首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.

Background  

An axisymmetric finite element method (FEM) model was employed to demonstrate important techniques used in the design of antennas for hepatic microwave ablation (MWA). To effectively treat deep-seated hepatic tumors, these antennas should produce a highly localized specific absorption rate (SAR) pattern and be efficient radiators at approved generator frequencies.  相似文献   

2.

Background

Few finite element models (FEM) have been developed to describe the electric field, specific absorption rate (SAR), and the temperature distribution surrounding hepatic radiofrequency ablation probes. To date, a coupled finite element model that accounts for the temperature-dependent electrical conductivity changes has not been developed for ablation type devices. While it is widely acknowledged that accounting for temperature dependent phenomena may affect the outcome of these models, the effect has not been assessed.

Methods

The results of four finite element models are compared: constant electrical conductivity without tissue perfusion, temperature-dependent conductivity without tissue perfusion, constant electrical conductivity with tissue perfusion, and temperature-dependent conductivity with tissue perfusion.

Results

The data demonstrate that significant errors are generated when constant electrical conductivity is assumed in coupled electrical-heat transfer problems that operate at high temperatures. These errors appear to be closely related to the temperature at which the ablation device operates and not to the amount of power applied by the device or the state of tissue perfusion.

Conclusion

Accounting for temperature-dependent phenomena may be critically important in the safe operation of radiofrequency ablation device that operate near 100°C.
  相似文献   

3.

Background  

One of the current shortcomings of radiofrequency (RF) tumor ablation is its limited performance in regions close to large blood vessels, resulting in high recurrence rates at these locations. Computer models have been used to determine tissue temperatures during tumor ablation procedures. To simulate large vessels, either constant wall temperature or constant convective heat transfer coefficient (h) have been assumed at the vessel surface to simulate convection. However, the actual distribution of the temperature on the vessel wall is non-uniform and time-varying, and this feature makes the convective coefficient variable.  相似文献   

4.

Background  

Techniques based on radio frequency (RF) energy have many applications in medicine, in particular tumour ablation. Today, mammography screening detects many breast cancers at an early stage, facilitating treatment by minimally invasive techniques such as radio frequency ablation (RFA). The breast cancer is mostly surrounded by fat, which during RFA-treatment could result in preferential heating of the tumour due to the substantial differences in electrical parameters. The object of this study was to investigate if this preferential heating existed during experimental in vitro protocols and during computer simulations.  相似文献   

5.
Multiple ablation technologies are used to treat atrial fibrillation during cardiac operations. All such ablation technologies use locally induced temperature extremes (>50°C or <-20°C) to kill tissue and create a lesion pattern in the atria which blocks activation pathways that initiate and sustain atrial fibrillation. The technologies used to heat tissue have included radiofrequency (RF), microwave, high-intensity focused ultrasound, and infrared laser. RF accounts for more than 95% of the heating-based ablation technology used by cardiac surgeons. Energy delivery with RF is easier to control than with some other technologies, the heating produced by the energy source is well understood, and manufacturing costs are not excessive. Whichever heating technology is used, control of energy delivery is required to ensure both safe and effective heating of the targeted tissue. All targeted tissue needs to be heated above 50°C to achieve cell death. However, the targeted tissue should not be heated above 100°C, as this can cause perforation due to a steam pop. In addition, adjacent noncardiac tissues must not be damaged during the ablation procedure. The best method to achieve this control uses direct measurement of tissue temperature, because the tissue temperature defines both the safe and effective limits for the ablative process.  相似文献   

6.

Background

Myocardial contrast echocardiography (MCE) allows visualization of radiofrequency (RF) ablation lesions in the left ventricle in an animal model. Aim: To test whether MCE allows visualization of RF and cryo ablation lesions in the human right atrium using three-dimensional echocardiography.

Methods

18 patients underwent catheter ablation of a supraventricular tachycardia and were included in this prospective single-blind study. Twelve patients were ablated inside Koch's triangle and 6, who served as controls, outside this area. Three-dimensional echocardiography of Koch's triangle was performed before and after the ablation procedure in all patients, using respiration and ECG gated pullback of a 9 MHz ICE transducer, with and without continuous intravenous echocontrast infusion (SonoVue, Bracco). Two independent observers analyzed the data off-line.

