首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytochrome P450 2E1 (CYP2E1) is an enzyme of major toxicological interest because it metabolizes various drugs, precarcinogens and solvents to reactive metabolites. In this study, human and cynomolgus monkey CYP2E1 cDNAs (humCYP2E1 and monCYP2E1, respectively) were cloned, and the corresponding proteins were heterologously expressed in yeast cells to identify the functions of primate CYP2E1s. The enzymatic properties of CYP2E1 proteins were characterized by kinetic analysis of chlorzoxazone 6-hydroxylation and 4-nitrophenol 2-hydroxylation. humCYP2E1 and monCYP2E1 enzymes showed 94.3% identity in their amino acid sequences. The functional CYP content in yeast cell microsomes expressing humCYP2E1 was 38.4 pmol/mg protein. The level of monCYP2E1 was 42.7% of that of humCYP2E1, although no significant differences were statistically observed. The K(m) values of microsomes from human livers and yeast cells expressing humCYP2E1 for CYP2E1-dependent oxidation were 822 and 627 microM for chlorzoxazone 6-hydroxylation, and 422 and 514 microM for 4-nitrophenol 2-hydroxylation, respectively. The K(m) values of microsomes from cynomolgus monkey livers and yeast cells expressing monCYP2E1 were not significantly different from those of humans in any enzyme source. V(max) and V(max)/K(m) values of human liver microsomes for CYP2E1-dependent oxidation were 909 pmol/min/mg protein and 1250 nl/min/mg protein for chlorzoxazone 6-hydroxylation, and 1250 pmol/min/mg protein and 2990 nl/min/mg protein for 4-nitrophenol 2-hydroxylation, respectively. The kinetic parameter values of cynomolgus monkey livers were comparable to or lower than those of human liver microsomes (49.5-102%). In yeast cell microsomes expressing humCYP2E1, V(max) and V(max)/K(m) values for CYP2E1-dependent oxidation on the basis of CYP holoprotein level were 170 pmol/min/pmol CYP and 272 nl/min/pmol CYP for chlorzoxazone 6-hydroxylation, and 139 pmol/min/pmol CYP and 277 nl/min/pmol CYP for 4-nitrophenol 2-hydroxylation, respectively, and the kinetic parameters of monCYP2E1 exhibited similar values. These findings suggest that human and cynomolgus monkey CYP2E1 enzymes have high homology in their amino acid sequences, and that their enzymatic properties are considerably similar. The information gained in this study should help with in vivo extrapolation and to assess the toxicity of xenobiotics.  相似文献   

2.
A full-length cDNA encoding human cytochrome P450 2E1 was expressed in mammalian cell lines using the vaccinia virus expression system. Immunoblot analysis showed that the expressed protein reacted with a polyclonal antibody against rat 2E1 and comigrated with P450 2E1 from human liver microsomes. P450 2E1 expressed in Hep G2 cells, a human cell line which contains both cytochrome b5 and NADPH:P450 oxidoreductase, was able to metabolize several known P450 2E1 substrates: N-nitrosodimethylamine (NDMA), N-nitrosomethylbenzylamine (NMBzA), p-nitrophenol, phenol, and acetaminophen. Apparent Km and Vmax values for NDMA demethylation were 22 microM and 173 pmol/min/mg microsomal protein, respectively. P450 2E1 expressed in TK-143 cells, which do not contain b5, displayed Km and Vmax values of 31 microM and 34 pmol/min/mg microsomal protein, respectively. Incorporation of purified rat liver b5 into TK-143 microsomes increased the Vmax 2.2-fold and decreased the Km to 22 microM. Addition of b5 to Hep G2 microsomes resulted in a 1.6-fold increase in Vmax, but showed no effect on the Km. P450 2E1 expressed in Hep G2 cells was shown to metabolize NMBzA with a Km of 47 microM and Vmax of 213 pmol/min/mg microsomal protein. Addition of b5 lowered the Km to 27 microM, but had no effect on Vmax. These results demonstrate conclusively that P450 2E1 is responsible for the low Km forms of NDMA demethylase and NMBzA debenzylase observed in liver microsomes and that these activities are affected by cytochrome b5.  相似文献   

