首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
3.
近年来的研究表明,Hedgehog信号通路在肿瘤的发生发展中具有重要的作用,该通路基因突变或异常表达将导致多种器官肿瘤的发生,并与Wnt、MAPK等信号通路相互作用,共同调节肿瘤的发生发展。我们简要综述了Hedgehog信号通路在乳腺癌发生发展中的重要作用,旨在了解乳腺癌发生、发展的分子机制.  相似文献   

4.
Wnts function through the activation of at least three intracellular signal transduction pathways, of which the canonical β-catenin mediated pathway is the best understood. Aberrant canonical Wnt signaling has been involved in both neurodegeneration and cancer. An impairment of Wnt signals appears to be associated with aspects of neurodegenerative pathologies while overactivation of Wnt signaling is a common theme in several types of human tumors. Therefore, although therapeutic approaches aimed at modulating Wnt signaling in neurodegenerative and hyperproliferative diseases might impinge on the same molecular mechanisms, different pharmacological outcomes are required. Here we review recent developments on the understanding of the role of Wnt signaling in Alzheimer’s disease and CNS tumors, and identify possible avenues for therapeutic intervention within a complex and multi-faceted signaling pathway.  相似文献   

5.
Aberrant activation of Wingless-type (Wnt) signaling pathway plays a critical role in oncogenesis of various human cancers. Wnt inhibitory factor-1 (WIF-1) is a secreted antagonist of Wnt signaling and acts through direct binding to Wnt in the extracellular space. Recently, we reported Wnt signaling in various human malignancies. In addition, we identified in lung cancer that WIF-1 is silenced due to promoter hypermethylation. In this study, we found constitutive activation of Wnt signaling and WIF-1 silencing in nasopharyngeal carcinoma (NPC) cell lines. Furthermore, by utilizing methylation-specific PCR and sequence analysis, we demonstrated that frequent hypermethylation of the WIF-1 promoter correlates with WIF-1 silencing in NPC cell lines. Our results indicate that aberrant Wnt signaling is a common event in NPC carcinogenesis linked with WIF-1 silencing in at least cell lines. Strategies targeting these molecules should be potentially promising in treating NPC.  相似文献   

6.
DNA repair is essential for maintaining genomic integrity in cells. The dependence of cancer cell survival on proper DNA repair provides an opportunity to treat defective tumors by DNA damaging agents. Not only Wnt signaling has important functions in controlling gene expression, as well as cell polarity, adhesion and behavior, it also highly interacts with DNA damage response (DDR) in different levels. Furthermore, oxidative stress, which is responsible for majority of DNA lesions, affects Wnt signaling in different ways. A better understanding of the cross-talk between these pathways and events could provide strategies for treatment of cancer cells with deficient DNA repair capacity. As such, we will give a brief overview of the importance of the DNA repair machinery, signaling mechanisms of Wnt/β-catenin pathway, and DDR. We will further review the interactions between Wnt signaling and DDR, and the impact of oxidative stress on Wnt signaling. Finally, Wnt signaling is discussed as a potential treatment strategy for cancer.  相似文献   

7.
Cystic kidney diseases can cause end stage renal disease, affecting millions of individuals worldwide. They may arise early or later in life, are characterized by a spectrum of symptoms and can be caused by diverse genetic defects. The primary cilium, a microtubule-based organelle that can serve as a signaling antenna, has been demonstrated to have a significant role in ensuring correct kidney development and function. In the kidney, one of the signaling pathways that requires the cilium for normal development is Wnt signaling. In this review, the roles of primary cilia in relation to canonical and non-canonical Wnt/PCP signaling in cystic renal disease are described. The evidence of the associations between cilia, Wnt signaling and cystic renal disease is discussed and the significance of planar cell polarity-related mechanisms in cystic kidney disease is presented. Although defective Wnt signaling is not the only cause of renal disease, research is increasingly highlighting its importance, encouraging the development of Wnt-associated diagnostic and prognostic tools for cystic renal disease.  相似文献   

