首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitogenic stimulation of quiescent human fibroblasts (HSWP) with a growth factor mixture (consisting of epidermal growth factor (EGF), insulin, bradykinin, and vasopressin) rapidly induces an increase in Na influx via a Ca-mediated activation of an amiloride-sensitive Na/H exchanger. Inositol phosphates (specifically inositol-1',4',5'-phosphate) have been implicated in mediating the mobilization of intracellular Ca stores in other cell types and we have now completed a detailed analysis of the mitogen-induced release of inositol phosphates in HSWP cells. Stimulation of inositol trisphosphate release is rapid (within 5 s) and reaches a maximum level (416-485% basal) within 10-15 s after the addition of growth factor mixture. Inositol bisphosphate and inositol monophosphate reach maximum levels by 30 s (1257% basal) and 60 s (291% basal), respectively. Levels of all three compounds then decay toward basal levels but remain elevated (150-350% of basal levels) after 10 min of incubation with mitogens. The effects of different combinations of these growth factors and of the bee venom peptide, melittin, have also been determined. We have also found that 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate, which prevents the mitogen-induced rise in intracellular calcium activity and activation of Na influx, does not alter the mitogen-stimulated accumulation of inositol trisphosphate. In addition, the calcium ionophore A23187, which increases cytosolic Ca activity and induces a Na influx, does not stimulate the release of inositol trisphosphate. Assays performed in the presence of lithium, which inhibits inositol phosphate monophosphatase, promotes the prolonged and enhanced accumulation of inositol monophosphate. Treatment with the phospholipase inhibitor mepacrine or pretreatment with dexamethasone reduces the amount of inositol phosphates released upon mitogenic stimulation. Hence mitogenic stimulation of HSWP cells leads to the rapid stimulation of inositol phosphate release via a calcium-independent mechanism and suggests inositol trisphosphate as a candidate to mediate the release of intracellular calcium stores which is involved in the processes responsible for the activation of the Na/H exchanger.  相似文献   

2.
Utilizing a digitonin-permeabilized cell system, we have studied the release of calcium from a non-mitochondrial intracellular compartment in cultured human fibroblasts (HSWP cells). Addition of 1 mM MgATP to a monolayer of permeabilized cells in a cytosolic media buffered to 150 nM Ca with EGTA rapidly stimulates 45Ca uptake, and the subsequent addition of the putative intracellular messenger inositol trisphosphate (InsP3) induces rapid release of 85% (+/- 6% n = 6) of the 45Ca taken up in response to ATP. Mitogenic peptides (bradykinin, vasopressin, epidermal growth factor [EGF], and insulin) and orthovanadate, which are effective in mobilizing intracellular Ca in intact cells, have little or no effect when added alone to permeabilized cells. However, in the presence of GTP these agents stimulate accumulation of inositol phosphates and release Ca from the InsP3-sensitive pool. These data suggest that a GTP binding protein is involved in receptor mediated activation of phospholipase C, which leads to release of inositol phosphates. The GTP-dependent release of InsP3 and the mobilization of 45Ca from the intracellular compartment are inhibited by pretreatment of cells, prior to permeabilization, with the protein kinase C activator 12-O-tetradecanoyl-phorbol-13-acetate (TPA). TPA pretreatment does not affect the InsP3 stimulated Ca release. These results suggest that protein kinase C is involved in down-regulation or inhibition of phospholipase C, or the GTP binding protein responsible for relaying the mitogenic signal from the cell surface receptor to the phospholipase C activity.  相似文献   