Results

MCE identified ablation lesions as a low contrast area within the normal atrial myocardial tissue. Craters on the endocardial surface were seen in 10 (83%) patients after ablation. Lesions were identified in 11 out of 12 patients (92%). None of the control patients were recognized as having been ablated. The confidence score of the independent echo reviewer tended to be higher when the number of applications increased.

Conclusions

1. MCE allows direct visualization of ablation lesions in the human atrial myocardium. 2. Both RF and cryo energy lesions can be identified using MCE.  相似文献   

7.

Background

Ablation of cardiac tissue is an essential tool for the treatment of arrhythmias, particularly of atrial fibrillation, atrial flutter, and ventricular tachycardia. Current ablation technologies suffer from substantial recurrence rates, thermal side effects, and long procedure times. We demonstrate that ablation with nanosecond pulsed electric fields (nsPEFs) can potentially overcome these limitations.

Methods

We used optical mapping to monitor electrical activity in Langendorff-perfused New Zealand rabbit hearts (n = 12). We repeatedly inserted two shock electrodes, spaced 2–4 mm apart, into the ventricles (through the entire wall) and applied nanosecond pulsed electric fields (nsPEF) (5–20 kV/cm, 350 ns duration, at varying pulse numbers and frequencies) to create linear lesions of 12–18 mm length. Hearts were stained either with tetrazolium chloride (TTC) or propidium iodide (PI) to determine the extent of ablation. Some stained lesions were sectioned to obtain the three-dimensional geometry of the ablated volume.

Results

In all animals (12/12), we were able to create nonconducting lesions with less than 2 seconds of nsPEF application per site and minimal heating (< 0.2°C) of the tissue. The geometry of the ablated volume was smoother and more uniform throughout the wall than typical for RF ablation. The width of the lesions could be controlled up to 6 mm via the electrode spacing and the shock parameters.

Conclusions

Ablation with nsPEFs is a promising alternative to radiofrequency (RF) ablation of AF. It may dramatically reduce procedure times and produce more consistent lesion thickness than RF ablation.  相似文献   

8.

Introduction  

Mitral Valve (MV) 3D structural data can be easily obtained using standard transesophageal echocardiography (TEE) devices but quantitative pre- and intraoperative volume analysis of the MV is presently not feasible in the cardiac operation room (OR). Finite element method (FEM) modelling is necessary to carry out precise and individual volume analysis and in the future will form the basis for simulation of cardiac interventions.  相似文献   

9.

Background  

Left ventricle (LV) 3D structural data can be easily obtained using standard transesophageal echocardiography (TEE) devices but quantitative pre- and intraoperative volumetry and geometry analysis of the LV is presently not feasible in the cardiac operation room (OR). Finite element method (FEM) modelling is necessary to carry out precise and individual volume analysis and in the future will form the basis for simulation of cardiac interventions.  相似文献   

10.

Objectives

To prospectively evaluate the impact of 3.0 T Cardiac MR imaging using dual-source parallel radiofrequency (RF) transmission with patient-adaptive B1 shimming compared with single-source RF transmission in the RF homogeneity, image contrast and image quality.

Methods

The study was approved by the local institutional review board, and all subjects provided written informed consent. Fourteen healthy volunteers were examined at 3.0 T MR, with both the conventional single-source and the new dual-source RF transmission. B1 calibrations (RF shimming) of the heart region were performed to acquire a percent of the prescribed flip angle (FA) of B1 maps, which were used for quantitative assessment of RF homogeneity. Contrast ratios (CRs) between ventricular blood pool and septum were calculated on balanced-turbo field echo (B-TFE) cine images. The off-resonance artifacts of cine images were blindly assessed by two radiologists according to a 4-point grading-scale.

Results

A significantly lower mean coefficients of variance of the achieved FA with dual-source revealed better RF homogeneity compared to single-source (P = 0.0094). Dual-source RF shimming significantly increased the CRs (P<0.05) and reduced the off-resonance artifacts of B-TFE cine images (P<0.05). Inter-observer agreement for the off-resonance artifacts of B-TFE cine images was good to excellent (k >0.65).

