首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Three sodium salts of (2E)‐3‐(4'‐halophenyl)prop‐2‐enoyl sulfachloropyrazine (CCSCP) were synthesized and their structures were determined by 1H and 13C NMR, LC‐MS and IR. The binding properties between CCSCPs and bovine serum albumin (BSA) were studied using fluorescence spectroscopy in combination with UV–vis absorbance spectroscopy. The results indicate that the fluorescence quenching mechanisms between BSA and CCSCPs were static quenching at low concentrations of CCSCPs or combined quenching (static and dynamic) at higher CCSCP concentrations of 298, 303 and 308 K. The binding constants, binding sites and corresponding thermodynamic parameters (ΔH, ΔS, ΔG) were calculated at different temperatures. All ΔG values were negative, which revealed that the binding processes were spontaneous. Although all CCSCPs had negative ΔH and positive ΔS, the contributions of ΔH and ΔS to ΔG values were different. When the 4'‐substituent was fluorine or chlorine, van der Waals interactions and hydrogen bonds were the main interaction forces. However, when the halogen was bromine, ionic interaction and proton transfer controlled the overall energetics. The binding distances between CCSCPs and BSA were determined using the Förster non‐radiation energy transfer theory and the effects of CCSCPs on the conformation of BSA were analyzed by synchronous fluorescence spectroscopy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The binding mechanism of a new and possible drug candidate pyrazoline derivative compound K4 and bovine serum albumin (BSA) was investigated in buffer solution (pH 7.4) using ultraviolet–visible light absorption and steady‐state and synchronous fluorescence techniques. The fluorescence intensity of BSA was quenched in the presence of K4 . The quenching process between BSA and K4 was examined at four different temperatures. Decrease of the quenching constants calculated using the Stern–Volmer equation and at increasing temperature suggested that the interaction BSA– K4 was realized through a static quenching mechanism. Synchronous fluorescence measurements suggested that K4 bounded to BSA at the tryptophan region. Fourier transform infrared spectroscopy results showed that there was no significant change in polarity around the tryptophan residue The forces responsible for the BSA– K4 interaction were examined using thermodynamic parameters. In this study, the calculated negative value of ΔG, the negative value of ΔH and the positive value of ΔS pointed to the interaction being through spontaneous and electrostatic interactions that were dominant for our cases. This study provides a very useful in vitro model to researchers by mimicking in vivo conditions to estimate interactions between a possible drug candidate or a drug and body proteins.  相似文献   

3.
The binding modes of cepharanthine (CEPT) with bovine serum albumin (BSA) and human serum albumin (HSA) have been established by reproducing physiological conditions, which is very important to understand the pharmacokinetics and toxicity of CEPT. These spectral data were further analyzed by the multivariate curve resolution‐alternating least squares method. Moreover, the concentration profiles and pure spectra of three species (BSA/HSA, CEPT and CEPT–BSA/HSA) and the apparent equilibrium constants Kapp were evaluated. The experimental results showed that CEPT could quench the fluorescence intensity of BSA/HSA by a combined quenching (static and dynamic) procedure. The binding constant (K), the thermodynamic parameters (ΔG, ΔH and ΔS) and binding subdomain were measured, and indicated that CEPT could spontaneously bind to BSA/HSA on subdomain IIA through the hydrophobic interactions. The effect of CEPT on the secondary structure of proteins has been analyzed by circular dichroism, 3D fluorescence and Fourier transform infrared spectra. The binding distance between CEPT and tryptophan of BSA/HSA was 2.305/1.749 nm, which is based on the Förster resonance energy transfer theory. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
We present here a systematic investigation on the interaction between a water‐soluble alloyed semiconductor quantum dot and bovine serum albumin using various spectroscopic techniques i.e. fluorescence quenching, resonance light scattering and synchronous fluorescence spectroscopy. The analysis of fluorescence spectrum and fluorescence intensity indicates that the intrinsic fluorescence of bovine serum albumin (BSA) gets quenched by both static and dynamic quenching mechanism. The Stern‐Volmer quenching constants, energy transfer efficiency parameters, binding parameters and corresponding thermodynamic parameters (ΔH0, ΔS0 and ΔG0) have been evaluated by using van 't Hoff equation at different temperatures. A positive entropy change with a positive enthalpy change was observed suggesting that the binding process was an entropy‐driven, endothermic process associated with the hydrophobic