首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Background

The proteasome is a multi-subunit protein machine that is the final destination for cellular proteins that have been marked for degradation via an ubiquitin (Ub) chain appendage. These ubiquitylated proteins either bind directly to the intrinsic proteasome ubiqutin chain receptors Rpn10, Rpn13, or Rpt5, or are shuttled to the proteasome by Rad23, Dsk2, or Ddi1. The latter proteins share an Ub association domain (UBA) for binding poly-Ub chains and an Ub-like-domain (UBL) for binding to the proteasome. It has been proposed that shuttling receptors dock on the proteasome via Rpn1, but the precise nature of the docking site remains poorly defined.

Results

To shed light on the recruitment of shuttling receptors to the proteasome, we performed both site-directed mutagenesis and genetic screening to identify mutations in Rpn1 that disrupt its binding to UBA-UBL proteins. Here we demonstrate that delivery of Ub conjugates and docking of Ddi1 (and to a lesser extent Dsk2) to the proteasome are strongly impaired by an aspartic acid to alanine point mutation in the highly-conserved D517 residue of Rpn1. Moreover, degradation of the Ddi1-dependent proteasome substrate, Ufo1, is blocked in rpn1-D517A yeast cells. By contrast, Rad23 recruitment to the proteasome is not affected by rpn1-D517A.

Conclusions

These studies provide insight into the mechanism by which the UBA-UBL protein Ddi1 is recruited to the proteasome to enable Ub-dependent degradation of its ligands. Our studies suggest that different UBA-UBL proteins are recruited to the proteasome by distinct mechanisms.  相似文献   

15.
Proper function of the 26 S proteasome requires assembly of the regulatory complex, which is composed of the lid and base subcomplexes. We characterized Rpn5, a lid subunit, in fission yeast. We show that Rpn5 associates with the proteasome rpn5. Deletion (rpn5Delta) exacerbates the growth defects in proteasome mutants, leading to mitotic abnormalities, which correlate with accumulation of polyubiquitinated proteins, such as Cut2/securin. Rpn5 expression is tightly controlled; both overexpression and deletion of rpn5 impair proteasome functions. The proteasome is assembled around the inner nuclear membrane in wild-type cells; however, in rpn5Delta cells, proteasome subunits are improperly assembled and/or localized. In the lid mutants, Rpn5 is mislocalized in the cytosol, while in the base mutants, Rpn5 can enter the nucleus, but is left in the nucleoplasm, and not assembled into the nuclear membrane. These results suggest that Rpn5 is a dosage-dependent proteasome regulator and plays a role in mediating proper proteasome assembly. Moreover, the Rpn5 assembly may be a cooperative process that involves at least two steps: 1) nuclear import and 2) subsequent assembly into the nuclear membrane. The former step requires other components of the lid, while the latter requires the base. Human Rpn5 rescues the phenotypes associated with rpn5Delta and is incorporated into the yeast proteasome, suggesting that Rpn5 functions are highly conserved.  相似文献   

16.
17.
The DNA damage response (DDR) orchestrates the recruitment of repair proteins at sites of damage and arrests cell-cycle progression until completion of repair. Upon irreparable damage, DNA damage foci persist (long-lived foci) and this is believed to induce cellular senescence. The resolution of DNA damage foci has previously been shown to depend on proteasomal degradation and various proteasome subunits have been implicated in the DDR. In this study, we aimed to analyze the possible distinct roles of individual proteasome subunits in the DDR. We show that specific 19S subunits respond to DNA damage by increased protein levels and nuclear translocation. Importantly, two 19S subunits, Rpn7 and Rpn11, colocalize with DNA damage foci over their whole lifespan. Although silencing of Rpn11 does not affect foci stability and lifespan, silencing of Rpn7 promotes faster resolution of DNA damage foci following genotoxic insult. For the first time, we provide evidence that Rpn7 silencing specifically decreases the frequencies of long-lived DNA damage foci without, however, affecting the repair rate of short-lived foci. Therefore, we propose that interaction of Rpn7 with DDR foci in situ mediates the protection of DNA damage foci from premature resolution. We suggest that this interaction is involved in enabling cellular senescence following genotoxic insult.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号