3.
Bombesin-related peptides stimulate a rapid increase in polyphosphoinositide hydrolysis in Swiss-mouse 3T3 cells. These peptides generate an increase in the efflux of 45Ca2+ from pre-labelled cells, a response consistent with an inositol trisphosphate-mediated mobilization of intracellular Ca2+. The bombesin-stimulated release of cellular 45Ca2+ is inhibited by tumour-promoting phorbol esters (e.g. 12-O-tetradecanoylphorbol 13-acetate, TPA). Although there are several possible sites of action at which this effect might occur, our results indicate that TPA induces an uncoupling of bombesin-stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) without decreasing cellular binding of bombesin. In cultured cells, protein kinase C can be down-modulated by a prolonged incubation of the cells with phorbol esters. Such pretreatment greatly decreased the inhibitory effect of TPA on bombesin-stimulated PIP2 hydrolysis, suggesting that this action of the phorbol ester is mediated via protein kinase C. Since diacylglycerol is an endogenous activator of protein kinase C and a direct product of PIP2 hydrolysis, these results suggest that protein kinase C inhibition of polyphosphoinositide hydrolysis may function as a negative-feedback pathway. Cells in which protein kinase C has been down-modulated show elevated basal and bombesin-stimulated production of inositol phosphates, providing evidence that such a feedback loop limits polyphosphoinositide turnover in both unstimulated and mitogen-stimulated cells.  相似文献   

4.
In order to elucidate the role of guanine-nucleotide-binding proteins (G-proteins) in endothelial prostacyclin (PGI2) production, human umbilical vein endothelial cells, prelabelled with either [3H]inositol or [3H]arachidonic acid, were stimulated with the non-specific G-protein activator aluminium fluoride (AlF4-). AlF4- caused a dose- and time-dependent generation of inositol phosphates, release of arachidonic acid and production of PGI2. The curves for the three events were similar. When the cells were stimulated in low extracellular calcium (60 nM), they released [3H]arachidonic acid and produced PGI2, but depleting the intracellular Ca2+ stores by pretreatment with the Ca2+ ionophore A23187 totally inhibited both events, although the cells still responded when extracellular Ca2+ was added. The Ca2+ ionophore did not inhibit the generation of inositol phosphates in cells maintained at low extracellular Ca2+. Pertussis toxin pretreatment (14 h) altered neither inositol phosphate nor PGI2 production in response to AlF4-. To investigate the functional role of the diacylglycerol/protein kinase C arm of the phosphoinositide system, the cells were pretreated with the protein kinase C activator 12-O-tetradecanoylphorbol 13-acetate (TPA) or the protein kinase C inhibitor 1-(5-isoquinolinylsulphonyl)-2-methylpiperazine (H7). TPA inhibited the AlF4(-)-induced inositol phosphate generation but stimulated both the release of arachidonic acid and the production of PGI2. H7 had opposite effects both on inositol phosphate generation and on PGI2 production. These results suggest that AlF4(-)-induced PGI2 production is mediated by a pertussis-toxin-insensitive G-protein which activates the phosphoinositide second messenger system. This production of PGI2 can be modulated by protein kinase C activation, both at the level of inositol phosphate generation and at the level of arachidonic acid release.  相似文献   

5.
The stimulated hydrolysis of inositol lipids and phosphatidylcholine (PtdCho) by bombesin, [Arg8]vasopressin ([Arg8]Vp) and prostaglandin F2 alpha (PGF2 alpha) was analysed in Swiss 3T3 cells pre-labelled to isotopic equilibrium with either [methyl-3H]choline, myo-[2-3H]inositol or [9,10 (n)-3H]palmitic acid. All three agonists activated the phospholipase D-catalysed hydrolysis of PtdCho as determined by the release of [3H]choline (Cho) and the formation of [3H]phosphatidylbutanol (PtdBut). The release of [3H]choline by each agonist exhibited similar sensitivity to prolonged pre-exposure to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). The release of [3H]choline exhibited the same dose dependency as the production of total inositol phosphates for each mitogen suggesting that the two responses might be mediated through identical receptors. Acute pre-treatment with TPA allowed the dissociation of inositol lipid hydrolysis from PtdCho breakdown, since it inhibited inositol phosphate accumulation but stimulated choline generation. The loss of mitogen stimulated choline release in cells pre-treated with the phorbol ester for 48 h was not due to loss of stimulated inositol phosphate production which was reproducibly enhanced in these 'down-regulated' cells.  相似文献   

