首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Curcumin is a phenolic natural product isolated from the rhizome of Curcuma longa (tumeric). It was previously described that curcumin had a potent anti-inflammatory effect and inhibited the proliferation of a variety of tumor cells. In the present study, we investigated the inhibitory effects of curcumin on the response of normal murine splenic B cells. Curcumin inhibited the proliferative response of purified splenic B cells from BALB/c mice stimulated with the Toll-like receptor ligands LPS and CpG oligodeoxynucleotides. LPS-induced IgM secretion was also inhibited by curcumin. The proliferative response induced by either the T-independent type 2 stimuli anti-delta-dextran or anti-IgM antibodies was relatively resistant to the effect of curcumin. We investigated the intracellular signaling events involved in the inhibitory effects of curcumin on murine B cells. Curcumin did not inhibit the increase in calcium levels induced by anti-IgM antibody. Western blotting analysis showed that curcumin inhibited TLR ligands and anti-IgM-induced phosphorylation of ERK, IκB and p38. Curcumin also decreased the nuclear levels of NFκB. Our results suggested that curcumin is an important inhibitor of signaling pathways activated upon B cell stimulation by TLR ligands. These data indicate that curcumin could be a potent pharmacological inhibitor of B cell activation.  相似文献   

2.
Recognition of ligands by toll-like receptor (TLR) 2 requires interactions with other TLRs. TLRs form a combinatorial repertoire to discriminate between the diverse microbial ligands. Diversity results from extracellular and intracellular interactions of different TLRs. This paper demonstrates that TLR1 and TLR2 are required for ara-lipoarabinomannan- and tripalmitoyl cysteinyl lipopeptide-stimulated cytokine secretion from mononuclear cells. Confocal microscopy revealed that TLR1 and TLR2 cotranslationally form heterodimeric complexes on the cell surface and in the cytosol. Simultaneous cross-linking of both receptors resulted in ligand-independent signal transduction. Using chimeric TLRs, we found that expression of the extracellular domains along with simultaneous expression of the intracellular domains of both TLRs was necessary to achieve functional signaling. The domains from each receptor did not need to be contained within a single contiguous protein. Chimeric TLR analysis further defined the toll/IL-1R domains as the area of crucial intracellular TLR1-TLR2 interaction.  相似文献   

3.
Although lactic acid bacteria (LAB) affect the immune system, for example, having an anti-allergic effect, little is known about the actual mechanisms of immune modulation. Toll-like receptors (TLRs) recognize conserved microbial molecular patterns, and are presumed to be involved in the recognition of LAB. However, there are few detailed reports examining the relationships between TLR and LAB. We measured here production of IL-12, a cytokine considered to play an important role in anti-allergic effects, induced by Lactobacillus paracasei strain KW3110 and other typical LAB by cells from TLR2-, TLR4-, TLR9- and myeloid differentiation factor 88 (MyD88)-deficient mice. Unexpectedly, similar cytokine production from wild-type and TLR2-, 4- and 9-deficient mice was observed. In contrast, cells from MyD88-deficient mice failed to respond to stimulation with LAB. It is therefore concluded that although LAB, including strain KW3110, are not likely to be recognized by TLR2, 4 or 9, MyD88 is essential for the response to these bacteria.  相似文献   

4.
Research into intracellular sensing of microbial products is an up and coming field in innate immunity. Toll-like receptors (TLRs) recognize Brucella spp. and bacterial components and initiate mononuclear phagocyte responses that influence both innate and adaptive immunity. Recent studies have revealed the intracellular signaling cascades involved in the TLR-initiated immune response to Brucella infection. TLR2, TLR4 and TLR9 have been implicated in host interactions with Brucella; however, TLR9 has the most prominent role. Further, the relationship between specific Brucella molecules and various signal transduction pathways needs to be better understood. MyD88-dependent and TRIF-independent signaling pathways are involved in Brucella activation of innate immune cells through TLRs. We have recently reported the critical role of MyD88 molecule in dendritic cell maturation and interleukin-12 production during B. abortus infection. This article discusses recent studies on TLR signaling and also highlights the contribution of NOD and type I IFN receptors during Brucella infection. The better understanding of the role by such innate immune receptors in bacterial infection is critical in host-pathogen interactions.  相似文献   

