首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parathyroid hormone increases cellular cAMP, 1,2-diacylglycerol, inositol 1,4,5-trisphosphate and cytosolic Ca2+ concentration ([Ca2+]i) in OK cells. In the present study, we determined the importance of the PTH-dependent increase in [Ca2+]i in the control of sodium-dependent phosphate (Na+/Pi) cotransport. PTH (10(-7) M) results in a transient increase in [Ca2+]i from basal levels of 67 +/- 4 nM to maximal concentrations of 190 +/- 9 nM. The increase in [Ca2+]i was dose-dependent with half-maximal increases at about 5.10(-8) M PTH. These hormone levels were 10(3)-fold higher than that required for half-maximal inhibition of Na+/Pi cotransport. Clamping [Ca2+]i with either intracellular Ca2+ chelators or by ionomycin in the presence of high concentrations of extracellular Ca2+ did not alter PTH-dependent inhibition of Na/Pi cotransport. Nor did indomethacin, an inhibitor of the cyclooxygenase pathway, influence the hormonal inhibition of cotransport. Accordingly, these data suggest that changes in [Ca2+]i and/or activation of the phospholipase A2 and the cyclooxygenase pathways are not involved in signal induction of the PTH-mediated control of Na+/Pi cotransport.  相似文献   

2.
Dose-dependent inhibition of Na/phosphate cotransport by parathyroid hormone (PTH) was correlated with the generation of hormone-mediated second messengers, cAMP, 1,2-diacylglycerol and inositol 1,4,5 trisphosphate in an established epithelial cell line (opossum kidney (OK) cells). PTH results in a dose-dependent decline in Na/phosphate cotransport with a half-maximal response at about 10(-11) M. This hormone concentration is commensurate with the levels required to increase 1,2-diacylglycerol and inositol 1,4,5-trisphosphate concentrations by about half maximal but not with those needed for cAMP generation (10(-9) to 10(-8) M PTH). Accordingly, activation of phospholipase C may be physiologically more important than stimulation of adenylate cyclase at normal PTH levels.  相似文献   

3.
The opossum kidney (OK) line displays PTH-mediated activation of adenylyl cyclase and phospholipase C and inhibition of phosphate (Pi) uptake via regulation of the type IIa sodium-phosphate cotransporter, consistent with effects in vivo. OKH cells, a subclone of the OK cell line, robustly activates PTH-mediated activation of adenylyl cyclase, but is defective in PTH-mediated inhibition of sodium-phosphate cotransport and signaling via phospholipase C. Compared with wild-type OK cells, OKH cells express low levels of the Na+/H+ exchanger regulatory factor 1 (NHERF-1). Stable expression of NHERF-1 in OKH cells (OKH-N1) rescues the PTH-mediated inhibition of sodium-phosphate cotransport. NHERF-1 also restores the capacity of 8-bromo-cAMP and forskolin to inhibit Pi uptake, but the PTH dose-response for cAMP accumulation and inhibition of Pi uptake differ by 2 orders of magnitude. NHERF-1, in addition, modestly restores phorbol ester-mediated inhibition of Pi uptake, which is much weaker than that elicited by PTH. A poor correlation exists between the inhibition of Pi uptake mediated by PTH ( approximately 60%) and the inhibition mediated by phorbol 12-myristate 13-acetate ( approximately 30%) and the ability of these molecules to activate the protein kinase C-responsive reporter gene. Furthermore, we show that NHERF-1 directly interacts with type IIa cotransporter in OK cells. Although, PTH-mediated inhibition of Pi uptake in OK cells is largely NHERF-1 dependent, the signaling pathway(s) by which this occurs is still unclear. These pathways may involve cooperativity between cAMP- and protein kinase C-dependent pathways or activation/inhibition of an unrecognized NHERF-1-dependent pathway(s).  相似文献   

