首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 381 毫秒
1.
The mannuronan C-5-epimerase AlgE2 is one of a family of Ca(2+)-dependent epimerases secreted by Azotobacter vinelandii. These enzymes catalyze the conversion of beta-D-mannuronic acid residues (M) to alpha-L-guluronic acid residues (G) in alginate. AlgE2 had a pH optimum between 6.5 and 7 and a temperature optimum around 55 degrees C. Addition of low molecular weight organic compounds, including buffers, amino acids and osmoprotective compounds, affected the activity of the enzyme. The charge, size and stereochemistry of the added compounds were important. The activity of AlgE2, dissolved in various buffers (same pH), decreased with increasing fraction of positively charged buffer ions. Mono- and divalent metal ions also influenced the activity. When Ca(2+) was omitted only Sr(2+), of the metal ions tested, supported some activity of AlgE2. At high concentration of Ca(2+) (3.3 mM) these ions had a negative effect on the activity, whereas at low Ca(2+) concentration (0.58 mM) the activity was enhanced by addition of Sr(2+), and to some degree also by addition of Mg(2+) and Mn(2+). During epimerization AlgE2 occasionally causes cleavage of the alginate chain. These chain breaks could not be prevented by changes in the conditions during the epimerization. The composition and sequential structure of epimerized alginate was not altered by changes in the epimerization conditions.  相似文献   

2.
目的:观察脆弱类杆菌来源的α-半乳糖苷酶(GAL)在不同pH缓冲液、不同温度下的稳定性,以及不同离子及还原剂对酶活性的影响。方法:以GAL对单糖底物对硝基-苯基-α-D-吡喃半乳糖苷(PNPG)的活性为主要检测指标,观察不同离子及还原剂等对酶活性的影响;观察GAL在不同pH缓冲液中和不同温度下的稳定性。结果:钙离子、锌离子、钴离子和高浓度的锰离子增强酶的活性,DTT抑制酶的活性,螯合剂EDTA的加入提高了酶活性。GAL在pH4.6~7.5时保存1 h后稳定性很好,能保持最高活性的90%以上;在4℃~45℃下保存的稳定性最好,45℃开始活性下降。结论:GAL具有很好的温度稳定性和pH稳定性,使其适用于血型转变和异种移植。  相似文献   

3.
The effect of temperature, pH, different inhibitors and additives on activity and stability of crude laccase obtained from repeated-batch culture of white rot fungus Funalia trogii ATCC 200800 was studied. The crude enzyme showed high activity at 55–90°C, which was maximal at 80–95°C. It was highly stable within the temperature intervals 20–50°C. The half life of the enzyme was about 2 h and 5 min at 60°C and 70°C, respectively. pH optimum of fungal laccase activity was revealed at pH 2.5. The enzyme from F. trogii ATCC 200800 was very stable between pH values of 3.0–9.0. NaN3 and KCN were detected as the most effective potent enzyme inhibitors among different compounds tested. The fungal enzyme was highly resistant to the various metal ions, inorganic salts, and organic solvents except propanol, at least for 5 min. Because of its high stability and efficient decolorization activity, the use of the crude F. trogii ATCC 200800 laccase instead of pure enzyme form may be a considerably cheaper solution for biotechnological applications.  相似文献   

4.
For an accurate determination of bisphenol A (BPA) in red blood cells (RBC), the effect of pH on the concentration of BPA was investigated. Also, BPA recovery using ferric heme, methemoglobin (metHb) and hematin, were investigated to confirm whether BPA binds to ferric heme. BPA recovery in hemolysate was high at alkaline pH and was very low at acidic pH where oxyHb changed to metHb. BPA recovery decreased dose-dependently in metHb and hematin, but inorganic iron ions did not influence the recovery. These results suggested that BPA could be bound to ferric heme in RBC. The use of glycine-NaOH buffer (pH 11) as well as plasma had the highest recovery (97%). BPA was not detected in red blood cells of healthy adult volunteers (n=6). In sheep blood contaminated with BPA, BPA was detected in both plasma and RBC (10 times lower than in plasma), indicating that BPA could have migrated from plasma into RBC.  相似文献   

