首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 440 毫秒
1.
Liquid cultures of the deuteromycete, Fusarium oxysporum f. sp. tulipae, a tulip pathogen, produced high amounts of ethylene during stationary phase. 1-Aminocyclopropane-1-carboxylic acid, the direct precursor of ethylene in plants, was not present in the fungus. Radioactivity from [3,4-3H]glutamate as well as [U-14C]glutamate was incorporated into ethylene, indicating that it was derived from C3 and C4 of glutamate or 2-oxoglutarate. Ferrous ions markedly stimulated the rate of ethylene formation in vivo, whereas Fe3+, Cu2+ or Zn2+ had little or no effect. Ethylene biosynthesis was strongly inhibited by the heavy metal chelator ,-dipyridine. The effect of ,-dipyridine was fully reversed by Fe2+ ions and partially by Cu2+ and Zn2+ ions but not by the supply of glutamate or 2-oxoglutarate, suggesting that a step in the ethylene biosynthetic pathway downstream of 2-oxoglutarate is dependent on Fe2+. When stationary phase cultures were supplied with arginine, ornithine, or proline, ethylene production increased dramatically while addition of glutamate or 2-oxoglutarate had little effect. Tracer studies were performed to test the possibility that an intermediate in the catabolism of arginine to glutamate was the direct precursor of ethylene. In cultures supplied with [U-14C]arginine or [U-14C]glutamate, the specific radioactivity of ethylene was closely similar to the specific radioactivity of the endogenous glutamate pool, indicating that glutamate was on the pathway between arginine and ethylene. An enzyme system converting 2-oxoglutarate to ethylene in a reaction dependent on oxygen, ferrous ions and arginine has previously been described in extracts from Penicillium digitatum (Fukuda et al. 1986). The present results suggest that a similar enzyme system catalyzes the final step of ethylene biosynthesis in F. oxysporum.Non-standard abbreviations AdoMet S-adenosyl methionine - ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene forming enzyme  相似文献   

2.
The ethylene inhibitor silver nitrate (AgNO3) is known to overcome the poor response of the Brussels sprouts cultivar Hal to anther culture. Ethylene production by Hal anthers after 6 h of culture at 35°C was on average 10- and 20-fold greater than from anthers of the highly responsive cultivars Gower and GA1 x RDF2. The initial 24 h period at 35°C necessary for embryogenesis in anther culture of Brussels sprouts generally reduced ethylene production by the anthers after 6, 24, 48 and 72 h of culture, although the effect was not seen in 2 out of 3 Hal experiments until 24 h, and after 6 h was only found with 1 of 3 GA1 x RDF2 experiments. Embryo production was inhibited by the inclusion of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) or the ethylene-releasing compound, ethephon in the media. Silver nitrate (AgNO3) and the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) promoted embryogenesis but did not substitute for the high temperature treatment. The relevance of ethylene production during anther culture to the effects of genotype and high temperature on anther culture embryogenesis is discussed.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine  相似文献   

3.
Summary The role of ethylene in vegetative bud regeneration was studied in cultured tobacco (Nicotiana tabacum L. cvSamsun) thinlayer expiants. The experimental approach consisted in supplementing the bud-inducing medium with an inhibitor of ethylene biosynthesis, aminoethoxyvinylglycine (AVG), an ethylene antagonist, silver thiosulphate (STS), or an ethylene-releasing compound, 2-chloroethylphosphonic acid (CEPA), at various concentrations. The organogenic response was assessed both macroscopically (percentage of bud-forming expiants, final number of buds per expiant) and cytohistologically (number, characteristics, and localisation of meristemoids and bud primordia). The time course of ethylene production during culture was also evaluated. At the end of culture (day 27) all the expiants treated with these compounds had a lower number of buds compared to controls. STS was detrimental to meristemoid initiation at all the concentrations tested. In contrast, 0.5 M AVG, which strongly inhibited ethylene production, provoked a large increase in the formation of meristemoids early in culture and the appearance of anomalous (twin) buds. CEPA reduced meristemoid formation but, at the lower concentrations (1 and 10 M) speeded up bud emergence. On the whole it mainly favoured disorganised growth and xylogenesis. The results of this work highlight the contrasting effects of ethylene in relation to the two critical stages of the organogenic process, i.e., meristemoid formation and bud primordium development.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - STS silver thiosulphate - CEPA 2-chloroethylphosphonic acid - IAA indole-3-acetic acid - BA benzyladenine - HF hormone-free  相似文献   