6.
The effect of phorbol esters and forskolin pretreatment on basal and histamine-induced accumulation of inositol phosphates and catecholamine release was examined in cultures of bovine adrenal chromaffin cells. Histamine caused a dose-dependent, Ca2+-dependent accumulation of total inositol phosphates with an EC50 at approximately 1 microM and an eight- to 10-fold increase at 100 microM within 30 min of incubation. Histamine (10 microM) also caused the release of cellular catecholamines amounting to some 2.8% of cellular stores released over a 20-min period. Both the inositol phosphate and catecholamine responses were completely blocked by the H1-antagonist mepyramine and were insensitive to the H2-antagonist cimetidine. Examination of the time course of accumulation of the individual inositol phosphates stimulated by histamine revealed an early and sustained rise in inositol 1,4-bisphosphate content but not inositol 1,4,5-trisphosphate content at 1 min and the overall largest accumulation of inositol monophosphate after 30 min of stimulation. Pretreatment with the tumor-promoting phorbol ester phorbol 12-myristate 13-acetate (PMA) resulted in a dose-dependent, time-dependent inhibition of histamine-induced inositol phosphate formation and catecholamine secretion. In this inhibitory action, PMA exhibited high potency (IC50 of approximately 0.5 nM), an effect not shared by the inactive phorbol ester 4-alpha-phorbol 12,13-didecanoate. Pretreatment with forskolin, on the other hand, only marginally inhibited the histamine-induced inositol phospholipid metabolism and catecholamine secretion. These data suggest that protein kinase C activation in chromaffin cells may mediate a negative feedback control on inositol phospholipid metabolism.  相似文献   

7.
Interaction of antibodies to ganglioside GM1 with Neuro2a cells was studied to investigate the role of GM1 in cell signaling. Binding of anti-GM1 to Neuro2a cells induced the formation of 3H-inositol phosphates (3H-IPs) and elevated the intracellular Ca2+ concentration [Ca2+]i. The rise in [Ca2+]i was due to the influx of Ca2+ from the extracellular medium and release from intracellular Ca2+ pools. The Ca2+ influx pathway did not allow the permeation of Na+ or K+. The influx was inhibited by amiloride, a specific blocker of T-type Ca2+ channels, whereas nifedipine and diltiazem, blockers of L-type Ca2+ channels, did not have any effect. Thus, anti-GM1 appears to activate a T-type Ca2+ channel in Neuro2a cells. The intracellular Ca2+ release was inhibited by pretreatment of cells with neomycin sulfate, phorbol dibutyrate, and pertussis toxin (PTx), which also inhibited the 3H-IP formation in Neuro2a cells. Addition of caffeine neither elevated the [Ca2+]i nor affected the anti-GM1-induced [Ca2+]i rise. The data reveal that the binding of anti-GM1 to Neuro2a cells activates phospholipase C via a PTx-sensitive G protein, which leads to formation of IPs and release of Ca2+ from inositol trisphosphate-sensitive pool of endoplasmic reticulum. Anti-GM1 also arrested the differentiation of Neuro2a cells in culture and significantly stimulated their proliferation. This stimulatory effect of anti-GM1 on cell proliferation was blocked by amiloride but not by PTx, suggesting that the influx of Ca2+ was essentially required for cell proliferation. Our data suggest a role for GM1 in the regulation of transmembrane signaling events and cell growth.  相似文献   