Conclusions

Dual-source parallel RF transmission significantly improves the RF homogeneity, increases image contrast and reduces image artifacts of cardiac B-TFE images compared to single-source mode. This may be of value in reducing the observer-dependence of cardiac MR images and enhancing diagnostic confidence for clinical practice using CMR at 3.0 T.  相似文献   

11.
Radiofrequency (RF) ablation using high-frequency current has become an important treatment method for patients with non-resectable liver tumors. Tumor recurrence is associated with tissue cooling in the proximity of large blood vessels. This study investigated the influence of blood flow rate on tissue temperature and lesion size during monopolar RF ablation at a distance of 10 mm from single 4- and 6-mm vessels using two different approaches: 1) an ex vivo blood perfusion circuit including an artificial vessel inserted into porcine liver tissue was developed; and 2) a finite element method (FEM) model was created using a novel simplified modeling technique for large blood vessels. Blood temperatures at the inflow/outflow of the vessel and tissue temperatures at 10 and 20 mm from the electrode tip were measured in the ex vivo set-up. Tissue temperature, blood temperature and lesion size were analyzed under physiological, increased and reduced blood-flow conditions. The results show that changes in blood flow rate in large vessels do not significantly affect tissue temperature and lesion size far away from the vessel. Monopolar ablation could not produce lesions surrounding the vessel due to the strong heat-sink effect. Simulated tissue temperatures correlated well with ex vivo measurements, supporting the FEM model.  相似文献   

12.
Radiofrequency (RF) ablation offers a potential treatment for cardiac arrhythmia, where properly titrated energy delivered at critical sites can destroy arrhythmogenic foci. The resulting ablation lesion typically consists of a core (coagulative necrosis) surrounded by a rim of mixed viable and non‐viable cells. The extent of the RF lesion is difficult to delineate with current imaging techniques. Here, we explore polarization signatures of ten ex‐vivo samples from untreated (n = 5) and RF ablated porcine hearts (n = 5), in backscattered geometry through Mueller matrix polarimetry. Significant differences (p < 0.01) in depolarization, ΔT, were observed between the healthy, RF ablated and rim regions. Linear retardance, δ, was significantly lower in the core and rim regions compared to healthy regions (p < 0.05). The results demonstrate a novel application of polarimetry, namely the characterization of RF ablation extent in myocardium, including the visualization of the important lesion rim region.

White light photo (top) of porcine myocardium tissue with radiofrequency ablation lesion and corresponding depolarization map (bottom). Depolarization is useful for visualizing the lesion core and rim.  相似文献   


13.

Introduction

Posteroseptal accessory pathways account for 34.5% of the total. Of these, 36% are located within the coronary sinus (CS). Its ablation requires technical alternatives to avoid damage to surrounding tissues, especially branches of the right coronary artery.

Case report

A 22-year-old man was referred for re-do ablation of an accessory left septal-septal (PSE) pathway. Inside the CS, a precocity of 25?ms was found in the region of the median cardiac vein (VCM) (Fig. 2, panel A). Radiofrequency (RF) was administered with a non-irrigated bidirectional catheter within this vessel with resolution of the pre-excitation after 5 seconds. Immediately after, the patient presented chest pain and revealed a ST segment elevation of 1 mm in the inferior leads of ECG. Coronary angiography showed occlusion of the middle third of the posterior ventricular branch of the right coronary artery, with no signs of thrombus or dissection. Arterial angioplasty was performed with a bare metal stent, followed by TIMI III distal flow. Retrograde aortic mapping was performed and a precocity of 20?ms was found in the PSE region. The RF was applied followed by loss of pre-excitation after 1.5 seconds of application.

Conclusion

This case demonstrates the risks involving delivering radiofrequency within the coronary sinus. We discuss some strategy that could help electrophysiologists in similar cases.  相似文献   

14.

Background  

The function and viability of cultured, transplanted, or encapsulated pancreatic islets is often limited by hypoxia because these islets have lost their vasculature during the isolation process and have to rely on gradient-driven passive diffusion, which cannot provide adequate oxygen transport. Pancreatic islets (islets of Langerhans) are particularly susceptible due to their relatively large size, large metabolic demand, and increased sensitivity to hypoxia. Here, finite element method (FEM) based multiphysics models are explored to describe oxygen transport and cell viability in avascular islets both in static and in moving culture media.  相似文献   

15.

