首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Tooth development requires proliferation, differentiation, and specific migration of dental epithelial cells, through well-organized signaling interactions with mesenchymal cells. Recently, it has been reported that leucine-rich repeat-containing G protein coupled receptor 4 (LGR4), the receptor of R-spondins, is expressed in many epithelial cells in various organs and tissues and is essential for organ development and stem cell maintenance. Here, we report that LGR4 contributes to the sequential development of molars in mice. LGR4 expression in dental epithelium was detected in SOX2+ cells in the posterior end of the second molar (M2) and the early tooth germ of the third molar (M3). In keratinocyte-specific Lgr4-deficient mice (Lgr4K5 KO), the developmental defect became obvious by postnatal day 14 (P14) in M3. Lgr4K5 KO adult mice showed complete absence or the dwarfed form of M3. In M3 development in Lgr4K5 KO mice, at Wnt/β-catenin signal activity was down-regulated in the dental epithelium at P3, as indicated by lymphoid enhancer-binding factor-1 (LEF1) expression. We also confirmed the decrease, in dental epithelium of Lgr4K5 KO mice, of the number of SOX2+ cells and the arrest of cell proliferation at P7, and observed abnormal differentiation at P14. Our data demonstrated that LGR4 controls the sequential development of molars by maintaining SOX2+ cells in the dental epithelium, which have the ability to form normal molars.  相似文献   

4.
Previously, using the Keratin5-Cre transgenic mouse model we reported that female Lgr4-conditional KO mice (Lgr4K5 KO) showed subfertility with defective stromal decidualization due to abnormal development of the uterine gland. However, the impact of the LGR4 defect on luminal epithelial cells was not investigated in the previous report. Here, we focused on the receptive state of the luminal epithelium in Lgr4K5 KO mice that received ovarian hormone treatment. In Lgr4K5 KO mice, progesterone failed to inhibit the luminal epithelial cell proliferation. Immunohistochemical and qRT-PCR analyses revealed down-regulated progesterone signaling in the uterus of Lgr4K5 KO mice. These results demonstrated that LGR4 is essential for the acquisition of endometrial receptivity through ovarian hormone signaling.  相似文献   

5.
Bone marrow stromal cells (BMSCs) have gained considerable attention as a potential source for cell transplantation therapies for a variety of diseases due to their accessibility, proliferative capacity, and multilineage differentiation properties. Canine BMSCs have been shown to contribute to regeneration of osseous tissues, but knowledge about their biology is currently limited. In the present study, we investigated the frequency of adult canine BMSCs in bone marrow, morphological features, growth kinetics, and osteogenic as well as adipogenic differentiation properties in vitro. Our data suggest that adult canine bone marrow contains approximately one BMSC in every 2.38 × 104 bone marrow mononucleated cells (0.0042 ± 0.0019%, n = 5). Primary BMSC cultures consisted of morphologically heterogeneous adherent cell populations from which spindle-shaped cells grew and became the predominant cell type. Growth kinetics patterns were dependent on the initial cell seeding densities, resulting in the highest fold increase at lower cell density. In the presence of osteogenic and adipogenic inducers, primary BMSCs underwent morphological and phenotypic changes characteristic of osteogenic and adipogenic differentiation, respectively. This study provides insights into basic characterization of adult canine BMSCs.  相似文献   

6.
In mice, homozygous Lgr4 inactivation results in hypoplastic kidneys. To understand better the role of LGR4 in kidney development, we performed an analysis of kidneys in Lgr4 -/- embryos. We stained Lgr4 -/- kidneys with anti-WT1 and anti-Cleaved Caspase3 antibodies at E16.5, and observed that the structures of the cap mesenchyme were disrupted and that apoptosis increased. In addition, the expression of PAX2, an anti-apoptotic factor in kidney development, was also significantly decreased at E16.5. We found that the LGR4 defect caused an increase in apoptosis in the peripheral mesenchyme during kidney development.  相似文献   