4.
We have tested for the effect of the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) on Na+/phosphate cotransport in an established epithelial cell line of renal origin (LLC-PK1). Incubation of LLC-PK1 cells with TPA produced an increase in Na+/phosphate (Pi) cotransport. The maximal response was reached at a TPA concentration of 10 ng/ml. Other phorbol esters which have no potency or a smaller one to activate protein kinase C had no effect on Na+/Pi cotransport. Incubation of LLC-PK1 cells with 10 ng/ml TPA for 8 h led to a 300% increase in Na+/Pi cotransport; in the presence of cycloheximide the increase amounted only to a 100% and was reached within 2 h. Kinetic analysis of Na+/Pi cotransport indicated an increase in the apparent Vmax without an effect on the apparent Km. The increased Pi transport was retained in isolated apical vesicles. Na+-dependent alanine transport into LLC-PK1 monolayers was affected by TPA administration in a similar manner. TPA had under the chosen experimental conditions no effect on [3H]thymidine incorporation into DNA excluding a general proliferative effect. We conclude that TPA via activation of protein kinase C regulates the number of operating transport systems. As also other Na+-coupled transport systems are influenced, the TPA effect appears to be related to the expression of a general 'adaptive' alteration of membrane transport in LLC-PK1 cells.  相似文献   

5.
In the present study, we investigated the role of intracellular Ca++ in the stimulation of the Na+/K+/Cl- cotransport in synchronized BALB/c 3T3 cells. The Na+/K+/Cl- cotransport was stimulated by the growth factors EGF, TGF-alpha, IGF-1, and IGF-2, which do not activate protein kinase C, but do induce a transient increase in free cytoplasmic Ca++. In addition, direct activation of protein kinase C by the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) did not affect the Na+/K+/Cl- cotransport activity of quiescent cells. The Na+/K+/Cl- cotransport was also stimulated by the above mitogens in cells pretreated with the phorbol ester TPA. This treatment led to a progressive decline in the activity of cellular protein kinase C. This result implies that cells deficient in protein kinase C may still support stimulation of the Na+/K+/Cl- cotransport. Taken as a whole, these findings suggest that the Na+/K+/Cl- cotransport is stimulated predominantly by a protein kinase C-independent mechanism in BALB/c 3T3 fibroblasts. Both the intracellular Ca++ antagonist 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) and two potent calmodulin antagonists, trifluoperazine (TFP) and chloropromazine (CP), blocked serum- and mitogen-stimulated Na+/K+/Cl- cotransport. These results suggest that the Na+/K+/Cl- cotransport is stimulated by an increase of intracellular Ca++ and subsequently by a Ca(++)-calmodulin-mediated pathway in the synchronized BALB/c 3T3 fibroblasts.  相似文献   

6.
7.
Endocytic uptake of [3H]sucrose and lucifer yellow, markers for fluid-phase endocytosis, was studied in cultures of the renal epithelial cell lines LLC-PK1 and OK. Endocytosis in LLC-PK1 cells was inhibited when the cells were grown in the presence of gentamicin (1 mg/ml) for 4 days or when the cells were treated with concanavalin A (1 mg/ml) for 5 h. These changes occurred without perturbation of intracellular Na+ and K+ content, indicating that the cells maintained normal ion gradients. The inhibition of endocytosis was accompanied by marked increases in the apparent Vmax for Na+-dependent cell uptake of solutes such as Pi and L-alanine. The apparent Km was unchanged. In contrast, treatment of OK cells with concanavalin A produced marked stimulation of endocytosis and inhibition of the Na+-dependent uptake of Pi and L-glutamate. These changes occurred in the absence of changes in intracellular Na+ and K+ content. Neither gentamicin nor concanavalin A had a direct effect on Na+/solute cotransport in these cell lines. The changes in Na+/Pi cotransport induced by concanavalin A in both LLC-PK1 and OK cells were blocked by keeping the cells at 4 degrees C during exposure to the lectin, suggesting that endocytosis may be part of the mechanism which mediates the changes in solute uptake. The reciprocal relationship between the changes in endocytosis and the changes in Na+/solute cotransport is consistent with the possibility that the number of Na+/solute cotransporters present in the plasma membrane may be altered by an increase or decrease in the rate of membrane internalization by endocytosis. The Vmax changes in Na+/solute cotransport provide indirect support for this conclusion.  相似文献   