3.
The inducible form of heme oxygenase (HO-1) is increased during oxidative injury and HO-1 is believed to be an important defense mechanism against such injury. Arachidonic acid (AA) and l-buthionine-(S,R)-sulfoximine (BSO), which lowers GSH levels, cause cytochrome P450 2E1 (CYP2E1)-dependent oxidative injuries in HepG2 cells (E47 cells). Treatment of E47 cells with 50 microM AA or 100 microM BSO for 48 h was recently shown to increase HO-1 mRNA, protein, and activity. The possible functional significance of this increase in protecting against CYP2E1-dependent toxicity was evaluated in the current study. The treatment with AA and BSO caused loss of cell viability (40 and 50%, respectively) in E47 cells. Chromium mesoporphyrin (CrMP), an inhibitor of HO activity, significantly potentiated this cytotoxicity. ROS production, lipid peroxidation, and the decline in mitochondrial membrane potential produced by AA and BSO were also enhanced in the presence of CrMP in E47 cells. Infection with an adenovirus expressing rat HO-1 protected E47 cells from AA toxicity, increasing cell viability and reducing LDH release. HO catalyzes formation of CO, bilirubin, and iron from the oxidation of heme. Bilirubin was not protective whereas iron catalyzed the AA toxicity. The carbon monoxide (CO) scavenger hemoglobin enhanced AA toxicity in E47 cells analogous to CrMP, whereas exposure to exogenous CO partially reduced AA toxicity and the enhanced AA toxicity by CrMP. Addition of exogenous CO to the cells inhibited CYP2E1 catalytic activity, as did overexpression of the rat HO-1 adenovirus. These results suggest that induction of HO-1 protects against CYP2E1-dependent toxicity and this protection may be mediated in part via production of CO and CO inhibition of CYP2E1 activity.  相似文献   

4.
In this study, macroporous microcarriers were used for the large-scale growth of parental V79 cells and V79 cells genetically engineered to express a single human cytochrome P4501A1 isoenzyme (V79h1A1). Starting from 2 × 105cells/ml, approximately 1 × 107cells/ml could easily be harvested after 6 days in the case of the parental V79 cells, or after 11 days in the case of the V79h1A1 cells, resulting in a total of 3.6 × 1010cells. For the first time, the presence of cytochrome P450 (CYP) in the expressed V79 cells could be demonstrated by CO difference spectra with a Soret maximum around 450 nm. CYP levels in microsomes derived from the V79h1A1 cells of 14 pmol/mg protein were achieved. Importantly, no CYP was detected in microsomal fractions of the parental V79 cells. Cytochrome b5 levels could also be measured by difference spectrophotometry. No significant differences were found between cytochrome b5 levels in microsomes derived from the large-scale growth of V79h1A1 cells and parental V79 cells, i.e., 16.7 ± 7.9 vs 14.5 ± 7.6 pmol/mg protein. The presence of human cytochrome P4501A1 (CYPh1A1) in microsomal fractions derived from the large-scale growth of V79h1A1 cells was further substantiated by measuring 7-ethoxyresorufin-O-deethylase (EROD), 7-ethoxycoumarin-O-dealkylase (ECOD), and testosterone-6β-hydroxylation activities. EROD, ECOD, and testosterone-6β-hydroxylation activities of the V79h1A1 microsomes were 40 pmol resorufin/min/pmol CYPh1A1, 13 pmol hydroxy-coumarin/min/pmol CYPh1A1, and 0.16 pmol 6β-hydroxytestosterone/min/pmol CYPh1A1, respectively, indicating the presence of a highly active human CYP1A1 enzyme system. Further confirmation that the CYP protein was correctly expressed was obtained by Western blotting. In conclusion, the use of macroporous microcarriers is suitable for large-scale growth of V79 cells expressing human CYP isoenzymes. The present method may provide an easy and rather inexpensive tool in obtaining large quantities of microsomes containing human CYP isoenzymes, which are involved in the bioactivation and bioinactivation of xenobiotics. High yields of microsomes containing human CYP isoenzymes may substantially facilitate the production of sufficient quantities of human metabolites to allow isolation and identification in an early stage of development of pharmacologically interesting drugs.  相似文献   