7.
The type and pattern of epigenetic modification in donor cells can significantly affect the developmental competency of somatic cell nuclear transfer (SCNT) embryos. Here, we investigated the developmental capacity, gene expression, and epigenetic modifications of SCNT embryos derived from porcine bone marrow‐derived mesenchymal stem cells (BMSCs) and fetal fibroblasts (FFs) donor cells compared to embryos obtained from in vitro fertilization (IVF). Compared to FFs, the donor BMSCs had more active epigenetic markers (Histone H3 modifications: H3K9Ac, H3K4me3, and H3K4me2) and fewer repressive epigenetic markers (H3K9me3, H3K9me2, and DNA methyltransferase 1). Embryos derived from BMSC nuclear‐transfer (BMSC‐NT embryos) and IVF embryos had significantly higher cleavage and blastocyst rates (BMSC‐NT: 71.3 ± 3.4%, 29.1 ± 2.3%; IVF: 69.2 ± 2.2%, 30.2 ± 3.3%; respectively) than FF‐NT embryos (58.1 ± 3.4%, 15.1 ± 1.5%, respectively). Bisulfite sequencing revealed that DNA methylation at the promoter regions of NANOG and POU5F1 was lower in BMSC‐NT embryos (30.0%, 9.8%, respectively) than those in FF‐NT embryos (34.2%, 28.0%, respectively). We also found that BMSC‐NT embryos had more H3K9Ac and less H3K9me3 and 5‐methylcytosine than FF‐NT embryos. In conclusion, our finding comparing BMSCs versus FFs as donors for nuclear transfer revealed that differences in the initial epigenetic state of donor cells have a remarkable effect on overall nuclear reprogramming of SCNT embryos, wherein donor cells possessing a more open chromatin state are more conducive to nuclear reprogramming.  相似文献   

8.
Skeletal tissue homeostasis is maintained via the balance of osteoclastic bone resorption and osteoblastic bone formation. Autophagy and apoptosis are essential for the maintenance of homeostasis and normal development in cells and tissues. We found that Bax-interacting factor 1 (Bif-1/Endophillin B1/SH3GLB1), involving in autophagy and apoptosis, was upregulated during osteoclastogenesis. Furthermore, mature osteoclasts expressed Bif-1 in the cytosol, particularly the perinuclear regions and podosome, suggesting that Bif-1 regulates osteoclastic bone resorption. Bif-1-deficient (Bif-1 −/−) mice showed increased trabecular bone volume and trabecular number. Histological analyses indicated that the osteoclast numbers increased in Bif-1 −/− mice. Consistent with the in vivo results, osteoclastogenesis induced by receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) was accelerated in Bif-1 −/− mice without affecting RANKL-induced activation of RANK downstream signals, such as NF-κB and mitogen-activated protein kinases (MAPKs), CD115/RANK expression in osteoclast precursors, osteoclastic bone-resorbing activity and the survival rate. Unexpectedly, both the bone formation rate and osteoblast surface substantially increased in Bif-1 −/− mice. Treatment with β-glycerophosphate (β-GP) and ascorbic acid (A.A) enhanced osteoblastic differentiation and mineralization in Bif-1 −/− mice. Finally, bone marrow cells from Bif-1 −/− mice showed a significantly higher colony-forming efficacy by the treatment with or without β-GP and A.A than cells from wild-type (WT) mice, suggesting that cells from Bif-1 −/− mice had higher clonogenicity and self-renewal activity than those from WT mice. In summary, Bif-1 might regulate bone homeostasis by controlling the differentiation and function of both osteoclasts and osteoblasts (235 words).  相似文献   

9.
The major signaling pathways regulating gastric stem cells are unknown. Here we report that Notch signaling is essential for homeostasis of LGR5+ antral stem cells. Pathway inhibition reduced proliferation of gastric stem and progenitor cells, while activation increased proliferation. Notch dysregulation also altered differentiation, with inhibition inducing mucous and endocrine cell differentiation while activation reduced differentiation. Analysis of gastric organoids demonstrated that Notch signaling was intrinsic to the epithelium and regulated growth. Furthermore, in vivo Notch manipulation affected the efficiency of organoid initiation from glands and single Lgr5‐GFP stem cells, suggesting regulation of stem cell function. Strikingly, constitutive Notch activation in LGR5+ stem cells induced tissue expansion via antral gland fission. Lineage tracing using a multi‐colored reporter demonstrated that Notch‐activated stem cells rapidly generate monoclonal glands, suggesting a competitive advantage over unmanipulated stem cells. Notch activation was associated with increased mTOR signaling, and mTORC1 inhibition normalized NICD‐induced increases in proliferation and gland fission. Chronic Notch activation induced undifferentiated, hyper‐proliferative polyps, suggesting that aberrant activation of Notch in gastric stem cells may contribute to gastric tumorigenesis.  相似文献   