8.
This review updates our current knowledge on the regulation of Na+/H+ exchanger, Na+,K+,Cl- cotransporter, Na+,Pi cotransporter, and Na+,K+ pump in isolated epithelial cells from mammalian kidney by protein kinase C (PKC). In cells derived from different tubule segments, an activator of PKC, 4beta-phorbol 12-myristate 13-acetate (PMA), inhibits apical Na+/H+ exchanger (NHE3), Na+,Pi cotransport, and basolateral Na+,K+ cotransport (NKCCl) and augments Na+,K+ pump. In PMA-treated proximal tubules, activation of Na+,K+ pump probably plays a major role in increased reabsorption of salt and osmotically obliged water. In Madin-Darby canine kidney (MDCK) cells, which are highly abundant with intercalated cells from the collecting duct, PMA completely blocks Na+,K+,Cl- cotransport and decreases the activity of Na+,Pi cotransport by 30-40%. In these cells, agonists of P2 purinoceptors inhibit Na+,K+,Cl- and Na+,Pi cotransport by 50-70% via a PKC-independent pathway. In contrast with MDCK cells, in epithelial cells derived from proximal and distal tubules of the rabbit kidney, Na+,K+,Cl- cotransport is inhibited by PMA but is insensitive to P2 receptor activation. In proximal tubules, PKC-induced inhibition of NHE3 and Na+,Pi cotransporter can be triggered by parathyroid hormone. Both PKC and cAMP signaling contribute to dopaminergic inhibition of NHE3 and Na+,K+ pump. The receptors triggering PKC-mediated activation of Na+,K+ pump remain unknown. Recent data suggest that the PKC signaling system is involved in abnormalities of dopaminergic regulation of renal ion transport in hypertension and in the development of diabetic complications. The physiological and pathophysiological implications of PKC-independent regulation of renal ion transporters by P2 purinoceptors has not yet been examined.  相似文献   

9.
Studies were performed to investigate regulatory pathways of loop diuretic-sensitive Na+/K+/Cl- cotransport in cultured rat glomerular mesangial cells. Angiotensin II, alpha-thrombin, and epidermal growth factor (EGF) all stimulated Na+/K+/Cl- cotransport in a concentration-dependent manner. Pertussis toxin pretreatment reduced the effects of angiotensin II and alpha-thrombin but not that of EGF. Addition of the protein kinase C inhibitor staurosporine or down-regulation of protein kinase C by prolonged incubation with phorbol 12-myristate 13-acetate partially reduced the effects of angiotensin II and alpha-thrombin and completely blunted the phorbol 12-myristate 13-acetate-induced stimulation of Na+/K+/Cl- cotransport but did not affect EGF-induced stimulation. Exposure of cells to a calcium ionophore, A23187, resulted in a concentration-dependent stimulation of Na+/K+/Cl- cotransport, which was not significantly inhibited by down-regulation of protein kinase C but was completely inhibited by the calmodulin antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7). Stimulation of the cotransport by angiotensin II or alpha-thrombin was also partially inhibited by W-7. Inhibitory effects of protein kinase C down-regulation and W-7 were additive and, when combined, produced a complete inhibition of angiotensin II-induced stimulation of Na+/K+/Cl- cotransport. In saponin-permeabilized mesangial cells, phosphorylation of a synthetic decapeptide substrate for Ca2+/calmodulin-dependent kinase II, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ser-Ser-NH3, was demonstrated. Maximal activation of the decapeptide substrate phosphorylation required the presence of Ca2+ and calmodulin and was dependent on Ca2+ concentration. These findings indicate that stimulation of Na+/K+/Cl- cotransport by angiotensin II and alpha-thrombin is mediated by protein kinase C and Ca2+/calmodulin-dependent kinases whereas the action of EGF is mediated by other pathways.  相似文献   