5.
6.
7.
Studies to identify the cytochrome P450 (CYP) isoform(s) involved in chlorpromazine 7-hydroxylation were performed using human liver microsomes and cDNA-expressed human CYPs. The kinetics of chlorpromazine 7-hydroxylation in human liver microsomes showed a simple Michaelis-Menten behavior. The apparent Km and Vmax values were 3.4+/-1.0 microM and 200.5+/-83.7 pmol/min/mg, respectively. The chlorpromazine 7-hydroxylase activity in human liver microsomes showed good correlations with desipramine 2-hydroxylase activity (r = 0.763, p < 0.05), a marker activity for CYP2D6, and phenacetin O-deethylase activity (r = 0.638, p < 0.05), a marker activity for CYP1A2. Quinidine (an inhibitor of CYP2D6) completely inhibited while alpha-naphthoflavone (an inhibitor of CYP1A2) marginally inhibited the chlorpromazine 7-hydroxylase activity in a human liver microsomal sample showing high CYP2D6 activity. On the other hand, alpha-naphthoflavone inhibited the chlorpromazine 7-hydroxylase activity to 55-65% of control in a human liver microsomal sample showing low CYP2D6 activity. Among eleven cDNA-expressed CYPs studied, CYP2D6 and CYP1A2 exhibited significant activity for the chlorpromazine 7-hydroxylation. The Km values for the chlorpromazine 7-hydroxylation of both cDNA-expressed CYP2D6 and CYP1A2 were in agreement with the Km values of human liver microsomes. These results suggest that chlorpromazine 7-hydroxylation is catalyzed mainly by CYP2D6 and partially by CYP1A2.  相似文献   

8.
Deng H  Gao H  Liu Y 《Mutation research》2011,726(1):84-87
V79-hCYP2E1-hSULT1A1, a V79-derived cell line co-expressing both human CYP2E1 and SULT1A1, has been constructed and efficiently used in detection of the mutagenic activities of a number of promutagens. 2-Nitropropane (2-NP) and N-nitrosodimethylamine (NDMA), both being hepatocarcinogenic to animals but inactive in standard genotoxicity assays in vitro, are activated to mutagenic metabolites by human SULT1A1 and CYP2E1, respectively. Nevertheless, little is known about the chromosomal effects of these two carcinogens. In the present study, we investigated the effects of 2-NP and NDMA on frequencies of micronucleated (F(mi)) and multinucleated cells (F(mu)) in V79-hCYP2E1-hSULT1A1 cells. The results showed induction of both F(mi) and F(mu) by 2-NP and NDMA individually, and this effect was completely suppressed by relatively specific inhibitor of SULT1A1 and CYP2E1, i.e., pentachlorophenol and 1-aminobenzotriazole, respectively. The F(mu)/F(mi) ratio in 2-NP groups was significantly higher than NDMA groups, probably indicating an aneugenic activity of 2-NP based on proposed F(mu)/F(mi) ratio as a simple index to discriminate aneugens from clastogens. The present study has established biotransformation enzyme-dependent formation of multinuclei and micronuclei induced by 2-NP and NDMA.  相似文献   