8.
Malignant mesothelioma (MM) is an uncommon and particularly aggressive cancer associated with asbestos exposure, which currently presents an intractable clinical challenge. Wnt signaling has been reported to play a role in the neoplastic properties of mesothelioma cells but has not been investigated in detail in this cancer. We surveyed expression of Wnts, their receptors, and other key molecules in this pathway in well established in vitro mesothelioma models in comparison with primary mesothelial cultures. We also tested the biological response of MM cell lines to exogenous Wnt and secreted regulators, as well as targeting β-catenin. We detected frequent expression of Wnt3 and Wnt5a, as well as Fzd 2, 4 and 6. The mRNA of Wnt4, Fzd3, sFRP4, APC and axin2 were downregulated in MM relative to mesothelial cells while LEF1 was overexpressed in MM. Functionally, we observed that Wnt3a stimulated MM proliferation while sFRP4 was inhibitory. Furthermore, directly targeting β-catenin expression could sensitise MM cells to cytotoxic drugs. These results provide evidence for altered expression of a number of Wnt/Fzd signaling molecules in MM. Modulation of Wnt signaling in MM may prove a means of targeting proliferation and drug resistance in this cancer.  相似文献   

9.
Wnt蛋白是一组调控胚胎形成期间细胞间信号传导的高度保守的分泌信号分子.在过去的几年里,由Wnt蛋白触发的不同信号通路已经得到了详尽的研究.Wnt基因与Wnt信号通路组成分子的突变可引起发育缺陷,异常的Wnt信号传导可导致人类疾病包括肿瘤的发生.许多证据都表明,Wnt信号通路的失调与乳腺癌的发生发展密切相关.micro...  相似文献   

10.
《Organogenesis》2013,9(1):86-95
Cystic kidney diseases can cause end stage renal disease, affecting millions of individuals worldwide. They may arise early or later in life, are characterized by a spectrum of symptoms and can be caused by diverse genetic defects. The primary cilium, a microtubule-based organelle that can serve as a signaling antenna, has been demonstrated to have a significant role in ensuring correct kidney development and function. In the kidney, one of the signaling pathways that requires the cilium for normal development is Wnt signaling. In this review, the roles of primary cilia in relation to canonical and non-canonical Wnt/PCP signaling in cystic renal disease are described. The evidence of the associations between cilia, Wnt signaling and cystic renal disease is discussed and the significance of planar cell polarity-related mechanisms in cystic kidney disease is presented. Although defective Wnt signaling is not the only cause of renal disease, research is increasingly highlighting its importance, encouraging the development of Wnt-associated diagnostic and prognostic tools for cystic renal disease.  相似文献   

11.
Wnt signaling controls a wide range of developmental processes and its aberrant regulation can lead to disease. To better understand the regulation of this pathway, we identified zebrafish homologues of Naked Cuticle (Nkd), Nkd1 and Nkd2, which have previously been shown to inhibit canonical Wnt/beta-catenin signaling. Zebrafish nkd1 expression increases substantially after the mid-blastula transition in a pattern mirroring that of activated canonical Wnt/beta-catenin signaling, being expressed in both the ventrolateral blastoderm margin and also in the axial mesendoderm. In contrast, zebrafish nkd2 is maternally and ubiquitously expressed. Overexpression of Nkd1 or Nkd2a suppressed canonical Wnt/beta-catenin signaling at multiple stages of early zebrafish development and also exacerbated the cyclopia and axial mesendoderm convergence and extension (C&E) defect in the non-canonical Wnt/PCP mutant silberblick (slb/wnt11). Thus, Nkds are sufficient to antagonize both canonical and non-canonical Wnt signaling. Reducing Nkd function using antisense morpholino oligonucleotides resulted in increased expression of canonical Wnt/beta-catenin target genes. Finally, reducing Nkd1 function in slb mutants suppressed the axial mesendoderm C&E defect. These data indicate that zebrafish Nkd1 and Nkd2 function to limit both canonical and non-canonical Wnt signaling.  相似文献   

12.
Wnt signaling pathway plays a key role in a wide array of development and physiological processes. Wnt proteins interact with two different co-receptors LRP5/6 and ROR 2, leading to different signal transductions in the cell. Though the Wnt family of proteins has high sequence similarity the specificity for particular co-receptor is not well understood. The choice of pathway is attributed to the binding of Wnt complex to the co-receptor. Our current study is a novel approach using homology modeling, docking, and structural alignment to unravel the structural differences between Wnt3a and Wnt5b binding to LRP6. The conservation of a protruding loop has been identified in Wnt3a protein indicating an enhanced ability of Wnt3a to bind to LRP5/6 against its counter parts. The docking studies have further substantiated the findings. This could potentially help us design and develop novel inhibitors targeting Wnt3a-LRP6 complex in specific tissues or disease states.  相似文献   