8.
We have recently shown that both lipopolysaccharide (LPS) and the phorbol ester, 12-O-tetradecanoyl phorbol 13-acetate (TPA) induce differentiation in the transformed murine pre-B lymphocyte cell line 70Z/3 by enhancing Na+-H+ exchange across the plasma membrane through an amiloride-sensitive transport system (Rosoff, P.M., Stein, L.F., and Cantley, L.C. (1984) J. Biol. Chem. 259, 7056-7060). These data suggested that the activation of protein kinase C indirectly by LPS and directly by TPA was the critical step in the initiation of differentiation in these cells. We extend these observations to show that LPS rapidly stimulates an increase in phosphatidylinositol turnover, leading to a rise in the levels of diacylglycerol and inositol 1,4,5-trisphosphate and a concomitant decrease in the amount of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. There is also a rapid elevation of intracellular free [Ca2+] which is independent of the presence of extracellular Ca2+ or Na+. These results suggest that the increase in cytosolic [Ca2+] is due to release of cation from internal stores. TPA, which also causes differentiation in these cells, and the synthetic diacylglycerol, 1-oleoyl-2-acetylglycerol, have opposite effects from LPS on both phosphatidylinositol turnover and cellular Ca+ mobilization. These data suggest that protein kinase C inhibits the activity of phospholipase C. Thus protein kinase C plays a pivotal role in the regulation of mitogen-induced differentiation in these cells by both transducing a positive stimulus to the Na+-H+ exchange system as well as feedback regulating its own stimulatory pathway.  相似文献   

9.
The ability of cholinergic agonists to activate phospholipase C in bovine adrenal chromaffin cells was examined by assaying the production of inositol phosphates in cells prelabeled with [3H]inositol. We found that both nicotinic and muscarinic agonists increased the accumulation of [3H]inositol phosphates (mainly inositol monophosphate) and that the effects mediated by the two types of receptors were independent of each other. The production of inositol phosphates by nicotinic stimulation required extracellular Ca2+ and was maximal at 0.2 mM Ca2+. Increasing extracellular Ca2+ from 0.22 to 2.2 mM increased the sensitivity of inositol phosphates formation to stimulation by submaximal concentrations of 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) but did not enhance the response to muscarine. Elevated K+ also stimulated Ca2+-dependent [3H]inositol phosphate production, presumably by a non-receptor-mediated mechanism. The Ca2+ channel antagonists D600 and nifedipine inhibited the effects of DMPP and elevated K+ to a greater extent than that of muscarine. Ca2+ (0.3-10 microM) directly stimulated the release of inositol phosphates from digitonin-permeabilized cells that had been prelabeled with [3H]inositol. Thus, cholinergic stimulation of bovine adrenal chromaffin cells results in the activation of phospholipase C by distinct muscarinic and nicotinic mechanisms. Nicotinic receptor stimulation and elevated K+ probably increased the accumulation of inositol phosphates through Ca2+ influx and a rise in cytosolic Ca2+. Because Ba2+ caused catecholamine secretion but did not enhance the formation of inositol phosphates, phospholipase C activation is not required for exocytosis. However, diglyceride and myo-inositol 1,4,5-trisphosphate produced during cholinergic stimulation of chromaffin cells may modulate secretion and other cellular processes by activating protein kinase C and/or releasing Ca2+ from intracellular stores.  相似文献   

10.
Highly purified platelet-derived growth factor (PDGF) or recombinant PDGF stimulate DNA synthesis in quiescent Swiss 3T3 cells. The dose-response curves for the natural and recombinant factors were similar, with half-maximal responses at 2-3 ng/ml and maximal responses at approx. 10 ng/ml. Over this dose range, both natural and recombinant PDGF stimulated a pronounced accumulation of [3H]inositol phosphates in cells labelled for 72 h with [3H]inositol. In addition, mitogenic concentrations of PDGF stimulated the release of 45Ca2+ from cells prelabelled with the radioisotope. However, in comparison with the response to the peptide mitogens bombesin and vasopressin, a pronounced lag was evident in both the generation of inositol phosphates and the stimulation of 45Ca2+ efflux in response to PDGF. Furthermore, although the bombesin-stimulated efflux of 45Ca2+ was independent of extracellular Ca2+, the PDGF-stimulated efflux was markedly inhibited by chelation of external Ca2+ by using EGTA. Neither the stimulation of formation of inositol phosphates nor the stimulation of 45Ca2+ efflux in response to PDGF were affected by tumour-promoting phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (TPA). In contrast, TPA inhibited phosphoinositide hydrolysis and 45Ca2+ efflux stimulated by either bombesin or vasopressin. Furthermore, whereas formation of inositol phosphates in response to both vasopressin and bombesin was increased in cells in which protein kinase C had been down-modulated by prolonged exposure to phorbol esters, the response to PDGF was decreased in these cells. These results suggest that, in Swiss 3T3 cells, PDGF receptors are coupled to phosphoinositidase activation by a mechanism that does not exhibit protein kinase C-mediated negative-feedback control and which appears to be fundamentally different from the coupling mechanism utilized by the receptors for bombesin and vasopressin.  相似文献   