effect. The intermolecular distance (r) between donor (BSA) and acceptor (CdSeS/ZnS quantum dots) was estimated according to Förster's theory of non‐radiative energy transfer. The synchronous fluorescence spectra revealed a blue shift in the emission maxima of tryptophan which is indicative of increasing hydrophobicity. Negative ΔG0 values implied that the binding process was spontaneous. It was found that hydrophobic forces played a role in the quenching process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the interaction between orientin and bovine serum albumin (BSA) was examined using fluorescence and absorbance spectroscopy. The analysis of the quenching mechanism was done using Stern–Volmer plots which exhibit upward (positive) deviation. A linear response to orientin was shown in the concentration range between 3 and 50 μM. The experimental results showed the presence of a static quenching process between orientin and BSA. The thermodynamic parameters ΔH, ΔS and ΔG were also calculated and suggested that the hydrophobic and electrostatic interactions played an important role in the interaction between orientin and BSA. Furthermore, the distances between BSA and orientin were determined according to Förster non‐radiation energy transfer theory. In addition, the results of the synchronous fluorescence obtained indicated that the binding of orientin with BSA could affect conformation in BSA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The interaction between 3‐spiro‐2′‐pyrrolidine‐3′‐spiro‐3″‐piperidine‐2,3″‐dione (PPD) and bovine serum albumin (BSA) in aqueous solution was studied using fluorescence and UV–vis spectroscopy. Fluorescence emission data revealed that BSA (1.00 × 10‐5 mol/L) fluorescence was statically quenched by PPD at various concentrations, which implies that a PPD–BSA complex was formed. The binding constant (KA), the number of binding sites (n) and the specific binding site of the PPD with BSA were determined. Energy‐transfer efficiency parameters were determined and the mechanism of the interaction discussed. The thermodynamic parameters, ΔG, ΔH and ΔS, were obtained according to van't Hoff's equation, showing the involvement of hydrophobic forces in these interactions. The effect of PPD acting on the BSA conformation was detected by synchronous fluorescence. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
To further understand the mode of action and pharmacokinetics of lisinopril, the binding interaction of lisinopril with bovine serum albumin (BSA) under imitated physiological conditions (pH 7.4) was investigated using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD) and molecular docking methods. The results showed that the fluorescence quenching of BSA near 338 nm resulted from the formation of a lisinopril–BSA complex. The number of binding sites (n) for lisinopril binding on subdomain IIIA (site II) of BSA and the binding constant were ~ 1 and 2.04 × 104 M–1, respectively, at 310 K. The binding of lisinopril to BSA induced a slight change in the conformation of BSA, which retained its α‐helical structure. However, the binding of lisinopril with BSA was spontaneous and the main interaction forces involved were van der Waal's force and hydrogen bonding interaction as shown by the negative values of ΔG0, ΔH0 and ΔS0 for the binding of lisinopril with BSA. It was concluded from the molecular docking results that the flexibility of lisinopril also played an important role in increasing the stability of the lisinopril–BSA complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Cyclam‐based ligands and their complexes are known to show antitumor activity. This study was undertaken to examine the interaction of a diazacyclam‐based macrocyclic copper(II) complex with bovine serum albumin (BSA) under physiological conditions. The interactions of different metal‐based drugs with blood proteins, especially those with serum albumin, may affect the concentration and deactivation of metal drugs, and thereby influence their availability and toxicity during chemotherapy. In this vein, several spectral methods including UV–vis absorption, fluorescence and circular dichroism (CD) spectroscopy techniques were used. Spectroscopic analysis of the fluorescence quenching confirmed that the Cu(II) complex quenched BSA fluorescence intensity by a dynamic mechanism. In order to further determine the quenching mechanism, an analysis of Stern–Volmer plots at various concentrations of BSA was carried out. It was found that the KSV value increased with the BSA concentration. It was suggested that the fluorescence quenching process was a dynamic quenching rather than a static quenching mechanism. Based on Förster's theory, the average binding distance between the Cu(II) complex and BSA (r) was found to be 4.98 nm; as the binding distance was less than 8 nm, energy transfer from BSA to the Cu(II) complex had a high possibility of occurrence. Thermodynamic parameters (positive ΔH and ΔS values) and measurement of competitive fluorescence with 1‐anilinonaphthalene‐8‐sulphonic acid (1,8‐ANS) indicated that hydrophobic interaction plays a major role in the Cu(II) complex interaction with BSA. A Job's plot of the results confirmed that there was one binding site in BSA for the Cu(II) complex (1:1 stoichiometry). The site marker competitive experiment confirmed that the Cu(II) complex was located in site I (subdomain IIA) of BSA. Finally, CD data indicated that interaction of the Cu(II) complex with BSA caused a small increase in the α‐helical content. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Several spectroscopic approaches namely fluorescence, time‐resolved fluorescence, UV‐visible, and Fourier transform infra‐red (FT‐IR) spectroscopy were employed to examine the interaction between ethane‐1,2‐diyl bis(N,N‐dimethyl‐N‐hexadecylammoniumacetoxy)dichloride (16‐E2‐16) and bovine serum albumin (BSA). Fluorescence studies revealed that 16‐E2‐16 quenched the BSA fluorescence through a static quenching mechanism, which was further confirmed by UV–visible and time‐resolved fluorescence spectroscopy. In addition, the binding constant and the number of binding sites were also calculated. The thermodynamic parameters at different temperatures (298 K, 303 K, 308 K and 313 K) indicated that 16‐E2‐16 binding to BSA is entropy driven and that the major driving forces are electrostatic interactions. Decrease of the α‐helix from 53.90 to 46.20% with an increase in random structure from 22.56 to 30.61% were also observed by FT‐IR. Furthermore, the molecular docking results revealed that 16‐E2‐16 binds predominantly by electrostatic and hydrophobic forces to some residues in the BSA sub‐domains IIA and IIIA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The intermolecular interaction between cyanidin‐3‐glucoside (Cy‐3‐G) and bovine serum albumin (BSA) was investigated using fluorescence, circular dichroism and molecular docking methods. The experimental results revealed that the fluorescence quenching of BSA at 338 nm by Cy‐3‐G resulted from the formation of Cy‐3‐G–BSA complex. The number of binding sites (n) for Cy‐3‐G binding on BSA was approximately equal to 1. The experimental and molecular docking results revealed that after binding Cy‐3‐G to BSA, Cy‐3‐G is closer to the Tyr residue than the Trp residue, the secondary structure of BSA almost not change, the binding process of Cy‐3‐G with BSA is spontaneous, and Cy‐3‐G can be inserted into the hydrophobic cavity of BSA (site II′) in the binding process of Cy‐3‐G with BSA. Moreover, based on the sign and magnitude of the enthalpy and entropy changes (ΔH0 = – 29.64 kcal/mol and ΔS0 = – 69.51 cal/mol K) and the molecular docking results, it can be suggested that the main interaction forces of Cy‐3‐G with BSA are Van der Waals and hydrogen bonding interactions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The interactions of N‐acetyl‐L‐cysteine‐capped CdTe quantum dots (QDs) with bovine serum albumin (BSA) and bovine hemoglobin (BHb) were investigated by isothermal titration calorimetry (ITC), fluorescence, synchronous fluorescence, fluorescence lifetime, ultraviolet–visible absorption, and circular dichroism techniques. Fluorescence data of BSA–QDs and BHb–QDs revealed that the quenching was static in every system. While CdTe QDs changed the microenvironment of tryptophan in BHb, the microenvironment of BSA kept unchanged. Adding CdTe QDs affected the skeleton and secondary structure of the protein (BSA and BHb). The ITC results indicated that the interaction between the protein (BSA and BHb) and QDs‐612 was spontaneous and the predominant force was hydrophobic interaction. In addition, the binding constants were determined to be 1.19 × 105 L mol?1 (BSA–QDs) and 2.19 × 105 L mol?1 (BHb–QDs) at 298 K. From these results, we conclude that CdTe QDs have a larger impact on the structure of BHb than BSA.  相似文献   

12.
The interaction of norgestrel with human serum albumin (HSA) was investigated by spectroscopy and molecular‐docking methods. Results of spectroscopy methods suggested that the quenching mechanism of norgestrel on HSA was static quenching and that the quenching process was spontaneous. Negative values of thermodynamic parameters (ΔG, ΔH, and ΔS) indicated that hydrogen bonding and van der Waals forces dominated the binding between norgestrel and HSA. Three‐dimensional fluorescence spectrum and circular dichroism spectrum showed that the HSA structure was slightly changed by norgestrel. Norgestrel mainly bound with Sudlow site I based on a probe study, as confirmed by molecular‐docking results. Competition among similar structures indicated that ethisterone and norethisterone affected the binding of norgestrel with HSA. CH3 in R1 had little effect on norgestrel binding with HSA. The surface hydrophobicity properties of HSA, investigated using 8‐anilino‐1‐naphthalenesulfonic acid, was changed with norgestrel addition.  相似文献   

13.