13.
J Mao  S Fan  W Ma  P Fan  B Wang  J Zhang  H Wang  B Tang  Q Zhang  X Yu  L Wang  B Song  L Li 《Cell death & disease》2014,5(1):e1039
The Wnt1 protein, a secreted ligand that activates Wnt signaling pathways, contributes to the self-renewal of cancer stem cells (CSCs) and thus may be a major determinant of tumor progression and chemoresistance. In a series of gastric cancer specimens, we found strong correlations among Wnt1 expression, CD44 expression, and the grade of gastric cancer. Stable overexpression of Wnt1 increased AGS gastric cancer cells'' proliferation rate and spheroids formation, which expressed CSC surface markers Oct4 and CD44. Subcutaneous injection of nude mice with Wnt1-overexpressing AGS cells resulted in larger tumors than injection of control AGS cells. Salinomycin, an antitumor agent, significantly reduced the volume of tumor caused by Wnt1-overexpressing AGS cells in vivo. This is achieved by inhibiting the proliferation of CD44+Oct4+ CSC subpopulation, at least partly through the suppression of Wnt1 and β-catenin expression. Taken together, activation of Wnt1 signaling accelerates the proliferation of gastric CSCs, whereas salinomycin acts to inhibit gastric tumor growth by suppressing Wnt signaling in CSCs. These results suggest that Wnt signaling might have a critical role in the self-renewal of gastric CSCs, and salinomycin targeting Wnt signaling may have important clinical applications in gastric cancer therapy.  相似文献   

14.
Wnt信号转导途径是调控细胞形状、运动、黏附、增殖、分化、癌变及机体发育等过程的主要途径之一.Axin(轴蛋白)是一个体轴发育抑制因子,作为构架蛋白在Wnt信号转导途径中起着关键的作用.Axin通过不同的机制调节β连环蛋白的磷酸化和稳定性.它通过与APC、GSK-3β、β连环蛋白和CKIα结合形成复合体促进β连环蛋白的降解,还通过同源二聚化、核质穿梭、自身磷酸化和稳定性的调控来调节β连环蛋白的稳定性.Axin通过Wnt信号转导途径参与了一系列生物学效应的调控,如体轴发育、细胞死亡、神经元的分化等.作为一个新发现的肿瘤抑制因子,axin将为癌症的诊断和治疗提供新的有效的手段.  相似文献   

15.
Wnt proteins initiate signaling by binding to seven transmembrane spanning receptors of the frizzled (Fz) family together with the members of the low‐density lipoprotein receptor‐related protein (LRP) 5 and 6. A chimera of human Wnt3 and Fz1 receptor was developed that efficiently activated the TCF‐luciferase reporter. Deletion of the cytoplasmic tail and point mutations in the PDZ binding region in the chimera resulted in the loss of Wnt signaling, suggesting a critical role for the Fz cytoplasmic region in Wnt signaling. The Fz CRD is also critical for Wnt signaling, as a deletion of 29 amino acids in the 2nd cysteine loop resulted in the total loss of TCF‐luciferase activation. DKK‐1 protein blocks upregulation of the TCF‐luciferase reporter by the Wnt3–Fz1 chimera, suggesting involvement of LRP in Wnt3–Fz1 signaling. Expression of a Wnt3–Fz1 chimera in C3H10T1/2 cells resulted in the upregulation of alkaline phosphatase activity and inhibition of adipocyte formation, demonstrating that the Wnt3–Fz1 chimera is a potent activator of differentiation of C3H10T1/2 cells into osteoblasts and an inhibitor of their differentiation into the adipocyte lineage. In summary, the Wnt–Fz chimera approach has the potential to better our understanding of the mechanism of Wnt action and its role, particularly in stem cell differentiation. In addition, this methodology can be utilized to identify inhibitors of either Wnt, Fz or interactors of the canonical pathway, which may have potential therapeutic value in the treatment of cancers and other diseases. J. Cell. Biochem. 109: 876–884, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Non-conventional Frizzled ligands and Wnt receptors   总被引:2,自引:0,他引:2  
The Wnt family of secreted signaling factors plays numerous roles in embryonic development and in stem cell biology. In the adult, Wnt signaling is involved in tissue homeostasis and mutations that lead to the overexpression of Wnt can be linked to cancer. Wnt signaling is transduced intracellularly by the Frizzled (Fzd) family of receptors. In the canonical pathway, accumulation of β-catenin and the subsequent formation of a complex with T cell factors (TCF) or lymphoid enhancing factors (Lef) lead to target gene activation. The identification of Ryk as an alternative Wnt receptor and the discovery of the novel Fzd ligands Norrie disease protein (NDP) and R-Spondin, changed the traditional view of Wnts binding to Fzd receptors. Mouse R-Spondin cooperates with Wnt signaling and Low density lipoprotein (LDL) receptor related protein (LRP) to activate β-catenin dependent gene expression and is involved in processes such as limb and placental development in the mouse. NDP is the product of the Norrie disease gene and controls vascular development in the retina, inner ear and in the female reproductive system during pregnancy. In this review a functional overview of the interactions of the different Wnt and non-Wnt ligands with the Fzd receptors is given as well as a survey of Wnts binding to Ryk and we discuss the biological significance of these interactions.  相似文献   