9.
Liu Y  Glatt H 《Mutation research》2008,643(1-2):64-69
N-Nitrosodiethanolamine (NDELA) has demonstrated carcinogenic activity in various rodent models. However, it is negative or only weakly active in standard in vitro genotoxicity assays. This poor response might be due to the requirement of specific enzymes for its activation. Previous work indicated that cytochrome P450 (CYP) 2E1, alcohol dehydrogenases and sulphotransferases (SULTs) can convert NDELA into reactive metabolites. We report here that NDELA induces concentration-dependent gene mutations (at the hprt locus) in V79-hCYP2E1-hSULT1A1 cells, engineered for expression of human CYP2E1 and human SULT1A1, but is inactive in parental V79 cells. Mutagenicity of NDELA in V79-hCYP2E1-hSULT1A1 cells was abolished by the CYP2E1 inhibitor 1-aminobenzotriazole, but unaffected by the SULT1A1 inhibitor pentachlorophenol. The efficiency and specificity of these inhibitors was demonstrated in gene mutation assays using SULT- and CYP2E1-dependent reference mutagens, 2-nitropropane and N-nitrosodimethylamine, respectively. In this study, it is documented for the first time that NDELA can induce gene mutations in mammalian cells. Whereas human CYP2E1 was required for its activation, human SULT1A1 was not involved either in its activation or its inactivation in our cell model.  相似文献   

10.
The two multifunctional cytochrome P450 enzymes, CYP79A1 and CYP71E1, involved in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench have been characterized with respect to substrate specificity and cofactor requirements using reconstituted, recombinant enzymes and sorghum microsomes. CYP79A1 has a very high substrate specificity, tyrosine being the only substrate found. CYP71E1 has less stringent substrate requirements and metabolizes aromatic oximes efficiently, whereas aliphatic oximes are slowly metabolized. Neither CYP79A1 nor CYP71E1 catalyze the metabolism of a range of different herbicides. The reported resistance of sorghum to bentazon is therefore not linked to the presence of CYP79A1 or CYP71E1. NADPH is a much better cofactor than NADH although NADH does support the entire catalytic cycle of both P450 enzymes. Km and Vmax values for NADPH when supporting CYP71E1 activity are 0.013 mM and 111 nmol/mg protein/s. For NADH, the corresponding values are 0. 3 mM and 42 nmol/mg protein/s. CYP79A1 is a fairly stable enzyme. In contrast, CYP71E1 is labile and prone to rapid denaturation at room temperature. CYP71E1 is isolated in the low spin form. CYP71E1 catalyzes an unusual dehydration reaction of an oxime to the corresponding nitrile which subsequently is C-hydroxylated. The oxime forms a peculiar reverse Type I spectrum, whereas the nitrile forms a Type I spectrum. Several compounds which do not serve as substrates formed Type I substrate binding spectra with the two P450 enzymes.  相似文献   

11.
Ethanol induces hypoxia and elevates HIF-1α in the liver. CYP2E1 plays a role in the mechanisms by which ethanol generates oxidative stress, fatty liver, and liver injury. This study evaluated whether CYP2E1 contributes to ethanol-induced hypoxia and activation of HIF-1α in vivo and whether HIF-1α protects against or promotes CYP2E1-dependent toxicity in vitro. Wild-type (WT), CYP2E1-knock-in (KI), and CYP2E1 knockout (KO) mice were fed ethanol chronically; pair-fed controls received isocaloric dextrose. Ethanol produced liver injury in the KI mice to a much greater extent than in the WT and KO mice. Protein levels of HIF-1α and downstream targets of HIF-1α activation were elevated in the ethanol-fed KI mice compared to the WT and KO mice. Levels of HIF prolyl hydroxylase 2, which promotes HIF-1α degradation, were decreased in the ethanol-fed KI mice in association with the increases in HIF-1α. Hypoxia occurred in the ethanol-fed CYP2E1 KI mice as shown by an increased area of staining using the hypoxia-specific marker pimonidazole. Hypoxia was lower in the ethanol-fed WT mice and lowest in the ethanol-fed KO mice and all the dextrose-fed mice. In situ double staining showed that pimonidazole and CYP2E1 were colocalized to the same area of injury in the hepatic centrilobule. Increased protein levels of HIF-1α were also found after acute ethanol treatment of KI mice. Treatment of HepG2 E47 cells, which express CYP2E1, with ethanol plus arachidonic acid (AA) or ethanol plus buthionine sulfoximine (BSO), which depletes glutathione, caused loss of cell viability to a greater extent than in HepG2 C34 cells, which do not express CYP2E1. These treatments elevated protein levels of HIF-1α to a greater extent in E47 cells than in C34 cells. 2-Methoxyestradiol, an inhibitor of HIF-1α, blunted the toxic effects of ethanol plus AA and ethanol plus BSO in the E47 cells in association with inhibition of HIF-1α. The HIF-1α inhibitor also blocked the elevated oxidative stress produced by ethanol/AA or ethanol/BSO in the E47 cells. These results suggest that CYP2E1 plays a role in ethanol-induced hypoxia, oxidative stress, and activation of HIF-1α and that HIF-1α contributes to CYP2E1-dependent ethanol-induced toxicity. Blocking HIF-1α activation and actions may have therapeutic implications for protection against ethanol/CYP2E1-induced oxidative stress, steatosis, and liver injury.  相似文献   

