首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Chen YJ  Kuo CD  Chen SH  Chen WJ  Huang WC  Chao KS  Liao HF 《PloS one》2012,7(5):e37006
Multi-drug resistance (MDR), an unfavorable factor compromising treatment efficacy of anticancer drugs, involves upregulated ATP binding cassette (ABC) transporters and activated Sonic hedgehog (Shh) signaling. By preparing human breast cancer MCF-7 cells resistant to doxorubicin (DOX), we examined the effect and mechanism of norcantharidin (NCTD), a small-molecule synthetic compound, on reversing multidrug resistance. The DOX-prepared MCF-7R cells also possessed resistance to vinorelbine, characteristic of MDR. At suboptimal concentration, NCTD significantly inhibited the viability of DOX-sensitive (MCF-7S) and DOX-resistant (MCF-7R) cells and reversed the resistance to DOX and vinorelbine. NCTD increased the intracellular accumulation of DOX in MCF-7R cells and suppressed the upregulated the mdr-1 mRNA, P-gp and BCRP protein expression, but not the MRP-1. The role of P-gp was strengthened by partial reversal of the DOX and vinorelbine resistance by cyclosporine A. NCTD treatment suppressed the upregulation of Shh expression and nuclear translocation of Gli-1, a hallmark of Shh signaling activation in the resistant clone. Furthermore, the Shh ligand upregulated the expression of P-gp and attenuated the growth inhibitory effect of NCTD. The knockdown of mdr-1 mRNA had not altered the expression of Shh and Smoothened in both MCF-7S and MCF-7R cells. This indicates that the role of Shh signaling in MDR might be upstream to mdr-1/P-gp, and similar effect was shown in breast cancer MDA-MB-231 and BT-474 cells. This study demonstrated that NCTD may overcome multidrug resistance through inhibiting Shh signaling and expression of its downstream mdr-1/P-gp expression in human breast cancer cells.  相似文献   

3.
ObjectiveMultidrug resistance (MDR) is the major barrier to the successful treatment of chemotherapy. Compounds from nature products working as MDR sensitizers provided new treatment strategies for chemo-resistant cancers patients.MethodsWe investigated the reversal effects of nuciferine (NF), an alkaloid from Nelumbo nucifera and Nymphaea caerulea, on the paclitaxel (PTX) resistance ABCB1-overexpressing cancer in vitro and in vivo, and explored the underlying mechanism by evaluating drug sensitivity, cell cycle perturbations, intracellular accumulation, function and protein expression of efflux transporters as well as molecular signaling involved in governing transporters expression and development of MDR in cancer.ResultsNF overcomes the resistance of chemotherapeutic agents included PTX, doxorubicin (DOX), docetaxel, and daunorubicin to HCT-8/T and A549/T cancer cells. Notably, NF suppressed the colony formation of MDR cells in vitro and the tumor growth in A549/T xenograft mice in vivo, which demonstrated a very strong synergetic cytotoxic effect between NF and PTX as combination index (CI) (CI<0.1) indicated. Furthermore, NF increased the intracellular accumulation of P-gp substrates included DOX and Rho123 in the MDR cells and inhibited verapamil-stimulated ATPase activity. Mechanistically, inhibition of PI3K/AKT/ERK pathways by NF suppressed the activation of Nrf2 and HIF-1α, and further reduced the expression of P-gp and BCRP, contributing to the sensitizing effects of NF against MDR in cancer.ConclusionThis novel finding provides a promising treatment strategy for overcoming MDR and improving the efficiency of chemotherapy by using a multiple-targets MDR sensitizer NF.  相似文献   