Background  

Catheter ablation of the pulmonary veins has become accepted as a standard therapeutic approach for symptomatic paroxysmal atrial fibrillation (AF). However, there is some evidence for an ablation associated (silent) stroke risk, lowering the hope to limit the stroke risk by restoration of rhythm over rate control in AF. The purpose of the prospective randomized single-center study "Mesh Ablator versus Cryoballoon Pulmonary Vein Ablation of Symptomatic Paroxysmal Atrial Fibrillation" (MACPAF) is to compare the efficacy and safety of two balloon based pulmonary vein ablation systems in patients with symptomatic paroxysmal AF.  相似文献   

16.
BackgroundThere are limited data describing the experience of radiofrequency (RF) vs. cryoballoon (CB) ablation for atrial fibrillation (AF) among elderly patients in the United States.MethodsWe conducted a retrospective analysis of patients ≥75 years of age undergoing index RF vs. CB ablation between January 2014 and May 2020 at our center. The choice of ablation technique was left to the operator's discretion. Major complications and efficacy, defined as freedom from any atrial tachyarrhythmia (ATA) lasting ≥30 s after one year of follow-up, were assessed in patients with index RF vs. CB ablation.ResultsIn our cohort of 186 patients, the median age was 78 (76–81) years, 54.8% were men, and 39.2% had persistent AF. The median CHA2DS2-VASc score was 4 (3–4), while the median duration of AF was 3 (1–7) years. The majority (n = 112, 60.2%) underwent RF ablation. The median procedure time was significantly lower in CB group (197 vs 226.5 min, p=<0.01). The incidence of complications was similar in the two sub-groups (RF: 1.8% vs. CB: 2.7%, p = 0.67). Similarly, arrhythmia-free survival rate on antiarrhythmic drugs at 1-year follow-up remained statistically comparable (63.4% vs. 68.9%, p = 0.33) between patients receiving RF vs. CB ablation.ConclusionThe safety and efficacy of RF vs. CB ablation for AF remained comparable in our cohort of patients older than 75 years. CB ablation was associated with a shorter procedure time.  相似文献   

17.

Purpose

The aim was to assess atrial fibrillation (AF) and vulnerability in Wolff-Parkinson-White (WPW) syndrome patients using two-dimensional speckle tracking echocardiography (2D-STE).

Methods

All patients were examined via transthoracic echocardiography and 2D-STE in order to assess atrial function 7 days before and 10 days after RF catheter ablation. A postoperative 3-month follow-up was performed via outpatient visit or telephone calls.

Results

Results showed significant differences in both body mass index (BMI) and supraventricular tachycardia (SVT) duration between WPW patients and DAVNP patients (both P<0.05). Echocardiography revealed that the maximum left atrial volume (LAVmax) and the left ventricular mass index (LVMI) in diastole increased noticeably in patients with WPW compared to patients with DAVNP both before and after ablation (all P<0.05). Before ablation, there were obvious differences in the levels of SRs, SRe, and SRa from the 4-chamber view (LA) in the WPW patients group compared with patients in the DAVNP group (all P<0.05). In the AF group, there were significant differences in the levels of systolic strain rate (SRs), early diastolic strain rate (SRe), and late diastolic strain rate (SRa) from the 4-chamber view (LA) both before and after ablation (all P<0.05). In the non-AF group, there were decreased SRe levels from the 4-chamber view (LA/RA) pre-ablation compared to post-ablation (all P<0.05).

Conclusion

Our findings provide convincing evidence that WPW syndrome may result in increased atrial vulnerability and contribute to the development of AF. Further, RF catheter ablation of AAV pathway can potentially improve atrial function in WPW syndrome patients. Two-dimensional speckle tracking echocardiography imaging in WPW patients would be necessary in the evaluation and improvement of the overall function of RF catheter ablation in a long-term follow-up period.  相似文献   

18.

Purpose

To evaluate risk factors associated with alterations in venous structures adjacent to an ablation zone after percutaneous irreversible electroporation (IRE) of hepatic malignancies at subacute follow-up (1 to 3 days after IRE) and to describe evolution of these alterations at mid-term follow-up.