11.
Both epidermal growth factor (EGF) and vanadate can activate 45Ca2+ influx into A431 epidermal carcinoma cells, without a detectable lag period possibly via a voltage-independent calcium channel. 22Na+/H+ exchange and 45Ca2+ uptake are mutually independent. Neither EGF nor vanadate induce any significant change in the steady-state levels of [1,3-3H]glycerol-labeled diacylglycerol, myo-[2-3H]inositol-labeled inositol trisphosphate or in 32P-labeled polyphosphoinositides or phosphatidic acid over the first 10 min of treatment, suggesting that the EGF receptor is not directly coupled to phosphatidylinositol turnover and that the two ion fluxes are not induced via a kinase C-dependent pathway. An increase in turnover of polyphosphoinositides can be detected in EGF-stimulated cells by nonequilibrium labeling with [32P]phosphate, but the increase shows a lag of about 1 min under the conditions used to detect 45Ca2+ influx. Chelation of free Ca2+ decreases but does not abolish the EGF-stimulated turnover. Preincubation with tetradecanoylphorbol acetate or 1-oleoyl-2-acetylglycerol inhibits the increase in 45Ca2+ uptake by both EGF and vanadate. Tetradecanoylphorbol acetate alone does not alter the basal rate of influx when added together with 45Ca2+. Surprisingly, the activation by vanadate and its inhibition by phorbol 12-myristate 13-acetate are unaffected by down-regulation of the EGF receptors through prior incubation with growth factor. Therefore, in A431 cells the activation of Na+/H+ exchange and Ca2+ influx appear to be independent of phosphatidylinositol turnover, and the EGF receptor does not itself function as a Ca2+ channel. Vanadate apparently activates influx through a mechanism distinct from or distal to the EGF receptor.  相似文献   

12.
Angiotensin II, a potent vasoconstrictor, is known to stimulate Ca2+ mobilization and Na+ influx in vascular smooth muscle cells (VSMC). The fact that the Na+/H+ exchange inhibitor, amiloride, blocks angiotensin II-stimulated Na+ influx and is itself a vasodilator suggests that Na+/H+ exchange may play a role in the angiotensin II-mediated effects on VSMC. We have used a pH-sensitive fluorescent dye to study Na+/H+ exchange in cultured rat aortic VSMC. Basal intracellular pH was 7.08 in physiological saline buffer. Angiotensin II stimulation caused an initial transient acidification, followed by a Na+-dependent alkalinization. Angiotensin II increased the rate of alkalinization with apparent threshold, half-maximal, and maximal effect of 0.01, 3, and 100 nM, respectively. Angiotensin II stimulation appeared to be mediated by a shift in the Km of the Na+/H+ exchanger for extracellular Na+. Since angiotensin II activates phospholipase C in VSMC, we tested the possibility that angiotensin II increased Na+/H+ exchange by activation of protein kinase C via stimulation of diacylglycerol formation. The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated Na+/H+ exchange in VSMC cultured for 24 h in serum-free medium, and the subsequent angiotensin II response was inhibited. However, VSMC grown in serum and treated for 24 h with TPA to decrease protein kinase C activity showed no inhibition of angiotensin II-stimulated Na+/H+ exchange. TPA caused no intracellular alkalinization of VSMC grown in serum, while the angiotensin II response was actually enhanced compared to VSMC deprived of serum for 24 h. We conclude that angiotensin II stimulates an amiloride-sensitive Na+/H+ exchange system in cultured VSMC which is mediated by protein kinase C-dependent and -independent mechanisms. Angiotensin II-mediated Na+ influx and intracellular alkalinization may play a role in excitation-response coupling in vascular smooth muscle.  相似文献   