4.
Our recent study reported that multidrug-resistant (MDR) human A549 lung cancer cells (A549RT-eto) with the elevated expression of NF-κB showed epithelial–mesenchymal transition (EMT), increasing spheroid formation and elevating the expression levels of stemness-related factors, including Oct4, Nanog, Sox2, Bmi1, and Klf4. Therefore, when new therapeutic agents targeting these malignant cancer cells were explored, we found that caged-xanthone (CX) isolated from the roots of Cratoxylum formosum ssp. pruniflorum diminished the expression of NF-κB, P-glycoprotein (P-gp) protein levels, cell migration and invasion, and sphere-forming ability of A549RT-eto cells. To address the role of NF-κB in these malignant cancer features, we treated A549RT-eto cells with NF-κB siRNAs in the present work. We found that the knockdown of NF-κB inhibited EMT and sphere formation. Furthermore, co-treatment with CX and NF-κB siRNA accelerated the death of apoptotic cells through the decrease of P-gp protein levels. These results suggest that NF-κB was involved in malignant cancer phenotypes and MDR in A549RT-eto cells. Taken together, our findings suggest that CX can be a potential therapeutic agent for the treatment of malignant tumor cells.  相似文献   

5.
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters play a key role in the development of multidrug resistance (MDR) in cancer cells. P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1) are important proteins in this superfamily which are widely expressed on the membranes of multidrug resistance (MDR) cancer cells. Besides, upregulation of cellular autophagic responses is considered a contributing factor for MDR in cancer cells. We designed a liposome system co-encapsulating a chemotherapeutic drug (doxorubicin hydrochloride, DOX) and a typical autophagy inhibitior (chloroquine phosphate, CQ) at a weight ratio of 1:2 and investigated its drug resistance reversal mechanism. MTT assay showed that the IC50 of DOX/CQ co-encapsulated liposome in DOX-resistant human breast cancer cells (MCF7/ADR) was 4.7?±?0.2?μM, 5.7-fold less than that of free DOX (26.9?±?1.9 μM), whereas it was 19.5-fold in doxorubicin-resistant human acute myelocytic leukemia cancer cells (HL60/ADR) (DOX/CQ co-encapsulated liposome 1.2?±?0.1?μM, free DOX 23.4?±?2.8?μM). The cellular uptake of DOX increased upon addition of free CQ, indicating that CQ may interact with P-gp and MRP1; however, the expressions of P-gp and MRP1 remained unchanged. In contrast, the expression of the autophagy-related protein LC3-II increased remarkably. Therefore, the mechanism of MDR reversal may be closely related to autophagic inhibition. Evaluation of anti-tumor activity was achieved in an MCF-7/ADR multicellular tumor spheroid model and transgenic zebrafish model. DOX/CQ co-encapsulated liposome exerted a better anti-tumor effect in both models than that of liposomal DOX or DOX alone. These findings suggest that encapsulating CQ with DOX in liposomes significantly improves the sensitivity of DOX in DOX-resistant cancer cells.  相似文献   

6.
J Sun  CA Yeung  NN Co  TY Tsang  E Yau  K Luo  P Wu  JC Wa  KP Fung  TT Kwok  F Liu 《PloS one》2012,7(8):e40720
Multidrug resistance(MDR)is one of the major reasons for failure in cancer chemotherapy and its suppression may increase the efficacy of therapy. The human multidrug resistance 1 (MDR1) gene encodes the plasma membrane P-glycoprotein (P-gp) that pumps various anti-cancer agents out of the cancer cell. R-HepG2 and MES-SA/Dx5 cells are doxorubicin induced P-gp over-expressed MDR sublines of human hepatocellular carcinoma HepG2 cells and human uterine carcinoma MES-SA cells respectively. Herein, we observed that clitocine, a natural compound extracted from Leucopaxillus giganteus, presented similar cytotoxicity in multidrug resistant cell lines compared with their parental cell lines and significantly suppressed the expression of P-gp in R-HepG2 and MES-SA/Dx5 cells. Further study showed that the clitocine increased the sensitivity and intracellular accumulation of doxorubicin in R-HepG2 cells accompanying down-regulated MDR1 mRNA level and promoter activity, indicating the reversal effect of MDR by clitocine. A 5'-serial truncation analysis of the MDR1 promoter defined a region from position -450 to -193 to be critical for clitocine suppression of MDR1. Mutation of a consensus NF-κB binding site in the defined region and overexpression of NF-κB p65 could offset the suppression effect of clitocine on MDR1 promoter. By immunohistochemistry, clitocine was confirmed to suppress the protein levels of both P-gp and NF-κB p65 in R-HepG2 cells and tumors. Clitocine also inhibited the expression of NF-κB p65 in MES-SA/Dx5. More importantly, clitocine could suppress the NF-κB activation even in presence of doxorubicin. Taken together; our results suggested that clitocine could reverse P-gp associated MDR via down-regulation of NF-κB.  相似文献   