10.
In this study we examined the effect of the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) on the bumetanide-sensitive Na+/K+/Cl- transporter in quiescent BALB/c 3T3 cells. We have shown that exposure of quiescent BALB/c 3T3 cultures to phorbol ester did not inhibit the basal bumetanide-sensitive Rb+ influx or efflux. In fact, at high concentration (100 ng/ml), TPA slightly stimulated the bumetanide-sensitive Rb+ influx and efflux. However, when the quiescent cultures were stimulated by serum or by defined growth factors, the stimulated fraction of the bumetanide-sensitive Rb+ influx was drastically inhibited by exposure of the cells to the phorbol ester TPA. Based on the above findings, we propose that activation of protein kinase C by the phorbol ester TPA does not inhibit the Na+/K+/Cl- cotransport activity; however it does suppress only the growth-factors-stimulated fraction of the cotransport in quiescent BALB/c 3T3 cells. These data propose that activation of kinase C has a regulatory feedback effect on the stimulation of the Na+/K+/Cl- cotransport activity by growth factors.  相似文献   

11.
Orthophosphate (Pi) uptake was examined in human red blood cells at 37 degrees C in media containing physiological concentrations of Pi (1.0- 1.5 mM). Cells were shown to transport Pi by a 4,4'-dinitro stilbene- 2,2'-disulfonate (DNDS) -sensitive pathway (75%), a newly discovered sodium-phosphate (Na/Pi) cotransport pathway (20%), and a pathway linearly dependent on an extracellular phosphate concentration of up to 2.0 mM (5%). Kinetic evaluation of the Na/Pi cotransport pathway determined the K1/2 for activation by extracellular Pi ([Na]o = 140 mM) and extracellular Na [( Pi]o = 1.0 mM) to be 304 +/- 24 microM and 139 +/- 8 mM, respectively. The phosphate influx via the cotransport pathway exhibited a Vmax of 0.63 +/- 0.05 mmol Pi (kg Hb)-1(h)-1 at 140 mM Nao. Activation of Pi uptake by Nao gave Hill coefficients that came close to a value of 1.0. The Vmax of the Na/Pi cotransport varied threefold over the examined pH range (6.90-7.75); however, the Na/Pi stoichiometry of 1.73 +/- 0.15 was constant. The membrane transport inhibitors ouabain, bumetanide, and arsenate had no effect on the magnitude of the Na/Pi cotransport pathway. No difference was found between the rate of incorporation of extracellular Pi into cytosolic orthophosphate and the rate of incorporation into cytosolic nucleotide phosphates, but the rate of incorporation into other cytosolic organic phosphates was significantly slower. Depletion of intracellular total phosphorus inhibited the incorporation of extracellular Pi into the cytosolic nucleotide compartment; and this inhibition was not reversed by repletion of phosphorus to 75% of control levels. Extracellular 32Pi labeled the membrane-associated compounds that migrate on thin-layer chromatography (TLC) with the Rf values of ATP and ADP, but not those of 2,3-bisphosphoglycerate (2,3-DPG), AMP, or Pi. DNDS had no effect on the level of extracellular phosphate incorporation or on the TLC distribution of Pi in the membrane; however, substitution of extracellular sodium with N-methyl-D-glucamine inhibited phosphorylation of the membranes by 90% and markedly altered the chromatographic pattern of the membrane-associated phosphate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
To clarify the possible role of protein kinase C in the control of parathyroid hormone (PTH)-degrading activity (PTHDA) in a PTH-responsive opossum kidney (OK) cell line, we investigated the effects of protein kinase C activators, 12-O-tetradecanoyl phorbol 13-acetate (TPA), 1-oleoyl-2-acetyl-glycerol (OAG), and 4 beta-phorbol 12, 13-didecanoate (4 beta-PDD). TPA, OAG, and 4 beta-PDD enhanced PTHDA in a dose-dependent fashion (10-50 ng/ml, 10-100 microgram/ml, and 10-50 nM, respectively), whereas 4 alpha-PDD, a non-activator of protein kinase C, did not affect it. HPLC analysis of TPA-treated samples revealed increase of all immunoreactive PTH fragments produced by OK cells. These findings suggested that activation of protein kinase C in OK cells would augment PTHDA in the cells.  相似文献   