5.
Dong Gao  Wang Li 《Proteins》2017,85(1):3-9
Toll‐like receptors (TLRs) recognize common structural patterns in diverse microbial molecules and play central roles in the innate immune response. The structures of extracellular domains and their ligand complexes of several TLRs have been determined by X‐ray crystallography. Here, we discuss recent advances on structures and activation mechanisms of TLRs. Despite the differences in interaction areas of ligand with TLRs, the extracellular domains of TLRs all adopt horseshoe‐shaped structures and the overall M‐shape of the TLR–ligand complexes is strikingly similar. The structural rearrangement information of TLRs sheds new light on their ligand‐recognition and ‐activation mechanisms. Proteins 2016; 85:3–9. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Curcumin, a hydrophobic polyphenol found in the rhizome of Curcuma longa, has been shown to reduce intracellular lipid accumulation in mouse models of lysosomal storage diseases such as Niemann-Pick type C. Exosomes are small extracellular vesicles secreted by cells in response to changes in intracellular ceramide composition. Curcumin can induce exosome/microvesicle release in cellular models of lipid deposition; however, the mechanism by which curcumin stimulates this release is unknown. In a model of lipid trafficking impairment in C6 glia cells, we show that curcumin stimulated ceramide synthesis by increasing the intracellular concentration of ceramide-dihydroceramide. Ceramide overload increased exosome/microvesicle secretion 10-fold, thereby reducing the concentration of lipids in the endolysosomal compartment. These effects were blocked by inhibitors of serine palmitoyltransferase (myriocin) and ceramide synthase (fumonisin B1). It is concluded that the decrease in intracellular lipid deposition induced by curcumin is mediated by increased ceramide synthesis and exosome/microvesicle release. This action may represent an additional health benefit of curcumin.  相似文献   

7.
Neuroinflammation is closely associated with the pathophysiology of neurodegenerative diseases including Parkinson’s disease (PD). Recent evidence indicates that astrocytes also play pro-inflammatory roles in the central nervous system (CNS) by activation with toll-like receptor (TLR) ligands. Therefore, targeting anti-inflammation may provide a promising therapeutic strategy for PD. Curcumin, a polyphenolic compound isolated from Curcuma longa root, has been commonly used for the treatment of neurodegenerative diseases. However, the details of how curcumin exerts neuroprotection remain uncertain. Here, we investigated the protective effect of curcumin on 1-methyl-4-phenylpyridinium ion-(MPP+-) stimulated primary astrocytes. Our results showed that MPP+ stimulation resulted in significant production of tumor necrosis factor (TNF)-α, interleukin (IL-6), and reactive oxygen species (ROS) in primary mesencephalic astrocytes. Curcumin pretreatment decreased the levels of these pro-inflammatory cytokines while increased IL-10 expression in MPP+-stimulated astrocytes. In addition, curcumin increased the levels of antioxidant glutathione (GSH) and reduced ROS production. Our results further showed that curcumin decreased the levels of TLR4 and its downstream effectors including NF-κB, IRF3, MyD88, and TIRF that are induced by MPP+ as well as inhibited the immunoreactivity of TLR4 and morphological activation in MPP+-stimulated astrocytes. Together, data suggest that curcumin might exert a beneficial effect on neuroinflammation in the pathophysiology of PD.  相似文献   

8.
The Toll-like receptor (TLR) family plays a fundamental role in host innate immunity by mounting a rapid and potent inflammatory response to pathogen infection. TLRs recognize distinct microbial components and activate intracellular signaling pathways that induce expression of host inflammatory genes. Several studies have indicated that TLRs are implicated in many inflammatory and immune disorders. Extensive research in the past decade to understand TLR-mediated mechanisms of innate immunity has enabled pharmaceutical companies to begin to develop novel therapeutics for the purpose of controlling an inflammatory disease. The roles of TLRs in the development of autoimmune diseases have been studied. TLR7 and TLR9 have key roles in production of autoantibodies and/or in development of systemic autoimmune disease. It remains to be determined their role in apoptosis, in the pathogenesis of RNA containing immune complexes, differential expression of TLRs by T regulatory cells.  相似文献   