7.
Previous study has confirmed that hsa_circ_0092276 is highly expressed in doxorubicin (DOX)-resistant breast cancer cells, indicating that hsa_circ_0092276 may be involved in regulating the chemotherapy resistance of breast cancer. Here we attempted to investigate the biological role of hsa_circ_0092276 in breast cancer. We first constructed DOX-resistant breast cancer cells (MCF-7/DOX and MDA-MB-468/DOX). The 50% inhibiting concentration of MCF-7/DOX and MDA-MB-468/DOX cells was significantly higher than that of their parental breast cancer cells, MCF-7 and MDA-MB-46. MCF-7/DOX and MDA-MB-468/DOX cells also exhibited an up-regulation of drug resistance-related protein MDR1. Compared with MCF-7 and MDA-MB-46 cells, hsa_circ_0092276 was highly expressed in MCF-7/DOX and MDA-MB-468/DOX cells. Hsa_circ_0092276 overexpression enhanced proliferation and the expression of LC3-II/LC3-I and Beclin-1, and repressed apoptosis of breast cancer cells. The effect of hsa_circ_0092276 up-regulation on breast cancer cells was abolished by 3-methyladenine (autophagy inhibitor). Hsa_circ_0092276 modulated autophagy-related gene 7 (ATG7) expression via sponging miR-384. Hsa_circ_0092276 up-regulation promoted autophagy and proliferation, and repressed apoptosis of breast cancer cells, which was abolished by miR-384 overexpression or ATG7 knockdown. In addition, LV-circ_0092276 transfected MCF-7 cell transplantation promoted autophagy and tumor growth of breast cancer in mice. In conclusion, our data demonstrate that hsa_circ_0092276 promotes autophagy and DOX resistance in breast cancer by regulating miR-348/ATG7 axis. Thus, this article highlights a novel competing endogenous RNA circuitry involved in DOX resistance in breast cancer.  相似文献   

8.
Gambogenic acid (GNA), an active ingredient isolated from Gamboge, which possesses diverse antitumor effects in vivo and vitro. Here we were mainly designed to understand the role of GNA in drug resistance in HepG2/Adr cells. The alteration of cytotoxic drugs IC50 was examined using the MTT method. Cell apoptosis and uptake of P-glycoprotein (P-gp) substrates were measured under a flow cytometry and fluorescence microscope, respectively. Moreover, the ATPase activity, the expression of P-gp and P-gp-related proteins were also investigated. Results of the MTT method indicated that GNA increased the chemosensitivity of doxorubicin (DOX) and paclitaxel (PTX) in the HepG2/Adr cells and promoted the cell apoptosis in the presence of DOX. Meanwhile, it was also increased the retention of P-gp substrates DOX and Rhodamine 123 (Rho-123) while did not affect the ATPase activity. Furthermore, the down-regulation of P-gp expression could be contributed to multidrug resistance (MDR) upon a reversal concentration of 0.8?μg/mL GNA. Mechanistically, the expression of P-gp was reduced by GNA may result from the inhibition of the NF-kB and MAPK pathway. Collectively, GNA could be a potential inhibitor to reverse P-gp-mediated MDR in liver cancer therapy.  相似文献   