12.
Gonzalez FJ 《Mutation research》2005,569(1-2):101-110
Cytochromes P450 are responsible for metabolism of most xenobiotics and are required for the efficient elimination of foreign chemicals from the body. Paradoxically, these enzymes also metabolically activate biologically inert compounds to electrophilic derivatives that can cause toxicity, cell death and sometimes cellular transformation resulting in cancer. To establish the role of these enzymes in toxicity and carcinogenicity in vivo, gene knockout mice have been developed. To illustrate the role of P450s in toxicity, CYP2E1-null mice were employed with the commonly used analgesic drug acetaminophen. CYP2E1 is the rate-limiting enzyme that initiates the cascade of events leading to acetaminophen hepatotoxicity; in the absence of this P450, toxicity will only be apparent at high concentrations. Other enzymes and nuclear receptors are also involved in activation or inactivating chemicals. CYP2E1 is induced by alcohol and the primary P450 that carries out ethanol oxidation that can lead to the production of activated oxygen species and oxidative stress that elevate ERK1/2 phosphorylation through EGRF/c-Raf signaling. Paradoxically, activation of this pathway inhibits apoptotic cell death stimulated by reactive oxygen generating chemicals but accelerates necrotic cell death produced by polyunsaturated fatty acids. CYP2E1 is thought to contribute to liver pathologies that result from alcoholic liver disease and non-alcoholic steatohepatitis.  相似文献   

13.
Summary By transfection of an expression vector of human cytochrome P450 2E1 (CYP2E1) into a human hepatoma cell line (HLE), a new cell line (HLE/2E1) that stably expresses activity of CYP2E1 has been established. The HLE/2E1 cell line expressed a higher level of CYP2E1 messenger ribonucleic acid than did the mother HLE cell line. CYP2E1 enzyme activity determined by ap-nitrophenol oxidation assay was also higher in HLE/2E1 cells than in HLE cells. In addition, the enzyme activity of the HLE/2E1 cells was increased by ethanol treatment. Exposure to acetaminophen (APAP) or buthionine sulfoximine (BSO) caused a greater decrease in viability of the HLE/2E1 cells than that of the HLE cells, as determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. The cytotoxicity of APAP or BSO to HLE/2E1 cells was inhibited by the addition of ethanol or vitamin E. However, the cytotoxicity of both APAP and BSO was enhanced by 24-h preincubation of HLE/2E1 cells with ethanol. These results show that this cell line provides a useful model for studying catalytic properties of CYP2E1 and cytotoxic mechanisms of chemicals metabolized by CYP2E1.  相似文献   