9.
TLRs recognize and respond to conserved motifs termed pathogen-associated molecular patterns. TLRs are characterized by an extracellular leucine-rich repeat motif and an intracellular Toll/IL-1R domain. Triggering of TLRs by pathogen-associated molecular patterns initiates a series of intracellular signaling events resulting in an inflammatory immune response designed to contain and eliminate the pathogen. Vaccinia virus encodes immunoregulatory proteins, such as A52R, that can effectively inhibit intracellular Toll/IL-1R signaling, resulting in a diminished host immune response and enhancing viral survival. In this study, we report the identification and characterization of a peptide derived from the A52R protein (sequence DIVKLTVYDCI) that, when linked to the nine-arginine cell transduction sequence, effectively inhibits cytokine secretion in response to TLR activation. The peptide had no effect on cytokine secretion resulting from cell activation that was initiated independent of TLR stimulation. Using a mouse model of otitis media with effusion, administration of heat-inactivated Streptococcus pneumoniae into the middle ears of BALB/c mice resulted in a significant inflammatory response that was dramatically reduced with peptide treatment. The identification of this peptide that selectively targets TLR-dependent signaling may have application in the treatment of chronic inflammation initiated by bacterial or viral infections.  相似文献   

10.
Toll-like receptors (TLRs) belong to the Toll-like receptor/interleukin-1 receptor (TLR/IL-1R) superfamily which is defined by a common cytoplasmic Toll/interleukin-1 receptor (TIR) domain. TLRs recognize pathogen-associated molecular patterns and initiate an intracellular kinase cascade to trigger an immediate defensive response. SIGIRR (single immunoglobulin interleukin-1 receptor-related molecule), another member of the TLR/IL-1R superfamily, acts as a negative regulator of MyD88-dependent TLR signaling. It attenuates the recruitment of MyD88 adaptors to the receptors with its intracellular TIR domain. Thus, SIGIRR is a highly important molecule for the therapy of autoimmune diseases caused by TLRs. So far, the structural mechanism of interactions between SIGIRR, TLRs and adaptor molecules is unclear. To develop a working hypothesis for this interaction, we constructed three-dimensional models for the TIR domains of TLR4, TLR7, MyD88 and SIGIRR based on computational modeling. Through protein–protein docking analysis, we developed models of essential complexes involved in the TLR4 and 7 signaling and the SIGIRR inhibiting processes. We suggest that SIGIRR may exert its inhibitory effect through blocking the molecular interface of TLR4, TLR7 and the MyD88 adaptor mainly via its BB-loop region.  相似文献   

11.
Oral keratinocytes and fibroblasts may be the first line of host defense against oral microorganisms. Here, the contention that oral keratinocytes and fibroblasts recognize microbial components via Toll‐like receptors (TLRs) and participate in development of oral inflammation was examined. It was found that immortalized oral keratinocytes (RT7), fibroblasts (GT1) and primary cells express mRNA of TLRs 1–10. Interleukin‐8 (IL‐8) production by RT7 cells was induced by treatment with TLRs 1–9 with the exception of TLR7 agonist, whereas GT1 cells were induced to produce IL‐8 by all TLR agonists tested except for TLR7 and TLR9. GT1 cells showed increased CXCL10 production following treatment with agonists for TLR1/2, TLR3, TLR4, and TLR5, whereas only those for TLR3 and TLR5 increased CXCL10 production in RT7 cells. Moreover, TLR agonists differentially regulated tumor necrosis factor‐alpha‐induced IL‐8 and CXCL10 production by the tested cell types. These findings suggest that recognition of pathogenic microorganisms in oral keratinocytes and fibroblasts by TLRs may have important roles in orchestrating host immune responses via production of various chemokines.  相似文献   