4.
Ethylene emanation rates were assessed from leaf tissues of an embryogenic seed plant (Cycle 0) and regeneration cycle plants selected for enhanced embryogenesis (Cycles I, II and IV). In all experiments, ethylene was assessed from the basal 1 cm portion of the innermost leaf. Ethylene emanation was five-fold higher in Cycle II and Cycle IV plants than in Cycle 0 and nonembryogenic (NE) seed plants. After two days culture on Schenk and Hildebrandt medium containing 30 M dicamba (SH-30), ethylene emanation from Cycle 0 and Cycle II leaf sections increased by 55-fold. Culture of leaf explants for 30 days on SH-30 containing 1 mM 1-aminocyclopropane-1-carboxylic acid (ACC) reduced the embryogenic response by 99%. Treatment of leaf explants with 1 mM aminoethoxyvinylglycine (AVG) reduced ethylene emanation but did not affect embryogenesis. The data indicate that ethylene mediated by ACC may hinder the embryogenic response from orchardgrass leaf cultures.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine  相似文献   

5.
Callus cultures of 18 sugarbeet (Beta vulgaris) lines, two accessions of B. maritima and a B. macrocarpa accession were initiated from aseptically germinated seeds. Plant regeneration through organogenesis was obtained either on MS or B5 medium containing various concentrations and combinations of naphthaleneacetic acid (NAA), 6-benzylaminopurine (BAP), 2,3,5-triiodobenzoic acid (TIBA) and abscisic acid (ABA). Genotypes differed in their abilities of callus formation and regeneration: seven out of 18 sugarbeet lines, and an accession of B. maritima were capable of regenerating plantlets. Our data also indicated that 2 M TIBA promoted morphogenesis from callus culture in the presence of 5 M BAP.  相似文献   

6.
A simple and sensitive chemical assay was developed for 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene. The assay is based on the liberation of ethylene from ACC at pH 11.5 in the presence of pyridoxal phosphate, MnCl2 and H2O2. This assay was used to detect ACC in extracts of tomato fruits (Lycopersicon esculentum Mill.) and to measure the activity of a soluble enzyme from tomato fruit that converted S-adenosylmethionine (SAM) to ACC. The enzyme had a Km of 13 M for SAM, and conversion of SAM to ACC was competitively and reversibly inhibited by aminoethoxyvinylglycine (AVG), an analog of rhizobitoxine. The Ki value for AVG was 0.2 M. The level of the ACC-forming enzyme activity was positively correlated with the content of ACC and the rate of ethylene formation in wild-type tomatoes of different developmental stages. Mature fruits of the rin (non-ripening) mutant of tomato, which only produce low levels of ethylene, contained much lower levels of ACC and of the ACC-forming enzyme activity than wild-type tomato fruits of comparable age.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine, the aminoethoxy analog of rhizobitoxine L-2-amino-4-(2-aminoethoxy)-trans-3-butenoic acid - SAM S-adenosyl-L-methionine Michigan Agricultural Experiment Station No. 8876  相似文献   

7.
Summary The role of ethylene and putrescine on shoot regeneration from hypocotyl explants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey cv. Red Coat) was investigated. Explants were recalcitrant in culture, but exogenous application of ethylene inhibitor [20–30 M aminoethoxyvinylglycine (AVG) or AgNO3] enhanced shoot regeneration of explants grown on medium supplemented with 2 mg/l N6-benzyladenine and 1 mg/l 1-naphthaleneacetic acid. The best regeneration occurred in the medium containing AgNO3 in combination with AVG. Culture medium solidified with agarose in the presence of AgNO3 but not AVG was also beneficial to shoot regeneration. Exogenous putrescine, 2-chloroethylphosphonic acid and 1-aminocyclopropane-1-carboxylate had no effect on shoot regeneration. However, regeneration was greatly promoted by 10–25 mM putrescine in combination with 30 M AgNO3 or AVG. Explants with high regenerability grown in the presence of AgNO3 or in combination with putrescine emanated high levels of ethylene throughout the 21-d culture period. By contrast, AVG or putrescine alone resulted in a decrease in ethylene production. For rooting of shoot cuttings, IAA and IBA at 1–5 mg/l were more effective than NAA.Abbreviations ACC 1-aminocyclopropane-1-carboxylate - AVG aminoethoxyvinylglycine - BA N6-benzyladenine - CEPA 2-chloroethylphosphonic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid - MS Murashige and Skoog (1962) medium - NAA 1-naphthaleneacetic acid - PAs polyamines - SAM S-adenosyl-L-methionine  相似文献   