13.
C62B rat glioma cells respond to muscarinic cholinergic stimulation with transient inositol phosphate formation and phospholipase A2-dependent arachidonic acid liberation. Since phospholipase A2 is a Ca2+-sensitive enzyme, we have examined the role of the agonist-stimulated Ca2+ response in production of the arachidonate signal. The fluorescent indicator fura-2 was used to monitor changes in cytoplasmic Ca2+ levels ([Ca2+]i) of C62B cells following acetylcholine treatment. In the presence of extracellular Ca2+, acetylcholine induces a biphasic [Ca2+]i response consisting of an initial transient peak that precedes arachidonate liberation and a sustained elevation that outlasts the phospholipase A2 response. The initial [Ca2+]i peak is not altered by the absence of external Ca2+ and therefore reflects intracellular Ca2+ mobilization. The sustained elevation phase is dependent on the influx of external Ca2+; it is lost in Ca2+-free medium and restored on the addition of Ca2+. Pretreating cells with phorbol dibutyrate substantially inhibits acetylcholine-stimulated inositol phosphate formation and the peak [Ca2+]i response without affecting the sustained elevation in [Ca2+]i. This suggests that the release of internal Ca2+ stores by inositol 1,4,5-trisphosphate can be blocked without interfering with Ca2+ influx. Pretreatment with phorbol also fails to affect acetylcholine-stimulated arachidonate liberation, demonstrating that phospholipase A2 activation does not require normal intracellular Ca2+ release. Stimulated arachidonate accumulation is totally inhibited in Ca2+-free medium and restored by the subsequent addition of Ca2+. Pretreatment with verapamil, a voltage-dependent Ca2+ channel inhibitor, also blocks both the sustained [Ca2+]i elevation and arachidonate liberation without altering peak intracellular Ca2+ release. We conclude that the influx of extracellular Ca2+ is tightly coupled to phospholipase A2 activation, whereas large changes in [Ca2+]i due to mobilization of internal Ca2+ stores are neither sufficient nor necessary for acetylcholine-stimulated phospholipase A2 activation.  相似文献   

14.
The effects of extracellular ATP and/or the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) on the intracellular pH of Ehrlich ascites tumor cells were measured using both distribution of [14C]5,5-dimethyloxazolidine-2,4-dione, and the fluorescent indicator 5(6)-carboxyfluorescein. Micromolar concentrations of extracellular ATP induce a biphasic change in the intracellular pH characterized by a rapid acidification of 0.04 pH units followed by an alkalinization of 0.11 pH units. Concurrently with the alkalinization, an increase in the total cellular [Na+] from 37.5 to 45.0 mM is observed. The pH change is half-maximally activated by 0.5-2.5 microM extracellular ATP. The intracellular alkalinization, but not the initial acidification, phase requires extracellular Na+, with half-maximal alkalinization in the presence of 24-32 mM Na+, and is inhibited by amiloride. Exposure of Ehrlich ascites tumor cells to TPA alone produces a slight alkalinization of approximately 0.04 pH units. Conversely, preincubation of the cells with TPA partially inhibits the ATP-induced changes in intracellular pH. Under identical conditions TPA also inhibits the ATP-induced increase in the cytosolic [Ca2+]. The half-maximal dose for both effects is produced by 3-10 nM TPA. These data indicate that extracellular ATP triggers the activation of Na+/H+ exchange. Furthermore, activation of protein kinase C mediates at least part of the Na+/H+ exchange, although a second mechanism may also exist.  相似文献   