Two aminoglycosides, micronomicin (MN), and tobramycin (TB), binding with DNA were studied using various spectroscopic techniques including fluorescence, UV–Vis, FT-IR, and CD spectroscopy coupled with relative viscosity and molecular docking. Studies of fluorescence quenching and time-resolved fluorescence spectroscopy all revealed that MN/TB quenching the fluorescence of DNA–EB belonged to static quenching. The binding constants and binding sites were obtained. The values of ΔH, ΔS, and ΔG suggested that van der Waals force or hydrogen bond might be the main binding force. FT-IR and CD spectroscopy revealed that the binding of MN/TB with DNA had an effect on the secondary structure of DNA. Binding mode of MN/TB with DNA was groove binding which was ascertained by viscosity measurements, CD spectroscopy, ionic strength, melting temperature (Tm), contrast experiments with single stranded (ssDNA), and double stranded DNA (dsDNA). Molecular docking analysis further confirmed that the groove binding was more acceptable result.  相似文献   

14.
The binding of one fluorine including triazole (C10H9FN4S, FTZ) to bovine serum albumin (BSA) was studied by spectroscopic techniques including fluorescence spectroscopy, UV–Vis absorption, and circular dichroism (CD) spectroscopy under simulative physiological conditions. Fluorescence data revealed that the fluorescence quenching of BSA by FTZ was the result of forming a complex of BSA–FTZ, and the binding constants (K a) at three different temperatures (298, 304, and 310 K) were 1.516?×?104, 1.627?×?104, and 1.711?×?104?mol L?1, respectively, according to the modified Stern–Volmer equation. The thermodynamic parameters ΔH and ΔS were estimated to be 7.752 kJ mol?1 and 125.217 J?mol?1?K?1, respectively, indicating that hydrophobic interaction played a major role in stabilizing the BSA–FTZ complex. It was observed that site I was the main binding site for FTZ to BSA from the competitive experiments. The distance r between donor (BSA) and acceptor (FTZ) was calculated to be 7.42 nm based on the Förster theory of non-radioactive energy transfer. Furthermore, the analysis of fluorescence data and CD data revealed that the conformation of BSA changed upon the interaction with FTZ.  相似文献   

15.
The binding interactions of simvastatin (SIM), pravastatin (PRA), fluvastatin (FLU), and pitavastatin (PIT) with bovine serum albumin (BSA) were investigated for determining the affinity of four statins with BSA through multiple spectroscopic and molecular docking methods. The experimental results showed that SIM, PRA, FLU, and PIT statins quenched the intrinsic fluorescence of BSA through a static quenching process and the stable stains–BSA complexes with the binding constants in the order of 104 M?1 at 298 K were formed through intermolecular nonbond interaction. The values of ΔH0, ΔS0 and ΔG0 in the binding process of SIM, PRA, FLU, and PIT with BSA were negative at the studied temperature range, suggesting that the binding process of four statins and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen-bonding interactions. Moreover, the binding of four statins with BSA was enthalpy-driven process due to |ΔH°|>|TΔS°| under the studied temperature range. From the results of site marker competitive experiments and molecular docking, subdomain IIIA (site II) was the primary binding site for SIM, PRA, FLU, and PIT on BSA. The results of UV–vis absorption, synchronous fluorescence, 3D fluorescence and FT-IR spectra proved that the slight change in the conformation of BSA, while the significant changes in the conformation of SIM, PRA, FLU, and PIT drug in statin–BSA complexes, indicating that the flexibility of statin molecules plays an important role in increasing the stability of statin–BSA complexes.  相似文献   

16.