9.
10.
Wang YC  Wang F  Sun TM  Wang J 《Bioconjugate chemistry》2011,22(10):1939-1945
Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. The intracellular accumulation of drug and the intracellular release of drug molecules from the carrier could be the most important barriers for nanoscale carriers in overcoming MDR. We demonstrated that the redox-responsive micellar nanodrug carrier assembled from the single disulfide bond-bridged block polymer of poly(ε-caprolactone) and poly(ethyl ethylene phosphate) (PCL-SS-PEEP) achieved more drug accumulation and retention in MDR cancer cells. Such drug carrier rapidly released the incorporated doxorubicin (DOX) in response to the intracellular reductive environment. It therefore significantly enhanced the cytotoxicity of DOX to MDR cancer cells. It was demonstrated that nanoparticular drug carrier with either poly(ethylene glycol) or poly(ethyl ethylene phosphate) (PEEP) shell increased the influx but decreased the efflux of DOX by the multidrug resistant MCF-7/ADR breast cancer cells, in comparison with the direct incubation of MCF-7/ADR cells with DOX, which led to high cellular retention of DOX. Nevertheless, nanoparticles bearing PEEP shell exhibited higher affinity to the cancer cells. The shell detachment of the PCL-SS-PEEP nanoparticles caused by the reduction of intracellular glutathione significantly accelerated the drug release in MCF-7/ADR cells, demonstrated by the flow cytometric analyses, which was beneficial to the entry of DOX into the nuclei of MCF-7/ADR cells. It therefore enhanced the efficiency in overcoming MDR of cancer cells, which renders the redox-responsive nanoparticles promising in cancer therapy.  相似文献   

11.
BackgroundNobiletin (N), a polymethoxylated flavone from citrus fruits, enhanced anti-cancer effects of paclitaxel (PTX) in multi-drug resistance (MDR) cancer cells via inhibiting P-glycoprotein (P-gp) in our previous report. But the in vivo chemo-sensitizing effect of nobiletin is unknown. Moreover, considering the nonlinear pharmacokinetics and narrow therapeutic window of PTX, drug-drug interaction should be explored for using nobiletin with PTX together.PurposeIn this study, we wanted to explore whether nobiletin could affect the pharmacokinetic (PK) behavior of PTX and reverse drug resistance in vivo as well as the corresponding mechanisms.Study Design and MethodsAccurate and sensitive UPLC-MS/MS method was developed for the detection of PTX, and was applied to the pharmacokinetic study in rats. In vivo anti-MDR tumor study was carried out with A549/T xenograft nude mice model. Immunohistochemistry and western blot analysis were used for evaluating the levels of P-gp, Nrf2, and AKT/ERK pathways in MDR tumors.ResultsNobiletin significantly enhanced the therapeutic effects of PTX, and inhibited the MDR tumor sizes in the A549/T xenograft model, while PTX or nobiletin alone did not. We found that nobiletin increased the PTX concentrations in tumor tissues but did not affect the PK behavior of PTX. Notably, Nrf2 and phosphorylation of AKT/ERK expression in MDR tumor tissues were significantly inhibited by giving nobiletin and PTX together. However, nobiletin did not affect the expression of P-gp.ConclusionNobiletin reversed PTX resistance in MDR tumor via increasing the PTX content in the MDR tumor and inhibiting AKT/ERK/Nrf2 pathways, but without affecting the systematic exposure of PTX, indicating that nobiletin may be an effective and safe MDR tumor reversal agent.  相似文献   

12.
膜结合蛋白SH3GL1参与调控某些肿瘤细胞生物学行为,而其对紫杉醇耐药乳腺癌细胞的恶性生物学行为影响尚未见报道.为阐明 SH3GL1对紫杉醇耐药敏感性的影响以及潜在的分子机制,本研究首先采用免疫组化法证实SH3GL1在紫杉醇耐药乳腺癌组织高表达(P<0.001).Western印迹法证实,SH3GL1在紫杉醇耐药细胞株MCF-7/PTX高表达(P<0.01);随后,采用MTT分别检测(0,50,100 nmol/L)紫杉醇处理后MCF-7细胞株增殖情况,同时Western印迹法检测SH3GL1表达,发现100 nmol/L紫杉醇能够抑制MCF-7细胞增殖(P<0.05);同时抑制SH3GL1表达(P<0.01); 敲减SH3GL1表达后,紫杉醇耐药细胞株MCF-7/PTX和MCF-7增殖速率降低(P<0.05),耐药基因MDR1表达降低(P<0.05),p-AKT和p-gp水平下降(P<0.05).上述结果表明,降低SH3GL1表达可以减弱紫杉醇耐药性,增加乳腺癌对紫杉醇的敏感性,这为临床上紫杉醇耐药乳腺癌患者的治疗提供了新的靶点.  相似文献   