17.
Ovarian hormones increase breast cancer risk by poorly understood mechanisms. We assess the role of progesterone on global stem cell function by serially transplanting mouse mammary epithelia. Progesterone receptor (PR) deletion severely reduces the regeneration capacity of the mammary epithelium. The PR target, receptor activator of Nf‐κB ligand (RANKL), is not required for this function, and the deletion of Wnt4 reduces the mammary regeneration capacity even more than PR ablation. A fluorescent reporter reveals so far undetected perinatal Wnt4 expression that is independent of hormone signaling. Pubertal and adult Wnt4 expression is specific to PR+ luminal cells and requires intact PR signaling. Conditional deletion of Wnt4 reveals that this early, previously unappreciated, Wnt4 expression is functionally important. We provide genetic evidence that canonical Wnt signaling in the myoepithelium required PR and Wnt4, whereas the canonical Wnt signaling activities observed in the embryonic mammary bud and in the stroma around terminal end buds are independent of Wnt4. Thus, progesterone and Wnt4 control stem cell function through a luminal–myoepithelial crosstalk with Wnt4 acting independent of PR perinatally.  相似文献   

18.
19.
The wingless (Wnt) family of signaling ligands contributes significantly to lung development and is highly expressed in patients with usual interstitial pneumonia (UIP). We sought to define the cellular distribution of Wnt5A in the lung tissue of patients with idiopathic pulmonary fibrosis (IPF) and the signaling ligands that control its expression in human lung fibroblasts and IPF myofibroblasts. Tissue sections from 40 patients diagnosed with IPF or UIP were probed for the immunolocalization of Wnt5A. Further, isolated lung fibroblasts from normal or IPF human lungs, adenovirally transduced for the overexpression or silencing of Wnt7B or treated with TGF-β1 or its inhibitor, were analyzed for Wnt5A protein expression. Wnt5A was expressed in IPF lungs by airway and alveolar epithelium, smooth muscle cells, endothelium, and myofibroblasts of fibroblastic foci and throughout the interstitium. Forced overexpression of Wnt7B with or without TGF-β1 treatment significantly increased Wnt5A protein expression in normal human smooth muscle cells and fibroblasts but not in IPF myofibroblasts where Wnt5A was already highly expressed. The results demonstrate a wide distribution of Wnt5A expression in cells of the IPF lung and reveal that it is significantly increased by Wnt7B and TGF-β1, which, in combination, could represent key signaling pathways that modulate the pathogenesis of IPF.  相似文献   

20.

Background

Stem cells are mainly characterized by two properties: self-renewal and the potency to differentiate into diverse cell types. These processes are regulated by different growth factors including members of the Wnt protein family. Wnt proteins are secreted glycoproteins that can activate different intracellular signaling pathways.

Scope of review

Here we summarize our current knowledge on the role of Wnt/β-catenin signaling with respect to these two main features of stem cells.

Major conclusions

A particular focus is given on the function of Wnt signaling in embryonic stem cells. Wnt signaling can also improve reprogramming of somatic cells towards iPS cells highlighting the importance of this pathway for self-renewal and pluripotency. As an example for the role of Wnt signaling in adult stem cell behavior, we furthermore focus on intestinal stem cells located in the crypts of the small intestine.

General significance

A broad knowledge about stem cell properties and the influence of intrinsic and extrinsic factors on these processes is a requirement for the use of these cells in regenerative medicine in the future or to understand cancer development in the adult. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号