8.
The role of ethylene in the formation of adventitious roots in vitro was studied in tomato (Lycopersicon esculentum Mill. cv. UC 105) cotyledons and lavandin (Lavandula officinalis Chaix × Lavandula latifolia microshoots. Both systems were able to form roots on hormone-free medium evolving low amounts of ethylene. The addition of 20–50 M indole-3-acetic acid (IAA) inhibited root formation in tomato cotyledons while increasing ethylene production. Naphthaleneacetic acid (NAA, 3 M) stimulated root number in lavandin explants and induced a transient rise in ethylene evolution. Enhanced ethylene levels via the endogenous precursors 1-aminocyclopropane-1-carboxylic acid (ACC, 25–50 M) drastically impaired root regeneration and growth in tomato. In lavandin, 10 M ACC stimulated ethylene production and significantly inhibited the rooting percentage and root growth. Conversely, ACC enhanced the root number in the presence of NAA only. Severe inhibition of rooting was also caused by ethylene reduction via biosynthetic inhibitors, aminoethoxyvinylglycine (AVG, 5–10 M) in tomato, and salicylic acid (SA, 100 M) in lavandin. A strict requirement of endogenous ethylene for adventitious root induction and growth is thus suggested.Abbreviations LS Linsmaier and Skoog medium - BA N6-benzyladenine - NAA 1-naphthaleneacetic acid - IAA Indole-3-acetic acid - AVG Aminoethoxyvinylglycine - SA Salicylic acid - ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

9.
The catecholamines (50 M dopamine, 50 M norepinephrine and 100 M epinephrine) and phenylethylamine (200 M) were found to stimulate ethylene production in potato suspension cultures. When 100 M amino-oxyacetic acid was added together with epinephrine, ethylene release returned to control levels. The endogenous 1-aminocyclopropane-1-carboxylic acid levels were increased in parallel with the release of ethylene, suggesting that the observed effect probably occurs via regulation of aCC synthase. Our results suggest that there is a link between these naturally occurring monoamines and ethylene in plants.Abbreviations AOA amino-oxyacetic acid - ACC 1-aminocyclopropane-1-carboxylic acid - DA dopamine - NE norepinephrine - E epinephrine - CA catecholamines - PEA phenylethylamine  相似文献   

10.
The pathway of ethylene biosynthesis was examined in two lower plants, the semi-aquatic ferns Regnellidium diphyllum Lindm. and Marsilea quadrifolia L. As a positive control for the ethylene-biosynthetic pathway of higher plants, leaves of Arabidopsis thaliana (L.) Heynh. were included in each experiment. Ethylene production by Regnellidium and Marsilea was not increased by treatment of leaflets with 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene in higher plants. Similarly, ethylene production was not inhibited by application of aminoethoxyvinylglycine and -aminoisobutyric acid, inhibitors of the ethylene biosynthetic enzymes ACC synthase and ACC oxidase, respectively. However, ACC was present in both ferns, as was ACC synthase. Compared to leaves of Arabidopsis, leaflets of Regnellidium and Marsilea incorporated little [14C]ACC and [14C]methionine into [14C]ethylene. From these data, it appears that the formation of ethylene in both ferns occurs mainly, if not only, via an ACC-independent route, even though the capacity to synthesize ACC is present in these lower plants.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AdoMet S-adenosyl-l-methionine - AIB -aminoisobutyric acid - AVG aminoethoxyvinylglycine This research was supported by the U.S. Department of Energy through grant No. DE-FG02-91ER20021 and, in part, by a fellowship of the National Engineering and Research Council of Canada to Jacqueline Chernys.  相似文献   

11.
Russell L. Malmberg 《Planta》1979,146(2):243-244
Sixteen genetic lines of peas were screened for their ability to regenerate whole plants from callus cultures. Epicotyl sections from germinating seeds were placed on callus-inducing medium; the resulting callus was subcultured monthly and was tested every other month for its regeneration ability. Six lines were found that would regenerate after 2 months' growth as callus. Four of these continued to regenerate after 4 months and, of these, two after 6 months. The cultivars Frosty and Alaska were among the lines that would not regenerate at all.Michigan Agricultural Experiment Station Journal Article No. 8932  相似文献   