12.
Members of the Toll-like receptor (TLR) family mediate dorsoventral patterning and cellular adhesion in insects as well as immune responses to microbial products in both insects and mammals. TLRs are characterized by extracellular leucine-rich repeat domains and an intracellular signaling domain that shares homology with cytoplasmic sequences of the mammalian IL-1 receptor and plant disease resistance genes. Ten human TLRs have been cloned as well as RP105, a protein similar to TLR4 but lacking the intracellular signaling domain. However, only five TLRs have described functions as receptors for bacterial products (e.g., LPS, lipoproteins). To identify potential sites of action, we used quantitative real-time RT-PCR to examine systematically the expression of mRNAs encoding all known human TLRs, RP105, and several other proteins important in TLR functions (e.g., MD-1, MD-2, CD14, MyD88). Most tissues tested expressed at least one TLR, and several expressed all (spleen, peripheral blood leukocytes). Analysis of TLR expression in fractionated primary human leukocytes (CD4(+), CD8(+), CD19(+), monocytes, and granulocytes) indicates that professional phagocytes express the greatest variety of TLR mRNAs although several TLRs appear more restricted to B cells, suggesting additional roles for TLRs in adaptive immunity. Monocyte-like THP-1 cells regulate TLR mRNA levels in response to a variety of stimuli including phorbol esters, LPS, bacterial lipoproteins, live bacteria, and cytokines. Furthermore, addition of Escherichia coli to human blood ex vivo caused distinct changes in TLR expression, suggesting that important roles exist for these receptors in the establishment and resolution of infections and inflammation.  相似文献   

13.
The specific signals mediating the activation of microglia and astrocytes as a prelude to, or consequence of, CNS inflammation continue to be defined. We investigated TLRs as novel receptors mediating innate immune responses in human glial cells. We find that microglia express mRNA for TLRs 1-9, whereas astrocytes express robust TLR3, low-level TLR 1, 4, 5, and 9, and rare-to-undetectable TLR 2, 6, 7, 8, and 10 mRNA (quantitative real-time PCR). We focused on TLRs 3 and 4, which can signal through both the MyD88-dependent and -independent pathways, and on the MyD88-restricted TLR2. By flow cytometry, we established that microglia strongly express cell surface TLR2; TLR3 is expressed at higher levels intracellularly. Astrocytes express both cell surface and intracellular TLR3. All three TLRs trigger microglial activation upon ligation. TLR3 signaling induces the strongest proinflammatory polarizing response, characterized by secretion of high levels of IL-12, TNF-alpha, IL-6, CXCL-10, and IL-10, and the expression of IFN-beta. CXCL-10 and IL-10 secretion following TLR4 ligation are comparable to that of TLR3; however, other responses were lower or absent. TLR2-mediated responses are dominated by IL-6 and IL-10 secretion. Astrocytes respond to TLR3 ligation, producing IL-6, CXCL-10, and IFN-beta, implicating these cells as contributors to proinflammatory responses. Initial TLR-mediated glial activation also regulates consequent TLR expression; while TLR2 and TLR3 are subject to positive feedback, TLR4 is down-regulated in microglia. Astrocytes up-regulate all three TLRs following TLR3 ligation. Our data indicate that activation of innate immune responses in the CNS is not homogeneous but rather tailored according to cell type and environmental signal.  相似文献   

14.
Toll-like receptor (TLR) activation relies on biochemical recognition of microbial molecules and localization of the TLR within specific cellular compartments. Cell surface TLRs largely recognize bacterial membrane components, and intracellular TLRs are exclusively involved in sensing nucleic acids. Here we show that TLR11, an innate sensor for the Toxoplasma protein profilin, is an intracellular receptor that resides in the endoplasmic reticulum. The 12 membrane-spanning endoplasmic reticulum-resident protein UNC93B1 interacts directly with TLR11 and regulates the activation of dendritic cells in response to Toxoplasma gondii profilin and parasitic infection in vivo. A deficiency in functional UNC93B1 protein abolished TLR11-dependent IL-12 secretion by dendritic cells, attenuated Th1 responses against T. gondii, and dramatically enhanced susceptibility to the parasite. Our results reveal that the association with UNC93B1 and the intracellular localization of TLRs are not unique features of nucleic acid-sensing TLRs but is also essential for TLR11-dependent recognition of T. gondii profilin and for host protection against this parasite.  相似文献   