13.
14.
目的:探讨磷脂酰肌醇-3-激酶/丝苏氨酸蛋白激酶(phosphatidylinositol 3 kinase/serine-threonine kinase,PI3K/AKT)信号通路与乳腺癌多药耐药和侵袭转移的相关性。方法:以乳腺癌细胞系MCF-7为母本,持续低浓度加药诱导建立阿霉素(Adriamycin,ADR)耐药系MCF-7/ADR’。细胞免疫荧光检测两细胞系中磷酸化AKT(phosphorylated AKT,P-AKT)、P-糖蛋白(P-Glycoprotein,P-gp)、基质金属蛋白酶2(matrix metalloproteinase-2,MMP-2)的表达。PI3K抑制剂LY294002作用两系前后,Western Blot检测P-AKT、MMP-2、P-gp的表达改变及qRT-PCR检测MMP-2、MDR1的表达改变。结果:P-AKT、P-gp(MDR1)、MMP-2在MCF-7中为低表达或不表达,MCF-7/ADR’中为高表达。LY294002作用两系后,P-AKT、P-gp(MDR1)、MMP-2在MCF-7/ADR’中的表达明显减低(P<0.05),MCF-7无明显改变。结论:抑制PI3K/AKT信号通路可有效降低MCF-7/ADR’耐药和侵袭转移能力,PI3K/AKT通路是调控乳腺癌多药耐药和侵袭转移的重要信号通路之一。  相似文献   

15.
Many studies have been performed with the aim of developing effective resistance modulators to overcome the multidrug resistance (MDR) of human cancers. Potent MDR modulators are being investigated in clinical trials. Many current studies are focused on dietary herbs due to the fact that these have been used for centuries without producing any harmful side effects. In this study, the effect of tetrahydrocurcumin (THC) on three ABC drug transporter proteins, P-glycoprotein (P-gp or ABCB1), mitoxantrone resistance protein (MXR or ABCG2) and multidrug resistance protein 1 (MRP1 or ABCC1) was investigated, to assess whether an ultimate metabolite form of curcuminoids (THC) is able to modulate MDR in cancer cells. Two different types of cell lines were used for P-gp study, human cervical carcinoma KB-3-1 (wild type) and KB-V-1 and human breast cancer MCF-7 (wild type) and MCF-7 MDR, whereas, pcDNA3.1 and pcDNA3.1-MRP1 transfected HEK 293 and MXR overexpressing MCF7AdrVp3000 or MCF7FL1000 and its parental MCF-7 were used for MRP1 and MXR study, respectively. We report here for the first time that THC is able to inhibit the function of P-gp, MXR and MRP1. The results of flow cytometry assay indicated that THC is able to inhibit the function of P-gp and thereby significantly increase the accumulation of rhodamine and calcein AM in KB-V-1 cells. The result was confirmed by the effect of THC on [3H]-vinblastine accumulation and efflux in MCF-7 and MCF-7MDR. THC significantly increased the accumulation and inhibited the efflux of [3H]-vinblastine in MCF-7 MDR in a concentration-dependent manner. This effect was not found in wild type MCF-7 cell line. The interaction of THC with the P-gp molecule was clearly indicated by ATPase assay and photoaffinity labeling of P-gp with transport substrate. THC stimulated P-gp ATPase activity and inhibited the incorporation of [125I]-iodoarylazidoprazosin (IAAP) into P-gp in a concentration-dependent manner. The binding of [125I]-IAAP to MXR was also inhibited by THC suggesting that THC interacted with drug binding site of the transporter. THC dose dependently inhibited the efflux of mitoxantrone and pheophorbide A from MXR expressing cells (MCF7AdrVp3000 and MCF7FL1000). Similarly with MRP1, the efflux of a fluorescent substrate calcein AM was inhibited effectively by THC thereby the accumulation of calcein was increased in MRP1-HEK 293 and not its parental pcDNA3.1-HEK 293 cells. The MDR reversing properties of THC on P-gp, MRP1, and MXR were determined by MTT assay. THC significantly increased the sensitivity of vinblastine, mitoxantrone and etoposide in drug resistance KB-V-1, MCF7AdrVp3000 and MRP1-HEK 293 cells, respectively. This effect was not found in respective drug sensitive parental cell lines. Taken together, this study clearly showed that THC inhibits the efflux function of P-gp, MXR and MRP1 and it is able to extend the MDR reversing activity of curcuminoids in vivo.  相似文献   