Diamine‐sarcophagine (DiAmsar) binding to human serum albumin (HSA) and bovine serum albumin (BSA) was investigated under simulative physiological conditions. Fluorescence spectra in combination with Fourier transform infrared (FT‐IR), UV‐visible (UV–vis) spectroscopy, cyclic voltammetry (CV), and molecular docking method were used in the present work. Experimental results revealed that DiAmsar had an ability to quench the HSA and BSA intrinsic fluorescence through a static quenching mechanism. The Stern–Volmer quenching rate constant (Ksv) was calculated as 0.372 × 103 M‐1 and 0.640 × 103 M‐1 for HSA and BSA, respectively. Moreover, binding constants (Ka), number of binding sites (n) at different temperatures, binding distance (r), and thermodynamic parameters (?H°, ?S°, and ?G°) between DiAmsar and HSA (or BSA) were calculated. DiAmsar exhibited good binding propensity to HSA and BSA with relatively high binding constant values. The positive ?H° and ?S° values indicated that the hydrophobic interaction is main force in the binding of the DiAmsar to HSA (or BSA). Furthermore, molecular docking results revealed the possible binding site and the microenvironment around the bond. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Spectrofluoremetric technique was employed to study the binding behavior of hydralazine with bovine serum albumin (BSA) at different temperatures. Binding study of bovine serum albumin with hydralazine has been studied by ultraviolet–visible spectroscopy, fluorescence spectroscopy and confirmed by three‐dimensional, synchronous, circular dichroism, and Raman spectroscopic methods. Effect of β‐cyclodextrin on binding was studied. The experimental results showed a static quenching mechanism in the interaction of hydralazine with bovine serum albumin. The binding constant and the number of binding sites are calculated according to Stern–Volmer equation. The thermodynamic parameters ?Ho, ?Go, ?So at different temperatures were calculated. These indicated that the hydrogen bonding and weak van der Waals forces played an important role in the interaction. Based on the Förster's theory of non‐radiation energy transfer, the binding average distance, r, between the donor (BSA) and acceptor (hydralazine) was evaluated and found to be 3.95 nm. Spectral results showed that the binding of hydralazine to BSA induced conformational changes in BSA. The effect of common ions on the binding of hydralazine to BSA was also examined. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Fluorescence spectroscopy in combination with UV–vis absorption spectroscopy was employed to investigate the binding of an important traditional medicinal herb berberine to bovine serum albumin (BSA) under the physiological conditions. In the mechanism discussion, it was proved that the fluorescence quenching of BSA by berberine is a result of the formation of berberine–BSA complex. Fluorescence quenching constants were determined using the Stern–Volmer equation and Scatchard equation to provide a measure of the binding affinity between berberine and BSA. The results of thermodynamic parameters ΔG, ΔH, ΔS at different temperatures indicate that the electrostatic interactions play a major role for berberine–BSA association. Site marker competitive experiments indicated that the binding of berberine to BSA primarily took place in site II. Furthermore, the Effect of supramolecules to berberine–BSA system, and the distance r between donor (BSA) and acceptor (berberine) was obtained according to fluorescence resonance energy transfer (FRET).  相似文献   

19.
The intermolecular interaction of fosinopril, an angiotensin converting enzyme inhibitor with bovine serum albumin (BSA), has been investigated in physiological buffer (pH 7.4) by multi‐spectroscopic methods and molecular docking technique. The results obtained from fluorescence and UV absorption spectroscopy revealed that the fluorescence quenching mechanism of BSA induced by fosinopril was mediated by the combined dynamic and static quenching, and the static quenching was dominant in this system. The binding constant, Kb, value was found to lie between 2.69 × 103 and 9.55 × 103 M?1 at experimental temperatures (293, 298, 303, and 308 K), implying the low or intermediate binding affinity between fosinopril and BSA. Competitive binding experiments with site markers (phenylbutazone and diazepam) suggested that fosinopril preferentially bound to the site I in sub‐domain IIA on BSA, as evidenced by molecular docking analysis. The negative sign for enthalpy change (ΔH0) and entropy change (ΔS0) indicated that van der Waals force and hydrogen bonds played important roles in the fosinopril‐BSA interaction, and 8‐anilino‐1‐naphthalenesulfonate binding assay experiments offered evidence of the involvements of hydrophobic interactions. Moreover, spectroscopic results (synchronous fluorescence, 3‐dimensional fluorescence, and Fourier transform infrared spectroscopy) indicated a slight conformational change in BSA upon fosinopril interaction.  相似文献   

20.
A simple and eco‐friendly methodology for the green synthesis of silver nanoparticles (AgNPs) using a mango seed extract was evaluated. The AgNPs were characterized by ultraviolet‐visible spectrophotometry, Fourier transform infrared spectroscopy, transmission electron microscopy, energy dispersive X‐ray spectroscopy, and X‐ray diffraction. The interaction between the green synthesized AgNPs and bovine serum albumin (BSA) in an aqueous solution at physiological pH was examined by fluorescence spectroscopy. The results confirmed that the AgNPs quenched the fluorophore of BSA by forming a ground state complex in aqueous solution. This fluorescence quenching data were also used to determine the binding sites and binding constants at different temperatures. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) suggest that the binding process occurs spontaneously through the involvement of electrostatic interactions. The synchronous fluorescence spectra showed a blue shift, indicating increasing hydrophobicity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号