15.
Intestinal inflammatory diseases are the result of multiple processes, including mucosal oxidative stress and perturbed homeostasis between commensal bacteria and mucosal immunity. Toll-like receptors (TLRs) recognize molecular-associated microorganisms' patterns and trigger innate immunity responses contributing to intestinal homeostasis and inflammatory responses. However, TLRs effects on redox balance in intestinal mucosa remain unknown. Therefore, the present study analyzes the effect of TLR2, TLR3, and TLR4 on both oxidative damage of lipids and proteins, and the activity of antioxidant enzymes in enterocyte-like Caco-2 cells. The results show that the activation of these TLRs increased lipid and protein oxidation levels; however, the effect on the antioxidant enzymes activity is different depending on the TLR activated. These results suggest that the activation of TLR2, TLR3, and TLR4 might affect intestinal inflammation by not only their inherent innate immunity responses, but also their pro-oxidative effects on intestinal epithelial cells.  相似文献   

16.
It is well-established that bacterial and viral infections have an exacerbating effect on allergic asthma, particularly aggravating respiratory symptoms, such as airway hyperresponsiveness (AHR). The mechanism by which these infections alter AHR is unclear, but some studies suggest that Toll-like receptors (TLRs) play a role. In this study, we investigated the impact of TLR3 and TLR4 ligands on AHR and airway inflammation in a model of pre-established allergic inflammation. Female BALB/c mice were sensitised and challenged intranasally (i.n.) with either PBS or ovalbumin (OVA) and subsequently i.n. challenged with poly (I:C) (TLR3) or LPS (TLR4) for four consecutive days. The response to methacholine was measured in vivo; cellular and inflammatory mediators were measured in blood, lung tissue and broncheoalveolar lavage fluid (BALF). OVA challenge resulted in an increase in AHR to methacholine, as well as increased airway eosinophilia and TH2 cytokine production. Subsequent challenge with TLR agonists resulted in a significant increase in AHR, but decreased TLR-specific cellular inflammation and production of immune mediators. Particularly evident was a decline in LPS-induced neutrophilia and neutrophil-associated cytokines following LPS and poly (I:C) treatment. The present data indicates that TLRs may play a pivotal role in AHR in response to microbial infection in allergic lung inflammation. These data also demonstrate that aggravated AHR occurs in the absence of an exacerbation in airway inflammation and that allergic inflammation impedes a subsequent inflammatory response to TLRs. These results may parallel clinical signs of microbial asthma exacerbation, including an extended duration of illness and increased respiratory symptoms.  相似文献   

17.
The first line of a host''s response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs). Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs) 5 and 9, we examined their effect on human immunodeficiency virus (HIV)-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist) treatment enhanced replication of CC chemokine receptor 5 (CCR 5)-tropic and CXC chemokine receptor 4 (CXCR4)-tropic HIV-1, treatment with oligodeoxynucleotide (ODN) M362 (TLR9 agonist) suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD) 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA)-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention.  相似文献   

