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine, the aminoethoxy analog of rhizobitoxine - IAA indole-3-acetic acid - SAM S-adenosylmethionine - SMM S-methylmethionine  相似文献   

9.
The effect of ethylene on in vitro plant regeneration from frond and rhizome expiants of Platycerium coronarium was investigated. Ethylene levels in the culture vessels increased with time, resulting in a decrease in the percentage of sporophytes produced. Addition of the ethylene action inhibitor silver thiosulfate resulted in an increase in the percentage of plants regenerated, indicating an inhibitory effect of ethylene on regeneration. However, the presence of 2,5-norbornadiene was not effective in reversing the effect of ethylene. Inhibitors of ethylene biosynthesis, such as cobalt chloride, salicylic acid, benzylisothiocyanate, and aminoethoxyvinylglycine, were also ineffective in increasing sporophyte regeneration. 1-Aminocyclopropane-1-carboxylic acid, the ethylene precursor, was ineffective in increasing the level of ethylene in the culture vessels. Therefore, the biosynthetic pathway of ethylene in the fern P. coronarium appears to be different from that of higher plants but similar to that of some other ferns.Abbreviations SA salicylic acid - AVG aminoethoxyvinylglycine - BITC benzylisothiocyanate - STS silver thiosulfate - ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

10.
Summary The effects of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and two inhibitors, silver thiosulfate (STS) and aminoethoxyvinylglycine (AVG), were tested in yellow passionfruit (Passiflora edulis f. flaricarpa Degener) acillary cultured in vitro. The organogenic responses were assessed by the number of buds per explant, mean leaf area per explant, and shoot length. ACC-supplemented medium significantly inhibited all evaluated responses at both concentrations tested. When ethylene action and biosynthesis were inhibited, a significant increase in the number of developed buds and average leaf area was observed. Accumulated ethylene and its accumulation rate were significantly greater at 10 μM ACC, with a maximum production rate deteeted: at the 14th day and a decline at the 21st day. The results suggest beneficial effects of ethylene inhibitors on in vitro development of axillary buds and their reliability for use as an alternative approach to evaluate sensitivity of Passiflora species to ethylene. Even though shoot elongation did not differ from that of the control, the inhibition of the ethylene action and its biosynthesis by AVG and STS, respectively, significantly enhanced the number of buds per explant and leaf area.  相似文献   

11.
Summary The promotive effect of ethylene inhibitors (Els), i.e. AgNO3 and aminoethoxyvinylglycine (AVG) on de novo shoot regeneration from cultured cotyledonary explants of Brassica campestris ssp. pekinensis cv. Shantung in relation to polyamines (PAs) was investigated. The endogenous levels of free putrescine and spermidine in the explant decreased sharply after 1–3 days of culture, whereas endogenous spermine increased, irrespective of the absence or presence of Els. AgNO3 at 30 M did not affect endogenous PAs during two weeks of culture. In contrast, explants grown on medium containing 5 M AVG produced higher levels of free putrescine and spermine which increased rapidly after three days and reached a peak at 10 days. An exogenous application of 5 mM putrescine also resulted in a similar surge of endogenous free spermine of the explant. More strikingly, shoot regeneration from explants grown in the presence of 1–20 mM putrescine, 0.1–2.5 mM spermidine, or 0.1–1 mM spermine was enhanced after three weeks of culture. However, exogenous PAs generally did not affect ethylene production, and endogenous levels of 1-aminocyclopropane-1-carboxylate (ACC) synthase activity and ACC of the explant. This study shows the PA requirement for shoot regeneration from cotyledons of B. campestris ssp. pekinensis in vitro, and also indicates that the promotive effect of PAs on regeneration may not be due to an inhibition of ethylene biosynthesis.Abbreviations PAs polyamines - AVG aminoethoxyvinylglycine - SAM S-adenosylmethionine - ACC 1-aminocyclopropane-1-carboxylate - Els ethylene inhibitors  相似文献   

12.
Ethylene emanation rates were assessed from leaf tissues of an embryogenic seed plant (Cycle 0) and regeneration cycle plants selected for enhanced embryogenesis (Cycles I, II and IV). In all experiments, ethylene was assessed from the basal 1 cm portion of the innermost leaf. Ethylene emanation was five-fold higher in Cycle II and Cycle IV plants than in Cycle 0 and nonembryogenic (NE) seed plants. After two days culture on Schenk and Hildebrandt medium containing 30 M dicamba (SH-30), ethylene emanation from Cycle 0 and Cycle II leaf sections increased by 55-fold. Culture of leaf explants for 30 days on SH-30 containing 1 mM 1-aminocyclopropane-1-carboxylic acid (ACC) reduced the embryogenic response by 99%. Treatment of leaf explants with 1 mM aminoethoxyvinylglycine (AVG) reduced ethylene emanation but did not affect embryogenesis. The data indicate that ethylene mediated by ACC may hinder the embryogenic response from orchardgrass leaf cultures.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine  相似文献   