13.
The present study was performed to investigate the regulation of cytosolic pH (pHi) and DNA synthesis by parathyroid hormone(PTH) and PTH-related peptide (PTHrP) in osteoblasts, using osteoblastic osteosarcoma cells, UMR-106 which possessed PTH-responsive dual signal transduction systems (cAMP-dependent protein kinase (PKA) and calcium/protein kinase C [Ca/PKC]) and amiloride-inhibitable Na+/H+ exchange system. Both human (h)PTH-(1-34) and hPTHrP-(1-34) caused a progressive decrease in pHi and the inhibition of [3H]thymidine incorporation (TdR) to the same degree in a dose-dependent manner with a minimal effective dose of 10(-10) M. Dibutyryl cAMP (10(-4) M and Sp-cAMPS (10(-4) M), a direct stimulator of PKA also caused a progressive decrease in pHi, and calcium ionophores (A23187 and ionomycin, 10(-6) M) caused a transient decrease in pHi. Pretreatment with amiloride (0.3 mM) mostly blocked dbcAMP- and Sp-cAMPS-induced decrease in pHi but did not affect calcium ionophore-induced decrease in pHi. In the presence of amiloride, PTH and PTHrP caused a transient decrease in pHi, which was similar to the pattern of calcium ionophore-induced change in pHi. Amiloride did not affect the inhibition of TdR by PTH or PTHrP as well as that by cAMP analogues or calcium ionophores. The present study indicated that PTH and PTHrP caused cytosolic acidification through PKA-inhibited Na+/H+ exchange and increased cytosolic calcium-induced pathway and that the regulation of DNA synthesis by PTH and PTHrP was not via Na+/H+ exchange system.  相似文献   

14.
Human erythrocytes are able to incorporate cyclic AMP (cAMP) in amounts larger than those required to saturate cAMP-dependent protein kinase. In contrast to previous observations in avian red blood cells in which cAMP stimulates the Na+/K+ cotransport system, we demonstrate that cAMP inhibits this system in human erythrocytes. The cotransport inhibition is enhanced by addition of phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine to the incubation medium. The cAMP concentration giving half-maximal cotransport inhibition showed a wide variation among different individuals (from 0.1 to 5 mM external cAMP concentration). In contrast to cAMP, cyclic GMP showed little effect on the cotransport system. Ca2+ introduced into the cell interior was an inhibitor of the Na+/K+ cotransport system. These results suggest that in human cells in which endogeneous levels of cAMP and Ca2+ are modulated by hormones, the Na+/K+ cotransport system may be under hormonal regulation.  相似文献   

15.
There are multiple regulators of renal proximal tubule sodium-dependent phosphate (Na(+)-Pi) transport, including 1,25-dihydroxyvitamin D (1,25-Vit. D), parathyroid hormone (PTH), insulin-like growth factor 1 (IGF-1), and arachidonic acid (AA) and/or its metabolites. The purpose of our studies was to determine whether the effect of these factors on Pi transport is synergistic or antagonistic. The control solution or the substances were added independently or coincidentally to opossum kidney (OK) cells before incubation for 4 h. 1,25-Vit. D (10(-8) M) had no significant effect on Pi transport ( upward arrow6.8%; p = 0.8). PTH (10(-7) M) significantly inhibited Pi transport by 39.6% (p < 0.0001). IGF-1 (10(-8) M) stimulated Pi transport by 19.6% (p < 0.0001). The AA metabolite 20-HETE (10(-7) M) had no significant impact on Pi transport ( downward arrow6.4; p = 0.3). The combined effect of 1,25-Vit. D and PTH was no different from PTH alone (p = 0.2). Likewise, addition of either 1,25-Vit. D or 20-HETE to IGF-1 failed to affect the magnitude of the increase on Pi transport induced by IGF-1 alone (p = 0.4, p = 0.6, respectively). The combination of 20-HETE and PTH was not different from that observed with PTH alone (p = 0.9). We conclude that in OK cells, PTH inhibits whereas IGF-1 stimulates Pi transport into OK cells. The effects of each of these hormones are independent and unaffected by either 1,25-Vit. D or 20-HETE.  相似文献   