15.
Catecholamines were found to activate Na/H exchange in a concentration-dependent manner in primary cultures of vascular smooth muscle cells (VSMC). The potency order was found to be epinephrine greater than norepinephrine greater than isoproterenol. The major pathway for catecholamine effects appeared to be via interaction with an alpha 1 adrenergic receptor. In addition, it was found that alpha 1 receptor-mediated Na/H exchange in VSMC was increased by angiotensin II and inhibited by 12-O-tetradecanoyl phorbol-13-acetate (TPA). Adrenergic receptors have been shown to be coupled to both adenylate cyclase and to inositol phosphate release (Leeb-Lundberg, L. M. F., S. Cotecchia, J. W. Lomasney, J. F. DeBernadis, R. J. Lefkowitz, and M. G. Caron, 1985, Proc. Natl. Acad. Sci. USA, 82:5651-5655.). It was found that catecholamines increased AMP levels in the potency order isoproterenol greater than norepinephrine greater than epinephrine and the receptor involved was a beta adrenergic receptor. Since these findings did not parallel the results obtained for catecholamine stimulation of Na/H exchange, an increase in AMP levels was probably not the mechanism by which major pathway for catecholamine-stimulated Na/H exchange in VSMC (via the alpha 1 receptor) was activated. When the effects of catecholamines were measured on inositol phosphate release, the potency order for catecholamine stimulation was epinephrine greater than norepinephrine greater than isoproterenol, and the receptor involved was an alpha 1 adrenergic receptor. In addition, angiotensin II increased and TPA inhibited catecholamine-stimulated inositol phosphate release. Since these findings paralleled the results obtained for catecholamine stimulation of Na/H exchange, inositol phosphate release may be the mechanism by which the major pathway for catecholamine-stimulated Na/H exchange in VSMC (via the alpha 1 receptor) was activated.  相似文献   

16.
Cholera toxin pretreatment has been found to cause a 3-fold increase in the initial rate of antigen-stimulated secretion of serotonin from rat basophilic leukemia (RBL) cells. Under similar conditions, cholera toxin enhances the antigen-stimulated rise in cytoplasmic free ionized calcium levels and causes a 2-3-fold increase in the rate of antigen-stimulated influx of 45Ca. In intact RBL cells cholera toxin pretreatment potentiates the antigen-stimulated production of inositol phosphates, but in permeabilized cells, with strongly buffered free calcium levels, no effect of cholera toxin pretreatment on the antigen-stimulated activation of cellular phospholipase activities is observed. In addition, pretreatment of cells with tetradecanoylphorbol acetate inhibits antigen-stimulated production of inositol phosphates by greater than 95%, while the stimulated influx of 45Ca remains unaffected. These data indicate that the antigen-stimulated influx of calcium into RBL cells can be dissociated from the production of inositol phosphates in these cells. The observed effects of cholera toxin on exocytosis and Ca2+ influx in RBL cells are not due to the elevation of cellular cyclic AMP levels since a variety of agents capable of elevating cellular cyclic AMP levels do not mimic these effects. Together, these data suggest that a cholera toxin-sensitive guanine nucleotide-binding protein is involved in the pathway responsible for the antigen-stimulated influx of calcium into RBL cells.  相似文献   

17.
The addition of bradykinin to NG115-401L cells grown on coverslips results in the generation of rapid transient increases in intracellular [Ca2+] and inositol phosphates. Changes in intracellular Ca2+, measured using the fluorescent indicator dye Fura-2, show two components; an initial rapid peak in [Ca2+]i which is essentially independent of extracellular Ca2+, and a sustained plateau dependent on the presence of extracellular Ca2+. Analysis of bradykinin stimulated production of [3H]inositol phosphates, by h.p.l.c., shows a rapid biphasic production of inositol 1,4,5-trisphosphate, inositol tetrakisphosphate and inositol bisphosphates, followed by a sustained rise in inositol 1,3,4-trisphosphate production. Quantitative measurements have indicated the presence of other, more polar, [3H]inositol-labelled metabolites which do not show major changes on bradykinin stimulation. The initial phase of inositol phosphate production parallels the rapid transient increase in intracellular [Ca2+], however, the second phase of inositol phosphate production occurs when intracellular [Ca2+] is declining and implies a complex series of regulatory events following receptor stimulation. Similar time courses of inositol 1,4,5-trisphosphate and Ca2+ signals provides supporting evidence that inositol 1,4,5-trisphosphate is the second messenger coupling bradykinin receptor stimulation to release of Ca2+ from intracellular stores.  相似文献   