10.
Lgr5 was identified as a promising gastrointestinal tract stem cell marker in mice. Lineage tracing indicates that Lgr5 + cells may not only be the cells responsible for the origin of tumors; they may also be the so-called cancer stem cells. In the present study, we investigated the presence of Lgr5 + cells and their biological significance in normal human gastric mucosa and gastric tumors. RNAscope, a newly developed RNA in situ hybridization technique, specifically labeled Lgr5 + cells at the basal glands of the gastric antrum. Notably, the number of Lgr5 + cells was remarkably increased in intestinal metaplasia. In total, 76% of gastric adenomas and 43% of early gastric carcinomas were positive for LGR5. Lgr5 + cells were found more frequently in low-grade tumors with active Wnt signaling and an intestinal gland type, suggesting that LGR5 is likely involved in the very early stages of Wnt-driven tumorigenesis in the stomach. Interestingly, similar to stem cells in normal tissues, Lgr5 + cells were often restricted to the base of the tumor glands, and such Lgr5 + restriction was associated with high levels of intestinal stem cell markers such as EPHB2, OLFM4, and ASCL2. Thus, our findings show that Lgr5 + cells are present at the base of the antral glands in the human stomach and that this cell population significantly expands in intestinal metaplasias. Furthermore, Lgr5 + cells are seen in a large number of gastric tumors ; their frequent basal arrangements and coexpression of ISC markers support the idea that Lgr5 + cells act as stem cells during the early stage of intestinal-type gastric tumorigenesis.  相似文献   

11.
12.
Bone marrow mesenchymal stem cells (BMSCs) have the ability of self-renewal and multi-directional differentiation. Recent reports showed that BMSCs could differentiate into endocrine cells of pancreas. However, the differentiation is not efficient enough to produce insulin-producing cells for the future therapeutic use. Pdx-1 is a crucial regulator for pancreatic development. Therefore we constructed a eukaryotic expression vector containing Pdx-1 to determine the effect of Pdx-1 expression on differentiation of BMSCs in vitro. The results showed that BMSCs could self-assemble to form functional pancreatic islet-like structures after differentiation in vitro. The proportion of insulin-producing cells differentiated from Pdx-1+BMSCs was 28.23%±2.56%, higher than that from BMSCs transfected with vacant vector and Pdx-1 BMSCs (7.23%±1.56% and 4.08%±2.69% respectively) by flow cytometry. Immunocytochemical examination also testified the expression of multiple β-cells-specific genes such as insulin, glucagons, somatostatin in differentiated BMSCs. The results also revealed that the expressions of genes mentioned above in Pdx-1+BMSCs were higher than that in Pdx-1BMSCs, which was confirmed by Western blotting analysis and RT-PCR. Glucose-induced insulin secretion from Pdx-1+BMSCs in 5mmol/L and 25mmol/L glocuse was (56.61±4.82) μU/mL and (115.29±2.56) μU/mL respectively, which were much higher than those from Pdx-1BMSCs((25.53±6.49) μU/mL and (53.26±7.56) μU/mL respectively). Grafted animals were able to maintain their body weight and survive for relatively longer periods of time than hyperglycemic sham-grafted controls, which demonstrated an overall beneficial effect of the grafted cells on the health of the animals. These findings thus suggested that exogenous expression of Pdx-1 should provide a promising approach for efficiently producing islet-like cells from BMSCs for the future therapeutic use in diabetic patients.  相似文献   