14.
Benzene is an occupational and environmental toxicant. The main human health concern associated with benzene exposure is leukemia. The toxic effects of benzene are dependent on its metabolism by the cytochrome p450 enzyme system. The cytochrome p450 enzymes CYP2E1 and CYP2F2 are the major contributors to the bioactivation of benzene in rats and mice. Although benzene metabolism has been shown to occur with mouse and human lung microsomal preparations, little is known about the ability of human CYP2F to metabolize benzene or the lung cell types that might activate this toxicant. Our studies compared bronchiolar derived (BEAS-2B) and alveolar derived (A549) human cell lines for benzene metabolizing ability by evaluating the roles of CYP2E1 and CYP2F1. BEAS-2B cells that overexpressed CYP2F1 and recombinant CYP2F1 were also evaluated. BEAS-2B cells overexpressing the enzyme CYP2F1 produced 47.4 +/- 14.7 pmols hydroxylated metabolite/10(6) cells/45 min. The use of the CYP2E1-selective inhibitor diethyldithiocarbamate and the CYP2F2-selective inhibitor 5-phenyl-1-pentyne demonstrated that both CYP2E1 and CYP2F1 are important in benzene metabolism in the BEAS-2B and A549 human lung cell lines. The recombinant expressed human CYP2F1 enzyme had a K(m) value of 3.83 microM and a V(max) value of 0.01 pmol/pmol p450 enzyme/min demonstrating a reasonably efficient catalysis of benzene metabolism (V(max)/K(m) = 2.6). Thus, these studies have demonstrated in human lung cell lines that benzene is bioactivated by two lung-expressed p450 enzymes.  相似文献   

15.
This protocol describes how to use cytochrome P450-dependent monooxygenase (CYP)-expressing cell lines in toxicity testing of chemicals in vitro. Selected cells amenable to permanently grow in culture are genetically manipulated to stably express single CYP enzymes originating from any species of interest. This expression can be characterized by, for example, determining CYP mRNA content, CYP protein level (western blotting or in situ immunofluorescence) and CYP-mediated enzyme activity (substrate conversion assays). These cells can be used to determine substrate specificities and species differences, e.g., in the bioactivation of drugs. Once constructed, CYP-expressing cells can serve as a straightforward and reliable tool in toxicity testing and the corresponding assays could be adapted for high-throughput analysis. Using these cells, enzyme assays can be performed in a matter of hours. This protocol is exemplified with V79 fibroblasts from Chinese hamster (Cricetulus griseus), modified to express human cytochrome P450 1B1 (CYP1B1). These cells are characterized for their CYP1B1-linked properties by in situ immunofluorescence and their activity in the 7-ethoxyresorufin-O-deethylase enzyme assay. This is followed by an assay showing metabolic activation of the polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene by CYP1B1, along with the toxicological endpoints of cytotoxicity and micronucleus formation.  相似文献   

16.
17.
Only one isoform of cytochrome P450 (CYP) 2E subfamily was known in human and various animals. Three cDNAs corresponding to CYP 2E subfamily members (CYP2E-a, CYP2E-b and CYP2E-c) were obtained from feline liver. These cDNAs each had a 1488-bp nucleotide coding region encoding a predicted amino acid sequence of 495 residues. Eleven amino acid substitutions were observed between CYP2E-a and CYP2E-b, but only one substitution between CYP2E-b and CYP2E-c. The CO difference spectrums about 450 nm wave length and similar values of Vmax and Km of 6-hydoxygenase activity toward chlorzoxazone were observed in all three isoforms expressed in AH22 yeast cells. By PCR-RFLP, mRNA of the CYP2E-a was found to be expressed in liver, mononuclear cells, kidney, lung, stomach, intestine and pancreas, whereas CYP2E-b and CYP2E-c were expressed mainly in the liver and mononuclear cells. Expression of CYP2E-a was observed in the livers of all felines tested, but CYP2E-b and CYP2E-c were not expressed in all cats. The sequences of two different introns between exons I and II and between exons VII and VIII were obtained in genomic DNA from the feline liver. Based on these results, we conclude that cats have two highly similar CYP2E genes.  相似文献   