16.
Human epidermal growth factor receptor 2 (HER2/neu, also known as ErbB2) overexpression is correlated with the poor prognosis and chemoresistance in cancer. Breast cancer resistance protein (BCRP and ABCG2) is a drug efflux pump responsible for multidrug resistance (MDR) in a variety of cancer cells. HER2 and BCRP are associated with poor treatment response in breast cancer patients, although the relationship between HER2 and BCRP expression is not clear. Here, we showed that transfection of HER2 into MCF7 breast cancer cells (MCF7/HER2) resulted in an up-regulation of BCRP via the phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor-kappa B (NF-κB) signaling. Treatment of MCF/HER2 cells with the PI3K inhibitor LY294002, the IκB phosphorylation inhibitor Bay11-7082, and the dominant negative mutant of IκBα inhibited HER2-induced BCRP promoter activity. Furthermore, we found that HER2 overexpression led to an increased resistance of MCF7 cells to multiple antitumor drugs such as paclitaxel (Taxol), cisplatin (DDP), etoposide (VP-16), adriamycin (ADM), mitoxantrone (MX), and 5-fluorouracil (5-FU). Moreover, silencing the expression of BCRP or selectively inhibiting the activity of Akt or NF-κB sensitized the MCF7/HER2 cells to these chemotherapy agents at least in part. Taken together, up-regulation of BCRP through PI3K/AKT/NF-κB signaling pathway played an important role in HER2-mediated chemoresistance of MCF7 cells, and AKT, NF-κB, and BCRP pathways might serve as potential targets for therapeutic intervention.  相似文献   

17.
The occurrence of multidrug resistance (MDR) is the major obstacle to successful anthracycline-based cancer chemotherapy. In the present study, we assessed the effects of Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, TPL), a piperidine nitroxide with growth-inhibitory properties in tumor cell lines, on a number of molecular mechanisms involved in the resistance of human breast adenocarcinoma cell lines to doxorubicin (DOX). Cytotoxicity studies in MCF-7 wildtype and their MDR variant MCF-7 Adr(R) cells showed a synergistic effect between TPL and DOX when exposure to TPL preceded or was simultaneous with DOX treatment in MCF-7 Adr(R) cells. This effect of TPL seems to be due in part to its ability to increase peroxide levels and to deplete cellular glutathione pools. In addition, TPL increased DOX accumulation in MCF-7 Adr(R) cells by interfering with P-glycoprotein-mediated DOX efflux, as evidenced using a specific antibody that recognizes the active form of the protein. TPL was also found to affect the expression levels of proteins involved in response to drug treatment (e.g., p53, bcl2, bax, p21). Taken together, our results indicate that TPL is a potential new agent that may improve the clinical effect of DOX in tumors exhibiting a MDR phenotype.  相似文献   