13.
Leucine-rich repeat (LRR)-containing G protein-coupled receptors (LGRs) belong to the superfamily of G protein-coupled receptors, and are characterized by the presence of seven transmembrane domains and an extracellular domain that contains a series of LRR motifs. Three Lgr proteins – Lgr4, Lgr5, and Lgr6 – were identified as members of the LGR subfamily. Mouse Lgr4 has been implicated in the formation of various organs through regulation of cell proliferation during development, and Lgr5 and Lgr6 are stem cell markers in the intestine or skin. Although the expression of these three genes has already been characterized in adult mice, their expression profiles during the embryonic and larval development of the organism have not yet been defined. We cloned two zebrafish lgr genes using the zebrafish genomic database. Phylogenetic analyses showed that these two genes are orthologs of mammalian Lgr4 and Lgr6. Zebrafish lgr4 is expressed in the neural plate border, Kupffer’s vesicle, neural tube, otic vesicles, midbrain, eyes, forebrain, and brain ventricular zone by 24 h post-fertilization (hpf). From 36 to 96 hpf, lgr4 expression is detected in the midbrain–hindbrain boundary, otic vesicles, pharyngeal arches, cranial cartilages such as Meckel’s cartilages, palatoquadrates, and ceratohyals, cranial cavity, pectoral fin buds, brain ventricular zone, ciliary marginal zone, and digestive organs such as the intestine, liver, and pancreas. In contrast, zebrafish lgr6 is expressed in the notochord, Kupffer’s vesicle, the most anterior region of diencephalon, otic vesicles, and the anterior and posterior lateral line primordia by 24 hpf. From 48 to 72 hpf, lgr6 expression is confined to the anterior and posterior neuromasts, otic vesicles, pharyngeal arches, pectoral fin buds, and cranial cartilages such as Meckel’s cartilages, ceratohyals, and trabeculae. Our results provide a basis for future studies aimed at analyzing the functions of zebrafish Lgr4 and Lgr6 in cell differentiation and proliferation during organ development.  相似文献   

14.
The matrix remodeling associated 7 (MXRA7) gene had been ill-studied and its biology remained to be discovered. Inspired by our previous findings and public datasets concerning MXRA7, we hypothesized that the MXRA7 gene might be involved in bone marrow mesenchymal stem cells (BMSCs) functions related to bone formation, which was checked by utilizing in vivo or in vitro methodologies. Micro-computed tomography of MXRA7-deficient mice demonstrated retarded osteogenesis, which was reflected by shorter femurs, lower bone mass in both trabecular and cortical bones compared with wild-type (WT) mice. Histology confirmed the osteopenia-like feature including thinner growth plates in MXRA7-deficient femurs. Immunofluorescence revealed less osteoblasts in MXRA7-deficient femurs. Polymerase chain reaction or western blot analysis showed that when WT BMSCs were induced to differentiate toward osteoblasts or adipocytes in culture, MXRA7 messenger RNA or protein levels were significantly increased alongside osteoblasts induction, but decreased upon adipocytes induction. Cultured MXRA7-deficient BMSCs showed decreased osteogenesis upon osteogenic differentiation induction as reflected by decreased calcium deposition or lower expression of genes responsible for osteogenesis. When recombinant MXRA7 proteins were supplemented in a culture of MXRA7-deficient BMSCs, osteogenesis or gene expression was fully restored. Upon osteoblast induction, the level of active β-catenin or phospho-extracellular signal-regulated kinase in MXRA7-deficient BMSCs was decreased compared with that in WT BMSCs, and these impairments could be rescued by recombinant MXRA7 proteins. In adipogenesis induction settings, the potency of MXRA7-deficient BMSCs to differentiate into adipocytes was increased over the WT ones. In conclusion, this study demonstrated that MXRA7 influences bone formation via regulating the balance between osteogenesis and adipogenesis in BMSCs.  相似文献   

15.
Lgr4/Gpr48 is one of the newly identified R-spondins receptors and potentiates Wnt signaling, which regulates intestinal homeostasis. We used a hypomorphic mouse strain to determine the role of Lgr4 in intestinal inflammation and recovery. Intestinal inflammation was induced with dextran sulfate sodium (DSS) followed by a recovery period. Intestinal inflammation symptoms and molecular mechanisms were examined. We found that Lgr4−/− mice exhibited dramatically higher susceptibility to and mortality from DSS-induced inflammatory bowel disease than WT mice. Lgr4 deficiency resulted in greatly reduced numbers of either Paneth cells or stem cells in the intestine. During the intestinal regeneration process, cell proliferation but not apoptosis of intestinal epithelial cells was significantly impaired in Lgr4−/− mice. When Wnt/β-catenin signaling was reactivated by crossing with APCmin/+ mice or by treating with a GSK-3β inhibitor, the number of Paneth cells was partially restored and the mortality caused by DSS-induced inflammatory bowel disease was strikingly reduced in Lgr4-deficient animals. Thus, Lgr4 is critically involved in the maintenance of intestinal homeostasis and protection against inflammatory bowel disease through modulation of the Wnt/β-catenin signaling pathway.  相似文献   