16.
Parathyroid hormone enhances the formation of cAMP and decreases the Na+-dependent uptake of phosphate in cultured renal cells derived from the American opossum (OK cells). Epinephrine, acting as an alpha 2-adrenergic agonist, inhibits the PTH-induced synthesis of cAMP by a pertussis toxin-sensitive mechanism and blunts the inhibition of phosphate transport by PTH. Na+-dependent alpha-methylglucoside and Na+ uptakes by the cells are unaffected by PTH and epinephrine. These findings suggest that alpha 2-adrenergic agonists may selectively modulate PTH-sensitive phosphate transport in the renal proximal tubule.  相似文献   

17.
ATP has been known to act as an extracellular signal and to be involved in various functions of kidney. Renal proximal tubular reabsorption of phosphate (Pi) contributes to the maintenance of phosphate homeostasis, which is regulated by Na+/Pi cotransporter. However, the effects of ATP on Na+/Pi cotransporters were not elucidated in proximal tubule cells (PTCs). Thus, the effects of ATP on Na+/Pi cotransporter and its related signal pathways are examined in the primary cultured renal PTCs. In the present study, ATP inhibited Pi uptake in a time (> 1 h) and dose (>10(-6)M) dependent manner. ATP-induced inhibition of Pi uptake was correlated with the decrease of type II Na+/Pi cotransporter mRNA. ATP-induced inhibition of Pi uptake may be mediated by P2Y receptor activation, since suramin (non-specific P2 receptor antagonist) and RB-2 (P2Y receptor antagonist) blocked it. ATP-induced inhibition of Pi uptake was blocked by neomycin, U73122 (phospholipase C (PLC) inhibitors), bisindolylmaleimide I, H-7, and staurosporine (protein kinase C (PKC) inhibitors), suggesting the role of PLC/PKC pathway. ATP also increased inositol phosphates (IPs) formation and induced PKC translocation from cytosolic fraction to membrane fraction. In addition, ATP-induced inhibition of Pi uptake was blocked by SB 203580 [a p38 mitogen activated protein kinase (MAPK) inhibitor], but not by PD 98059 (a p44/42 MAPK inhibitor). Indeed, ATP induced phosphorylation of p38 MAPK, which was not blocked by PKC inhibitor. In conclusion, ATP inhibited Pi uptake via PLC/PKC as well as p38 MAPK in renal PTCs.  相似文献   

18.
Summary The cellular distribution (apicalvs. basolateral) of parathyroid hormone (PTH) signal transduction systems in opossum kidney (OK) cells was evaluated by measuring the action of PTH on apically located transport processes (Na/Pi cotransport and Na/H exchange) and on the generation of intracellular messengers (cAMP and IP3).PTH application led to immediate inhibition of Na/H-exchange without a difference in dose/response relationships between apical and basolateral cell-surface hormone addition (halfmaximal inhibition at 5×10–10 m). PTH required 2–3 hr for maximal inhibition of Na/Pi cotransport with a half-maximal inhibition occurring at ×10–12 m for apical application. PTH addition to either side of the monolayer produced a dose-dependent production of both cAMP and IP3. Half-maximal activation of IP3 was at about 7×10–12 m PTH and displayed no differences between apical and basolateral hormone addition, while cAMP was produced with a half maximal concentration of 7×10–9 m for apical PTH application and 10–9 m for basolateral administration.The PTH analog [nle8.18, tyr34]PTH(3-34), (nlePTH), produced partial inhibition of Na/Pi cotransport (agonism) with no difference between apical and basolateral application. When applied as a PTH antagonist, nlePTH displayed dose-dependent antagonism of PTH inhibition of Na/Pi cotransport on the apical surface, failing to have an effect on the basolateral surface. Independent of addition to the apical or basolateral cell surface, nlePTH had only weak stimulatory effect on production of cAMP, whereas high levels of IP3 could be measured after addition of this PTH analog to either cell surface. Also an antagonistic action of nlePTH on PTH-dependent generation of the internal messengers, cAMP and IP3, was observed; at the apical and basolateral cell surface nlePTH reduced PTH-dependent generation of cAMP, while PTH-dependent generation of IP3 was only reduced by nlePTH at the apical surface.Pertussis toxin (PT) preincubation produced an attenuation of both PTH-dependent inhibition of Na/Pi cotransport and IP3 generation while producing an enhancement of PTH-dependent cAMP generation; these effects displayed no cell surface polarity, suggesting that PTH action through either adenylate cyclase or phospholipase C was transduced through similar sets of G-proteins at each cell surface.It is concluded that apparent receptor activities with high and low affinity for PTH exist on both cell surfaces; those with apparent high affinity seem to be coupled preferentially to phospholipase C and those with apparent low affinity to adenylate cyclase. The differences in apparent affinity of receptor events coupled to adenylate cyclase and the differences in PTH/nlePTH interaction on the two cell surfaces are suggestive of the existence of differences in apparent PTH-receptor activities on the two cell surfaces.  相似文献   