13.
The biosynthesis of ethylene was examined in suspension-cultured cells of parsley (Petroselinum hortense) treated with an elicitor from cell walls of Phytophthora megasperma. Untreated cells contained 50 nmol g-1 of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), and produced ethylene at a rate of about 0.5 nmol g-1 h-1. Within 2 h after addition of elicitor to the culture medium, the cells started to produce more ethylene and accumulated more ACC. Exogenously added ACC did not increase the rate of ethylene production in control or elicitor-treated cells, indicating that the enzyme converting ACC to ethylene was limiting in both cases. The first enzyme in ethylene biosynthesis, ACC synthase, was very rapidly and transiently induced by the elicitor treatment. Its activity increased more than tenfold within 60 min. Density labelling with 2H2O showed that this increase was caused by the denovo synthesis of the enzyme protein. Cordycepin and actinomycin D did not affect the induction of ACC synthase, indicating that the synthesis of new mRNA was not required. The peak of ACC-synthase activity preceded the maximal phenylalanine ammonia-lyase (PAL) activity by several hours. Exogenously supplied ethylene or ACC did not induce PAL. However, aminoethoxyvinylglycine, an inhibitor of ACC synthase, suppressed the rise in ethylene production in elicitor-treated cells and partially inhibited the induction of PAL. Exogenously supplied ACC reversed this inhibition. It is concluded that induction of the ethylene biosynthetic pathway is a very early symptom of elicitor action. Although ethylene alone is not a sufficient signal for PAL induction, the enhanced activity of ACC synthase and the ethylene biosynthetic pathway may be important for the subsequent induction of PAL.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - PAL phenylalanine ammonia-lyase  相似文献   

14.
Guy  Micha  Kende  Hans 《Planta》1984,160(3):276-280
Protoplasts isolated from leaves of peas (Pisum sativum L.) and of Vicia faba L. produced 1-aminocyclopropane-1-carboxylic acid (ACC) from endogenous substrate. Synthesis of ACC and conversion of ACC to ethylene was promoted by light and inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and carbonyl cyanide m-chlorophenylhydrazone. Aminoethoxyvinylglycine inhibited ethylene synthesis to a minor extent when given during incubation of the protoplasts but was very effective when added both to the medium in which the protoplasts were isolated and to the incubation medium as well. Radioactivity from [U-14C]methionine was incorporated into ACC and ethylene. However, the specific radioactivity of the C-2 and C-3 atoms of ACC, from which ethylene is formed, increased much faster than the specific radioactivity of ethylene. It appears that ACC and ethylene are synthesized in different compartments of the cell and that protoplasts constitute a suitable system to study this compartmentation.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - CCCP carbonyl cyanide m-chlorophenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

15.
At harvest, fruit from apple trees sprayed with daminozide (+daminozide) had lower levels of aminocyclopropane-1-carboxylic acid (ACC) and produced significantly lower amounts of ethylene than untreated (–daminozide) fruit. Flesh discs from the fruit of +daminozide and –daminozide trees were fed precursors of ethylene to determine how daminozide inhibits ethylene production. ACC was metabolized to ethylene regardless of treatment. Methionine (MET), however, was only converted to ethylene by –daminozide fruit, and only after the fruit had been maintained at 4 °C for 5 months. +Daminozide fruit failed to convert MET to ethylene at harvest, as well as after cold storage. When daminozide was added to the incubation media of flesh discs it did not inhibit ethylene production or the conversion of ACC to ethylene. The addition of daminozide did, however, inhibit the metabolism of exogenous MET to ethylene. Aminooxyacetate acid (AOA) blocked both the endogenous production of ethylene and that from MET feeds. Daminozide inhibits ethylene production by preventing the conversion of MET to ACC, but it does not appear to act as a simple competitive inhibitor of ACC synthase activity.Abbreviations ACC aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - AOA aminooxyacetic acid - CH cycloheximide - MET methionine - PUT putrescine Author for correspondence  相似文献   

16.
The pathway of ethylene biosynthesis was examined in two lower plants, the semi-aquatic ferns Regnellidium diphyllum Lindm. and Marsilea quadrifolia L. As a positive control for the ethylene-biosynthetic pathway of higher plants, leaves of Arabidopsis thaliana (L.) Heynh. were included in each experiment. Ethylene production by Regnellidium and Marsilea was not increased by treatment of leaflets with 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene in higher plants. Similarly, ethylene production was not inhibited by application of aminoethoxyvinylglycine and -aminoisobutyric acid, inhibitors of the ethylene biosynthetic enzymes ACC synthase and ACC oxidase, respectively. However, ACC was present in both ferns, as was ACC synthase. Compared to leaves of Arabidopsis, leaflets of Regnellidium and Marsilea incorporated little [14C]ACC and [14C]methionine into [14C]ethylene. From these data, it appears that the formation of ethylene in both ferns occurs mainly, if not only, via an ACC-independent route, even though the capacity to synthesize ACC is present in these lower plants.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AdoMet S-adenosyl-l-methionine - AIB -aminoisobutyric acid - AVG aminoethoxyvinylglycine This research was supported by the U.S. Department of Energy through grant No. DE-FG02-91ER20021 and, in part, by a fellowship of the National Engineering and Research Council of Canada to Jacqueline Chernys.  相似文献   