12.
Somatic embryogenesis,plant regeneration and somaclonal variation in barley   总被引:2,自引:0,他引:2  
In vitro culture of immature embryo and young leaf tissues was carried out with five cultivars of barley, Hordeum vulgare. Two cultivars (Albacete and Porthos) responded poorly from both types of explants, while the three others (Dissa, Golden Promise and Ingrid) produced a high frequency of embryogenic callus from these explants (25–60%). For Dissa and Ingrid, young leaf explants were slightly better than immature embryo explants for embryogenic callus induction, while immature embryo cultures of Golden Promise responded better than young leaf explants. Thus, there appears to be a significant genotype × explant interaction in the initiation of embryogenic callus in barley.Some phenotypic variants were detected among the regenerated plants of Golden Promise and Ingrid, most originating by epigenetic changes. Only in one case was the variant phenotype heritable, probably due to a mutation in the chloroplast DNA. Mitotic alteractions were not detected. Consequently, somaclonal variation did not appear to be a very frequent event in plants regenerated from 1- to 6- month-old cultures of barley.  相似文献   

13.
The effect of gibberellin A1 (GA1) on production of ethylene by cowpea (Vigna sinensis cv Blackeye pea no. 5) epicotyl explants and its relationship to epicotyl elongation was investigated. The explants were placed upright in water and incubated in sealed culture tubes or in large jars. GA, and IAA in ethanol solution were injected into the subapical tissues of the decapitated epicotyls. Cowpea epicotyl explants elongated after GA but not after IAA treatment, and they were very sensitive to exogenous ethylene. As little as 0.14 1/1 ethylene reduced significantly GA1-induced epicotyl elongation.Treatment with GA1 induced the production of ethylene which began 10 h after GA application, showed a peak at about 22 h and then declined. The yield of ethylene was proportional to the amount of GA, injected. The inhibition of epicotyl elongation in closed tubes was avoided by absorbing ethylene released with Hg(Cl04)2 , or by adding AVG to the incubation solution to inhibit ethylene production. Treatment with IAA elicited a rapid production of ethylene which ceased about 10 h after application. The effects of IAA and GA1 on ethylene production were additive.Abbreviations AVG aminoethoxyvinylglycine 2-amino-4-(2-aminoethoxy)-trans-3butenoic acid - ACC 1-aminocyclopropane-1-carboxylic acid - GA gibberellin - IAA indole-3-acetic acid  相似文献   

14.
The presence of benzyladenine or naphthaleneacetic acid in seed germination medium markedly enhanced subsequent shoot regeneration from the base of the excised cotyledon explants of Brassica rapa cv. Horizon. Cotyledon explants from younger seedlings (3 or 4-day old) produced more shoots than those from older seedlings. Addition of the ethylene inhibitor aminoethoxyvinylglycine (1.0 M) to the regeneration medium improved shoot regeneration three fold.Abbreviations AVG aminoethoxyvinylglycine - BA benzyladenine - MGBG methylglyoxal-bisguanylhydrazone - MSBN ms (murashige & skoog 1962) medium supplemented with 4.4 m BA & 5.4 m NAA, 2% sucrose - NAA naphthaleneacetic acid  相似文献   

15.
Radermachera sinica L. is an ornamental plant with demonstrated sensitivity to ethylene-induced leaf abscission. In this study, we examine the relationship between abscisic acid (ABA) and ethylene in initiating the abscission response. Treatment with 1 l L\s-1 of ethylene, 1 mM 1-aminocyclopropane-1-carboxylic acid (ACC) or 1 mM ABA resulted in complete defoliation of leaf explants. Application of 0.125 mM silver thiosulfate (STS) inhibited ethylene- and ACC-induced abscission but had no effect on explants treated with ABA. The ABA-induced abscission was unaffected by treatment with aminoethoxyvinylglycine (AVG) or aminooxyacetic acid (AOA). Treatment of explants with 1 mM cobalt chloride (CoCl2) or 2000 l L\s-1 of norbornadiene (NBD) completely inhibited abscission in explants treated with 1 l L\s-1 ethylene or 1 mM ACC but they were only marginally effective in blocking ABA-induced abscission despite the lower level of endogenous ethylene. ABA appeared to increase the sensitivity of explants to ethylene. However, the evidence suggests that ABA may also function independent of ethylene to induce leaf abscission in R. sinica.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - AOA aminooxyacetic acid - AVG aminoethoxyvinylglycine - CoCl2 cobalt chloride - NBD norbornadiene - STS silver thiosulfate  相似文献   