18.
《Phytomedicine》2014,21(7):984-991
Paclitaxel (PTX) is a first-line antineoplastic drug that is commonly used in clinical chemotherapy for breast cancer treatment. However, the occurrence of drug resistance in chemotherapeutic treatment has greatly restricted its use. There is thus an urgent need to find ways of reversing paclitaxel chemotherapy resistance in breast cancer. Plant-derived agents have great potential in preventing the onset of the carcinogenic process and enhancing the efficacy of mainstream antitumor drugs. Paeonol, a main compound derived from the root bark of Paeonia suffruticosa, has various biological activities, and is reported to have reversal drug resistance effects. This study established a paclitaxel-resistant human breast cancer cell line (MCF-7/PTX) and applied the dual-luciferase reporter gene assay, MTT assay, flow cytometry, transfection assay, Western blotting and the quantitative real-time polymerase chain reaction (qRT-PCR) to investigate the reversing effects of paeonol and its underlying mechanisms. It was found that transgelin 2 may mediate the resistance of MCF-7/PTX cells to paclitaxel by up-regulating the expressions of the adenosine-triphosphate binding cassette transporter proteins, including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP). Furthermore, the ability of paeonol to reverse paclitaxel resistance in breast cancer was confirmed, with a superior 8.2-fold reversal index. In addition, this study found that paeonol down-regulated the transgelin 2-mediated paclitaxel resistance by reducing the expressions of P-gp, MRP1, and BCRP in MCF-7/PTX cells. These results not only provide insight into the potential application of paeonol to the reversal of paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer.  相似文献   

19.
In this study, the modulatory effect of ferulic acid on P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) was examined in KB ChR8-5 resistant cells and drug-resistant tumor xenografts. We observed that ferulic acid enhanced the cytotoxicity of doxorubicin and vincristine in the P-gp overexpressing KB ChR8-5 cells. Further, ferulic acid enhances the doxorubicin induced γH2AX foci formation and synergistically augmented doxorubicin-induced apoptotic signaling in the drug-resistant cells. It has also been noticed that NF-κB nuclear translocation was suppressed by ferulic acid and that this response might be associated with the modulation of phosphatidyinositol 3-kinase (PI3K)/Akt/signaling pathway. We also found that ferulic acid and doxorubicin combination reduced the size of KB ChR8-5 tumor xenograft by threefold as compared to doxorubicin-alone treated group. Thus, ferulic acid contributes to the reversal of the MDR through suppression of P-gp expression via the inhibition of PI3K/Akt/NF-κB signaling pathway.  相似文献   

20.
Multi-drug resistance (MDR) is a phenomenon by which tumor cells exhibit resistance to a variety of chemically unrelated chemotherapeutic drugs. The classical form of multidrug resistance is connected to overexpression of membrane P-glycoprotein (P-gp), which acts as an energy dependent drug efflux pump. P-glycoprotein expression is known to be controlled by genetic and epigenetic mechanisms. Until now processes of P-gp gene up-regulation and resistant cell selection were considered sufficient to explain the emergence of MDR phenotype within a cell population. Recently, however, "non-genetic" acquisitions of MDR by cell-to-cell P-gp transfers have been pointed out. In the present study we show that intercellular transfers of functional P-gp occur by two different but complementary modalities through donor-recipient cells interactions in the absence of drug selection pressure. P-glycoprotein and drug efflux activity transfers were followed over 7 days by confocal microscopy and flow cytometry in drug-sensitive parental MCF-7 breast cancer cells co-cultured with P-gp overexpressing resistant variants. An early process of remote transfer was established based on the release and binding of P-gp-containing microparticles. Microparticle-mediated transfers were detected after only 4 h of incubation. We also identify an alternative mode of transfer by contact, consisting of cell-to-cell P-gp trafficking by tunneling nanotubes bridging neighboring cells. Our findings supply new mechanistic evidences for the extragenetic emergence of MDR in cancer cells and indicate that new treatment strategies designed to overcome MDR may include inhibition of both microparticles and Tunneling nanotube-mediated intercellular P-gp transfers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号