Materials and Methods

43 patients (men/women, 32/11; mean age, 60.3 years) were identified in whom venous structures were located within a perimeter of 1.0 cm of the ablation zone at subacute follow-up after IRE of 84 hepatic lesions (primary/secondary hepatic tumors, 31/53). These vessels were retrospectively evaluated by means of pre-interventional and post-interventional contrast-enhanced magnetic resonance imaging or computed tomography or both. Any vascular changes in flow, patency, and diameter were documented. Correlations between vascular change (yes/no) and characteristics of patients, lesions, and ablation procedures were assessed by generalized linear models.

Results

191 venous structures were located within a perimeter of 1.0 cm of the ablation zone: 55 (29%) were encased by the ablation zone, 78 (41%) abutted the ablation zone, and 58 (30%) were located between 0.1 and 1.0 cm from the border of the ablation zone. At subacute follow-up, vascular changes were found in 19 of the 191 vessels (9.9%), with partial portal vein thrombosis in 2, complete portal vein thrombosis in 3, and lumen narrowing in 14 of 19. At follow-up of patients with subacute vessel alterations (mean, 5.7 months; range, 0 to 14 months) thrombosis had resolved in 2 of 5 cases; vessel narrowing had completely resolved in 8 of 14 cases, and partly resolved in 1 of 14 cases. The encasement of a vessel by ablation zone (OR = 6.36, p<0.001), ablation zone being adjacent to a portal vein (OR = 8.94, p<0.001), and the usage of more than 3 IRE probes (OR = 3.60, p = 0.035) were independently associated with post-IRE vessel alterations.

Conclusion

Venous structures located in close proximity to an IRE ablation zone remain largely unaffected by this procedure, and thrombosis is rare.  相似文献   

19.

Background  

In this study, investigating the effects of mobile phone radiation on test animals, eleven pigs were anaesthetised to the level where burst-suppression pattern appears in the electroencephalogram (EEG). At this level of anaesthesia both human subjects and animals show high sensitivity to external stimuli which produce EEG bursts during suppression. The burst-suppression phenomenon represents a nonlinear control system, where low-amplitude EEG abruptly switches to very high amplitude bursts. This switching can be triggered by very minor stimuli and the phenomenon has been described as hypersensitivity. To test if also radio frequency (RF) stimulation can trigger this nonlinear control, the animals were exposed to pulse modulated signal of a GSM mobile phone at 890 MHz. In the first phase of the experiment electromagnetic field (EMF) stimulation was randomly switched on and off and the relation between EEG bursts and EMF stimulation onsets and endpoints were studied. In the second phase a continuous RF stimulation at 31 W/kg was applied for 10 minutes. The ECG, the EEG, and the subcutaneous temperature were recorded.  相似文献   

20.

Background

Catheter ablation (CA) of atrial fibrillation (AF) is associated with inflammatory response, endothelial damage and with increased risk of thrombosis. However, whether these processes differ in peripheral and cardiac circulation is unknown.

Methods

Plasma markers (von Willebrand factor (vWf), soluble P-selectin (sPsel) and interleukin-6 (IL-6)) were measured by ELISA at three time points in 80 patients (62±10 years, 63% males, 41% paroxysmal AF) undergoing CA. These were at baseline – from femoral vein (FV) and left atrium (LA) before ablation; directly after ablation – from the pulmonary vein (PV), LA and FV; and 24 hours after procedure – from a cubital vein (CV).

Results

The levels of vWF and IL6 – but not sP-sel – increased significantly 24h after procedure (p<0.001). Baseline vWF was significantly associated with persistent AF (Beta = .303, p = 0.006 and Beta = .300, p = 0.006 for peripheral and cardiac levels, respectively), while persistent AF (Beta = .250, p = 0.031) and LAA flow pattern (Beta = .386, p<0.001) remained associated with vWF in cardiac blood after ablation. Advanced age was significantly associated with IL6 levels at baseline and after ablation in peripheral and cardiac blood. There were no clinical, procedural or anti-coagulation characteristics associated with sP-sel levels in cardiac blood, while peripheral sP-sel levels were associated with hypertension before (Beta = −.307, p = 0.007) and with persistent AF after ablation (Beta = −.262, p = 0.020).

Conclusions

vWF levels are higher in persistent AF and are associated with LAA rheological pattern after AF ablation. Increase of peripheral vWF and IL6 levels after procedure supports current AF ablation management with careful control of post-procedural anticoagulation to avoid ablation-related thromboembolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号