16.
The effects of ethylene and CO2 on shoot regeneration in excised leaf cultures of Paulownia kawakamii were examined. When both the gases were prevented from accumulating in the headspace of cultures using mercuric perchlorate and potassium hydroxide traps, shoot regeneration frequency improved and callus production was reduced compared to the control and cultures with only one of the gases trapped. Incorporation of either aminoethoxyvinylglycine (AVG) or 1-amino-cyclopropane-1-carboxylic acid (ACC) in the culture medium caused significant reduction in shoot regeneration. There was profuse callus production in the presence of high amounts of ACC, which was accompanied by over sixfold increase in the rate of ethylene production. However, in the presence of AVG callus production was delayed and shoot regeneration decreased, suggesting that low levels of ethylene might be needed for de novo shoot bud induction in Paulownia cultures.Abbreviations IAA Indole-3-acetic acid - MP mercuric perchlorate - AVG aminoethoxyvinylglycine - ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

17.
Cryopreservation of callus tissue of Artimisia annua L. was optimized. Two lines of calli were precultured on MS medium with 5% (v/v) dimethyl sulfoxide, and protected by a cryoprotectant containing 15% (v/v) ethylene glycol, 15% (v/v) dimethyl sulfoxide, 30% (v/v) glycerol and 13.6% (w/v) sucrose. The highest survival rate of callus A201 reached 87% after it was pretreated at 25°C, cryopreserved by liquid nitrogen, recovered in water bath at 25°C and reloaded at 25°C with 34% (w/v) sucrose solution, and that of callus A202 reached 78% after it was treated as callus A201, except pretreated at 35°C, recovered at 35°C and reloaded with 47.8% (w/v) sucrose solution.  相似文献   

18.
Eryngium foetidum L. plants were regenerated from mature leaf and petiole explants through direct organogenesis without intervening callus phase. From leaf explants, adventitious multiple shoots raised on Murashige and Skoog (MS) medium supplemented with 4.43 M benzylaminopurine (BAP) and 0.57 M indole-3-acetic acid (IAA), whereas in petiole explants shoot regeneration occurred at 8.86 M BAP and 0.57 M IAAA. 80% of the leaf explants and 44% of petiole explants produced shoots after four weeks of culture. The regenerated plants were rooted on MS medium supplemented with 2.46 M indole-3-butyric acid and 2.88 M gibberellic acid. The plants were successfully established in the soil and showed 70.9% survival in the field.  相似文献   

19.
The relationship between polyamines (PAs) metabolism and adventitious shoot morphogenesis from cotyledons of cucumber was investigated in vitro. The endogenous levels of free putrescine (Put) and spermidine (Spd) in the explants decreased sharply, whereas endogenous spermine (Spm) increased during adventitious shoot morphogenesis. The presence of 1–15 mM Put, 1–2 mM Spd, 0.05–1 mM Spm, 5–10 M aminoethoxyvinylglycine (AVG) or 5 M AVG together with 50 M 1-aminocyclopropane-1-carboxylic acid (ACC) in the regeneration medium could promote adventitious shoot formation. Conversely, 1–5 mM D-arginine (D-Arg) or 0.01–0.1 mM methylglyoxal bis-guganylhydrazone (MGBG) inhibited regeneration; and 0.005–0.05 mM ACC displayed little or no evident effects. The explants growing on medium containing 5 M AVG produced higher levels of free Put and Spm, and on medium containing 5 mM Put the explants responded similarly to the AVG-treated explants. However, the exogenous use of 1 mM D-Arg reduced the levels of Put, Spd and Spm, and 0.1 mM MGBG reduced the levels of free Spd and Spm. Moreover, although the explants cultured on medium containing Put and MGBG enhanced ethylene production, AVG and D-Arg inhibited ethylene biosynthesis. This study shows the PAs requirement for the formation of adventitious shoot from cotyledons of cucumber in vitro and the enhanced adventitious shoot morphogenesis may be associated with the elevated level of endogenous free Spm, albeit the promotive effect of PAs on adventitious shoot morphogenesis may not be related to ethylene metabolism.  相似文献   

20.
Effects of metal chelators, 2,2-bipyridine, 8-hydroxyquinoline and 1,10-phenenthroline, on the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene in detached leaves of light-grown rice (Oryza sativa) seedlings and detached shoots of etiolated rice seedlings were investigated. Metal chelators strongly inhibited the in vivo ACC oxidase activity in detached leaves and detached etiolated shoots. This inhibition could be partially recovered by Fe2+. Our results support the notion that Fe2+ is an essential cofactor for the conversion of ACC to ethylene in vivo.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - BP 2,2-bypyridine - HQ 8-hydroxylquinoline - MJ methyl jasmonate - PA 1,10-phenanthroline - Put putrescine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号