19.
Mitogenic stimulation of quiescent human fibroblasts (HSWP) with serum or a mixture of growth factors (consisting of vasopressin, bradykinin, EGF, and insulin) stimulates the release of inositol phosphates, mobilization of intracellular Ca, activation of Na/H exchange and subsequent incorporation of [3H]-thymidine. We have determined previously that pretreatment with the tumor-promoting phorbol ester 12-0-tetradecanoyl-phorbol-13-acetate (TPA) inhibits mitogen-stimulated Na influx in HSWP cells. We report herein that TPA pretreatment also substantially inhibits the mitogen-stimulated release of inositol phosphates in HSWP cells. Half maximal inhibition of mitogen-stimulated inositol phosphate release occurs at 1-2 nM TPA. Treatment of cells with TPA alone has no effect on inositol phosphate release. The effect of TPA pretreatment on inositol phosphate release induced by individual growth factors has also been determined. Orthovanadate, reported by Cassel et al. (1984) to increase Na/H exchange in A431 cells, has been demonstrated to stimulate both Na influx and inositol phosphate release in HSWP cells. TPA pretreatment also inhibits both orthovanadate-stimulated inositol phosphate release and Na influx. In addition, orthovanadate was determined to increase intracellular Ca activity by mobilizing intracellular calcium stores, as determined with the fluorescent intracellular calcium probe fura-2. TPA pretreatment blocks orthovanadate stimulated mobilization of intracellular Ca stores. It appears clear that in HSWP cells pretreatment of cells with phorbol ester is capable of artificially desensitizing the early cellular responses to mitogenic stimuli (growth factors, orthovanadate) by blocking the signal transduction mechanism involved at a point prior to the release of inositol phosphates. We hypothesize that in HSWP cells the normal desensitization of both inositol phosphate release and Na/H exchange is mediated via activation of protein kinase C subsequent to the stimulus-mediated activation of phospholipase C and release of protein kinase C activator diacylglycerol. However it is interesting to note that TPA-mediated inhibition of these early responses in HSWP cells does not inhibit their ability to be stimulated to incorporate [3H]-thymidine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Parathyroid hormone (PTH) reduces Na/Pi co-transport activity in opossum kidney (OK) cells in a process mediated by protein kinases A and C. Further, inactivation of Na/Pi transport involves irreversible inhibition, possibly via internalization, of the transport system. This study analyzed alterations of concentration and phosphorylation of membrane proteins of an apically enriched preparation induced by short (10 min) and long (3 h) term incubation with 10(-10) M PTH of monolayer cultures of the OK-cell line. To this end, an apically enriched membrane fraction was isolated from cells grown on Petri dishes and analyzed by two-dimensional gel electrophoresis. Long term exposure of the cells to PTH induced changes in apical protein concentration. Four proteins were found to be decreased and one protein was found to be increased in its concentration. Addition of 10(-10) M PTH to the cells led to transient phosphorylation of five proteins. In contrast to transient phosphorylation, phosphorylation of one protein increased over the time period of 3 h. Combined analysis of silver staining and autoradiography led to the detection of an acidic 35-kDa protein in which specific phosphorylation increased over a time period of hours. The results document for the first time alterations in apical membrane protein content and phosphorylation state mediated by PTH when added to an intact cellular system. It is concluded that the identified proteins represent possible candidates for being involved directly or indirectly in PTH alterations of membrane transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号