18.
In bovine adrenal chromaffin cells, prostaglandin E2 (PGE2) stimulates the formation of inositol phosphates and Ca2+ mobilization through its specific receptor [Yokohama, Tanaka, Ito, Negishi, Hayashi & Hayaishi (1988) J. Biol. Chem. 263, 1119-1122]. Here we show that PGE2-induced phosphoinositide metabolism was blocked by pretreatment with 12-O-tetradecanoylphorbol 13-acetate (TPA). Using intact cells, we also examined the inhibitory effect of TPA on the individual steps of the activation process of phosphoinositide metabolism. The inhibition was observed within 1 min and complete by 10 min after addition of 1 microM-TPA, and half-maximal inhibition by TPA occurred at 20 nM. TPA prevented Ca2+ mobilization induced by PGE2, but not by the Ca2+ ionophore ionomycin. The inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate did not inhibit the formation of inositol phosphates and Ca2+ mobilization by PGE2. TPA treatment affected neither the high-affinity binding of [3H]PGE2 to intact cells and membrane fractions nor the ability of guanosine 5'-[gamma-thio]triphosphate to decrease the binding in membrane fractions. TPA also abolished phosphoinositide metabolism induced by muscarinic-receptor activation. NaF plus AlCl3 and ionomycin caused the accumulation of inositol phosphates, probably by directly activating a GTP-binding protein(s) and phospholipase C respectively; neither accumulation was inhibited by TPA treatment. These results suggest that protein kinase C serves as a feedback regulator for PGE2-induced phosphoinositide metabolism. The site of action of TPA appears to be distal to the coupling of the receptor to GTP-binding protein, but on a component(s) specific to the agonist-induced phosphoinositide metabolism.  相似文献   

19.
This study evaluates the role of inositol phosphates as possible mediators of the activation of phospholipase A2 and NADPH oxidase in cultured rat liver macrophages. Inositol phosphate formation was achieved by zymosan, immune complexes, latex particles and calcium ionophore while the release of arachidonic acid and the formation of prostaglandin E2 was also elicited by phorbol ester and NaF, but not by latex particles; generation of superoxide was obtained by zymosan and phorbol ester only. The kinetics of the formation of inositol phosphates revealed that within the first few minutes after zymosan addition inositol trisphosphate was formed, followed by inositol bisphosphate and inositol monophosphate. Pre-treatment of the cells with dexamethasone or removal of extracellular calcium led to an inhibition of the zymosan-induced formation of inositol phosphates and prostaglandin E2 but had no effect on the generation of superoxide; inhibition of the Na+/H+ exchanger by removal of extracellular sodium ions led to a decrease of the zymosan-induced synthesis of prostaglandin E2, but did not affect the formation of inositol phosphates and superoxide. Pre-treatment of the cells with phorbol ester decreased the zymosan-induced synthesis of prostaglandin E2 and superoxide, but even enhanced the zymosan-induced formation of inositol phosphates. These data indicate that in cultured rat liver macrophages the formation of prostaglandins and superoxide cannot be correlated to an activation of phospholipase C.  相似文献   

20.
J Pfeilschifter 《FEBS letters》1986,203(2):262-266
Preincubation of rat renal mesangial cells with 12-O-tetradecanoylphorbol 13-acetate (TPA) strongly inhibited the increases of inositol phosphates and of free cytosolic Ca2+ induced by angiotensin II (10(-7) M). TPA had no significant effect on the basal values of inositol phosphates and of free cytosolic Ca2+. Inhibition appeared already after 1 min and was maximal after 5 min. These effects occur without significant changes on angiotensin II binding in intact cells. The concentration of TPA needed (10(-9)-10(-7) M) was in the range believed to cause specifically an activation of protein kinase C. Furthermore the biologically inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate was without effect. From the entirety of these results it is likely that protein kinase C inhibits angiotensin II activation of phospholipase C at a stage distal to receptor occupancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号