16.
BackgroundDisruption of epithelial tight junctions (TJ), gut barrier dysfunction and endotoxemia play crucial role in the pathogenesis of alcoholic tissue injury. Occludin, a transmembrane protein of TJ, is depleted in colon by alcohol. However, it is unknown whether occludin depletion influences alcoholic gut and liver injury.MethodsWild type (WT) and occludin deficient (Ocln−/−) mice were fed 1–6% ethanol in Lieber–DeCarli diet. Gut permeability was measured by vascular-to-luminal flux of FITC-inulin. Junctional integrity was analyzed by confocal microscopy. Liver injury was assessed by plasma transaminase, histopathology and triglyceride analyses. The effect of occludin depletion on acetaldehyde-induced TJ disruption was confirmed in Caco-2 cell monolayers.ResultsEthanol feeding significantly reduced body weight gain in Ocln−/− mice. Ethanol increased inulin permeability in colon of both WT and Ocln−/− mice, but the effect was 4-fold higher in Ocln−/− mice. The gross morphology of colonic mucosa was unaltered, but ethanol disrupted the actin cytoskeleton, induced redistribution of occludin, ZO-1, E-cadherin and β-catenin from the junctions and elevated TLR4, which was more severe in Ocln−/− mice. Occludin knockdown significantly enhanced acetaldehyde-induced TJ disruption and barrier dysfunction in Caco-2 cell monolayers. Ethanol significantly increased liver weight and plasma transaminase activity in Ocln−/− mice, but not in WT mice. Histological analysis indicated more severe lesions and fat deposition in the liver of ethanol-fed Ocln−/− mice. Ethanol-induced elevation of liver triglyceride was also higher in Ocln−/− mice.ConclusionThis study indicates that occludin deficiency increases susceptibility to ethanol-induced colonic mucosal barrier dysfunction and liver damage in mice.  相似文献   

17.
Li C  Zheng Y  Wang X  Xia W  Gao H  Li D  Ma X 《Journal of cellular physiology》2011,226(11):2834-2840
Skin and soft tissue expansion stimulates the proliferation of skin epidermal basal cells and increase the dermal collagen deposition and angiogenesis. To explore the contribution of bone marrow‐derived stem cells (BMSCs) to the generation of “new” skin during the expansion, we used a chimeric mouse model in which the donor C57BL mice were engrafted with the bone marrow of enhanced green fluorescent protein (EGFP) transgenic mice. BMSCs were collected from the tibia and femur of EGFP+ transgenic mice, and then injected into normal C57BL mice via the tail vein (chimeric mice). Skin was obtained at different times (days 0, 7, 14, 21, 28, and 35). Skin stromal‐derived factor‐1 (SDF‐1) expression was evaluated. The number, distribution, and phenotype changes of EGFP+ cells in the skin were also evaluated by means of fluorescent microscopy. EGFP+ cells were present stably in the normal skin. The number of EGFP+ cells of the Group A mice changed with the tension, and reached the peak on day 21(17.1 ± 6.7%), as compared with either Group B (5.5 ± 1.0%) or Group C (5.1 ± 0.9%). The SDF‐1 expression in the expanded skin was significant increased (≈11‐fold, P < 0.01) compared to non‐expanded skin on day 21. Immunofluorescence showed EGFP+ cells were converted into vascular endothelial cells, epidermal cells, and spindle‐shaped dermal fibroblasts. Strain can promote the expression of SDF‐1 and facilitate the differentiation and proliferation of BMSCs in the expanded skin. J. Cell. Physiol. 226: 2834–2840, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号