18.
Studies initiated to investigate the expression of cytochrome P450 2E1 (CYP2E1) in rat brain demonstrated low but detectable protein and mRNA expression in control rat brain. Though mRNA and protein expression of CYP2E1 in brain was several fold lower as compared to liver, relatively high activity of N-nitrosodimethylamine demethylase (NDMA-d) was observed in control rat brain microsomes. Like liver, pretreatment with CYP2E1 inducers such as ethanol or pyrazole or acetone significantly increased the activity of brain microsomal NDMA-d. Kinetic studies also showed an increase in the Vmax and affinity (Km) of the substrate towards the brain enzyme due to increased expression of CYP2E1 in microsomes of brain isolated from ethanol pretreated rats. In vitrostudies using organic inhibitors, specific for CYP2E1 and anti-CYP2E1 significantly inhibited the brain NDMA-d activity indicating that like liver, NDMA-d activity in rat brain is catalyzed by CYP2E1. Olfactory lobes exhibited the highest CYP2E1 expression and catalytic activity in control rats. Furthermore, several fold increase in the mRNA expression and activity of CYP2E1 in cerebellum and hippocampus while a relatively small increase in the olfactory lobes and no significant change in other brain regions following ethanol pretreatment have indicated that CYP2E1 induction maybe involved in selective sensitivity of these brain areas to ethanol induced free radical damage and neuronal degeneration.  相似文献   

19.
We recently constructed a Chinese hamster V79-derived cell line that stably expresses human cytochrome P450 (CYP) 2E1 and human sulphotransferase (SULT) 1A1. These enzymes are involved in the bioactivation of numerous promutagens/procarcinogens, but are not taken into account in standard in vitro mutagenicity assays. Various carbohydrate pyrolysis products and other food contaminants that induce tumours or preneoplastic lesions in laboratory animals are inactive or only weakly active in standard in vitro genotoxicity assays. This is the case for acrylamide, furan, 5-hydroxymethylfurfural, nitrofen and N-nitrosodimethylamine. These compounds were investigated for induction of sister chromatid exchange (SCE) in V79-hCYP2E1-hSULT1A1 cells. All test compounds showed positive results over a wide concentration range, starting at 0.01 microM for N-nitrosodimethylamine, 3 microM for furan, 12.5 microM for nitrofen, 20 microM for 5-hydroxymethylfurfural, and 200 microM for acrylamide. The concentration-response curve of furan was unusual, as this compound induced a statistically significant, but rather constant and weak increase in SCE over an extremely wide concentration range (3-16,000 microM). Furan was slightly less active, whereas the remaining compounds were much less active in the parental V79 cell line than in V79-hCYP2E1-hSULT1A1 cells. Compared to many other genotoxic effects, the study of SCE only requires small numbers of cells (and incubation volumes) and usually is detected even at low concentrations of the genotoxicant. Therefore, induction of SCE in V79-hCYP2E1-hSULT1A1 cells may be useful in the genotoxicity testing of preparations of heated food and in their bioassay-directed fractionation.  相似文献   

20.
The microsomal fraction of homogenates of the sheep vesicular glands, supplemented with 1 mM NADPH, metabolized 0.2 mM prostaglandin E2 to 20-hydroxyprostaglandin E2 at a rate of 76 +/- 9 pmol/min per mg of protein (with a Km of about 0.1 mM and a Vmax of about 0.1 nmol/min per mg of protein). Prostaglandin E1 was metabolized at a rate of only 8.5% of that of prostaglandin E2. The metabolism of prostaglandin E2 was decreased by 66% using 1 mM NADH instead of NADPH. alpha-Naphthoflavone (50 microM) and carbon monoxide inhibited the 20-hydroxylase by more than 60%, while 1 mM beta-diethylaminoethyl-2,2-diphenyl-pentanoate and 1 mM metyrapone inhibited it by less than 50%. The enzyme catalyzed the incorporation of atmospheric oxygen into the substrate. The findings suggest that the 20-hydroxylase could be a cytochrome P-450. The 20-hydroxylase could not be detected in vesicular glands of five rams 3 weeks after castration. The function of the enzyme is presumably to create the high level of 20-hydroxyprostaglandin E compounds in ram semen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号