18.
TLRs recognize microbial pathogens and trigger an immune response, but their regulation by neuropeptides, such as vasoactive intestinal peptide (VIP), during Pseudomonas aeruginosa corneal infection remains unexplored. Therefore, C57BL/6 (B6) mice were injected i.p. with VIP, and mRNA, protein, and immunostaining assays were performed. After VIP treatment, PCR array and real-time RT-PCR demonstrated that proinflammatory TLRs (conserved helix-loop-helix ubiquitous kinase, IRAK1, TLR1, TLR4, TLR6, TLR8, TLR9, and TNFR-associated factor 6) were downregulated, whereas anti-inflammatory TLRs (single Ig IL-1-related receptor [SIGIRR] and ST2) were upregulated. ELISA showed that VIP modestly downregulated phosphorylated inhibitor of NF-κB kinase subunit α but upregulated ST2 ~2-fold. SIGIRR was also upregulated, whereas TLR4 immunostaining was reduced in cornea; all confirmed the mRNA data. To determine whether VIP effects were cAMP dependent, mice were injected with small interfering RNA for type 7 adenylate cyclase (AC7), with or without VIP treatment. After silencing AC7, changes in mRNA levels of TLR1, TNFR-associated factor 6, and ST2 were seen and unchanged with addition of VIP, indicating that their regulation was cAMP dependent. In contrast, changes were seen in mRNA levels of conserved helix-loop-helix ubiquitous kinase, IRAK1, 2, TLR4, 9 and SIGIRR following AC7 silencing alone; these were modified by VIP addition, indicating their cAMP independence. In vitro studies assessed the effects of VIP on TLR regulation in macrophages and Langerhans cells. VIP downregulated mRNA expression of proinflammatory TLRs while upregulating anti-inflammatory TLRs in both cell types. Collectively, the data provide evidence that VIP downregulates proinflammatory TLRs and upregulates anti-inflammatory TLRs and that this regulation is both cAMP dependent and independent and involves immune cell types found in the infected cornea.  相似文献   

19.
Pathogen-associated molecular patterns (PAMPs) trigger host immune response by activating pattern recognition receptors like toll-like receptors (TLRs). However, the mechanism whereby several pathogens, including viruses, activate TLRs via a non-PAMP mechanism is unclear. Endogenous “inflammatory mediators” called damage-associated molecular patterns (DAMPs) have been implicated in regulating immune response and inflammation. However, the role of DAMPs in inflammation/immunity during virus infection has not been studied. We have identified a DAMP molecule, S100A9 (also known as Calgranulin B or MRP-14), as an endogenous non-PAMP activator of TLR signaling during influenza A virus (IAV) infection. S100A9 was released from undamaged IAV-infected cells and extracellular S100A9 acted as a critical host-derived molecular pattern to regulate inflammatory response outcome and disease during infection by exaggerating pro-inflammatory response, cell-death and virus pathogenesis. Genetic studies showed that the DDX21-TRIF signaling pathway is required for S100A9 gene expression/production during infection. Furthermore, the inflammatory activity of extracellular S100A9 was mediated by activation of the TLR4-MyD88 pathway. Our studies have thus, underscored the role of a DAMP molecule (i.e. extracellular S100A9) in regulating virus-associated inflammation and uncovered a previously unknown function of the DDX21-TRIF-S100A9-TLR4-MyD88 signaling network in regulating inflammation during infection.  相似文献   

20.
Toll-like receptors (TLRs) TLR1, TLR2, TLR4, and TLR6 are evolutionarily conserved, highly homologous, and localized to plasma membranes of host cells and recognize pathogen-associated molecular patterns (PAMPs) derived from bacterial membranes. These receptors cooperate in a pairwise combination to elicit or inhibit the inflammatory signals in response to certain PAMPs. The other TLRs that are evolutionarily closely related and highly homologous are TLR7, TLR8, and TLR9. They are all confined to the membranes of endosomes and recognize similar molecular structures, the oligonucleotide-based PAMPs. However, the cooperative interactions among these receptors that may modulate the inflammatory signaling in response to their cognate agonists are not reported. We report here for the first time the functional effects of one TLR on the other among TLR7, TLR8, and TLR9. The results indicate that TLR8 inhibits TLR7 and TLR9, and TLR9 inhibits TLR7 but not vice versa in HEK293 cells transfected with TLRs in a pairwise combination. This is concluded by selectively activating one TLR over the other by using small molecule TLR agonists. We also show that these inhibitory interactions are the result of direct or indirect physical interactions between the TLRs. The murine TLR8 that does not respond to any known human TLR8 agonists also inhibits both murine and human TLR7. The implications of the inhibitory interactions among these TLRs in host-pathogen recognition and subsequent inflammatory responses are not obvious. However, given the complexity in expression pattern in a particular cell type and the variation in distribution and response to different pathogens and stress signals in different cell types, the inhibitory physical interactions among these TLRs may play a role in balancing the inflammatory outcome from a given cell type to a specific challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号