17.
Enhanced ethylene production and leaf epinasty are characteristic responses of tomato (Lycopersicon esculentum Mill.) to waterlogging. It has been proposed (Bradford, Yang 1980 Plant Physiol 65: 322-326) that this results from the synthesis of the immediate precursor of ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), in the waterlogged roots, its export in the transpiration stream to the shoot, and its rapid conversion to ethylene. Inhibitors of the ethylene biosynthetic pathway are available for further testing of this ACC transport hypothesis: aminooxyacetic acid (AOA) or aminoethoxyvinylglycine (AVG) block the synthesis of ACC, whereas CO2+ prevents its conversion to ethylene. AOA and AVG, supplied in the nutrient solution, were found to inhibit the synthesis and export of ACC from anaerobic roots, whereas Co2+ had no effect, as predicted from their respective sites of action. Transport of the inhibitors to the shoot was demonstrated by their ability to block wound ethylene synthesis in excised petioles. All three inhibitors reduced petiolar ethylene production and epinasty in anaerobically stressed tomato plants. With AOA and AVG, this was due to the prevention of ACC import from the roots as well as inhibition of ACC synthesis in the petioles. With Co2+, conversion of both root- and petiole-synthesized ACC to ethylene was blocked. Collectively, these data support the hypothesis that the export of ACC from low O2 roots to the shoot is an important factor in the ethylene physiology of waterlogged tomato plants.  相似文献   

18.
Bean leaves from Phaseolus vulgaris L. var. Pinto 111 react to mechanical wounding with the formation of ethylene. The substrate for wound ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC). It is not set free by decompartmentation but is newly synthesized. ACC synthesis starts 8 to 10 min after wounding at 28°C, and 15 to 20 min after wounding at 20°C. Aminoethoxyvinylglycine (AVG), a potent inhibitor of ethylene formation from methionine via ACC, inhibits wound ethylene synthesis by about 95% when applied directly after wounding (incubations at 20°C). AVG also inhibits the accumulation of ACC in wounded tissue. AVG does not inhibit conversion of ACC to ethylene. Wound ethylene production is also inhibited by cycloheximide, n-propyl gallate, and ethylenediaminetetraacetic acid.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine - EDTA ethylenediaminetetraacetic acid  相似文献   

19.
Mayak  Shimon  Legge  Raymond L.  Thompson  John E. 《Planta》1981,153(1):49-55
Isolated membranes from the petals of senescing carnation flowers (Dianthus caryophyllus L. cv. White-Sim) catalyze the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. A microsomal membrane fraction obtained by centrifugation at 131,000 g for 1 h proved to be more active than the membrane pellet isolated by centrifugation at 10,000 g for 20 min. The ethylene-producing activity of the microsomal membranes is oxygen-dependent, heat-denaturable, sensitive to n-propyl gallate, and saturable with ACC. Corresponding cytosol fractions from the petals are incapable of converting ACC to ethylene. Moreover, the addition of soluble fraction back to the membrane fraction strongly inhibits the ACC to ethylene conversion activity of the membranes. The efficiency with which isolated membranes convert ACC to ethylene is lower than that exhibited by intact flowers based on the relative yield of membranes per flower. This may be due to the presence of the endogenous soluble inhibitor of the reaction, for residual soluble fraction inevitably remains trapped in membrane vesicles isolated from a homogenate.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AOA aminoxyacetic acid - AVG aminoethoxyvinylglycine - EPPS N-2-hydroxyethylpiperazine propane sulfonic acid  相似文献   

20.
Aminoethoxyvinylglycine (AVG) and cobalt ions strongly inhibit the conversion of added methionine or aminocyclopropane-1-carboxylic acid (ACC) into ethylene by green-coloured, non-stressed Norway spruce (Picea abies L.) needles but only 30%–40% of basal ethylene formation is affected by such inhibitors. In addition, free radical-mediated ACC-independent ethylene formation (AIEF) of the type released by brown-coloured spruce needles also occurs in extracts from healthy green-coloured needles. Treatment with CdCl2 (10 mM), Na2S2O5 (5 mM) or FeSO4 (10 mM) induces 3–7 fold increases in the rates of ethylene evolution from green-coloured needles. However, only Cd2+-induced ethylene formation is inhibited by AVG while ethylene induced by S2O5 2- or Fe2+ is insensitive to added AVG although increased levels of ACC have also been detected in these treatments. Nevertheless, ethylene-forming decomposition of the precursors of AIEF is accelerated by S2O5 - or Fe2+ which indicates that the ethylene released from green-coloured spruce needles is formed by a combination of both the ACC-dependent and AIEF pathways.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - AIEF ACC-independent ethylene formation - EFE ethylene-forming enzyme - MACC N-malonyl(amino)cyclopropane-1-carboxylic acid - DTBN di-tert-butylnitroxide - MNP 2-methyl-2-nitrosopropane - SAM S-adenosylmethionine - TEMPO 2,2,6,6-tetramethyl-1-piperidine-N-oxyl  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号