5.
Liu C  Ma C  Yu D  Jia J  Liu L  Zhang B  Dong S 《Biosensors & bioelectronics》2011,26(5):2074-2079
To improve the practicability of rapid biochemical oxygen demand (BOD) method, we proposed a stable BOD sensor based on immobilizing multi-species BODseed for wastewater monitoring in the flow system. The activation time of the biofilm was greatly shortened for the biofilm prepared by BODseed in the organic-inorganic hybrid material. Some influence factors such as temperature, pH, and concentration of phosphate buffer solution (PBS) were investigated in detail in which high tolerance to environment was validated for the BOD sensor permitted a wide pH and PBS concentration ranges. The minimum detectable BOD was around 0.5 mg/l BOD under the optimized 1.0 mg/ml BODseed immobilized concentration. The as-prepared BOD sensor exhibited excellent stability and reproducibility for different samples. Furthermore, the as-prepared BOD biosensor displayed a notable advantage in indiscriminate biodegradation to different organic compounds and their mixture, similar to the character of conventional BOD(5) results. The results of the BOD sensor method are well agreed with those obtained from conventional BOD(5) method for wastewater samples. The proposed rapid BOD sensor method should be promising in practical application of wastewater monitoring.  相似文献   

6.
The thiamin-diphosphate-dependent enzyme benzaldehyde lyase is a very import catalyst for chemoenzymatic synthesis catalyzing the formation and cleavage of (R)-hydroxy ketones. We have studied the stability of the recombinant enzyme and some enzyme variants with respect to pH, temperature, buffer salt, cofactors and organic cosolvents. Stability of BAL in chemoenzymatic synthesis requires the addition of cofactors to the buffer. Reaction temperature should not exceed 37 degrees C. The enzyme is stable between pH 6 and 8, with pH 8 being the pH-optimum of both the lyase and the ligase reaction. Potassium phosphate and Tris were identified as optimal reaction buffers and the addition of 20 vol% DMSO is useful to enhance both the solubility of aromatic substrates and products and the stability of BAL. The initial broad product range of BAL-catalyzed reactions has been enlarged to include highly substituted hydroxybutyrophenones and aliphatic acyloins.  相似文献   

7.
Inactivation of crystalline enzyme, Streptomyces protease G, by γ-ray irradiation in an aqueous system has been investigated. It is indicated that inactivation of the enzyme is attributable mainly to the indirect action of radiation. The inactivation curve is exponential and the G-value for enzyme inactivation is calculated as 0.1 at an enzyme concentration of 1×10?5m, which is not influenced by varying pH. Effects of various other solutes on radiation inactivation have been also studied. Halogen ions, especially iodine ion, and nitrite ion are most protective among various inorganic anions examined, and alkali metal and alkali earth metal cations are ineffective. Among various organic compounds examined, sulfur-containg compounds and unsaturated compounds are generally effective for protection of enzyme activity against radiation damages. The protective effect of benzene is enhanced by the substitution of electron donating groups. Chloroform and chloral are found to act as a synergist for irradiation inactivation.  相似文献   

8.
Han Y  Chen H 《Bioresource technology》2008,99(14):6081-6087
Purification and characterization of beta-glucosidase from corn stover was performed and the enzyme was tried in SSF to evaluate the suitability of plant glycosyl hydrolases in lignocellulose conversion. A beta-glucosidase with M(w) of 62.4 kDa was purified to homogeneity from post-harvest corn stover. The following physicochemical and kinetic parameters of the beta-glucosidase were studied respectively: optimum temperature, thermal stability, optimum pH, pH stability, K(m), V(max), V(i), cellobiose inhibition, tryptic peptide mass spectrometry and effect of metal ions and other reagents on the activity. The beta-glucosidase activity on salicin was optimal at pH 4.8 and 37 degrees C. The unique property of optimum temperature makes the beta-glucosidase potentially useful in SSF. In SSF of steam explosion pretreated corn stover, the supplementation of the purified beta-glucosidase was more effective than Aspergillus niger beta-glucosidase.  相似文献   

9.
Horseradish peroxidase (HRP) was used to catalyze the oxidation of bisphenol A (BPA) in a reverse micelle system consisting of water, sodium bis(2-ethylhexyl)sulfosuccinate (AOT) as the surfactant, and n-octane as the organic solvent phase. In order to achieve maximal BPA transformation, a water-to-surfactant molar ratio greater than 15 was required, above which no further increase in conversion was observed. BPA transformation was catalyzed in the reverse micelle system over a pH range of 6-9 with an optimum at pH 7 and was enhanced with increasing temperatures up to 40 degrees C. The stoichiometric ratio of moles of bisphenol A transformed per mole of peroxide consumed was 0.46 when the initial BPA concentration was 0.01 mM, which is significantly less than the theoretical value of 2 based on the known catalytic cycle of the enzyme. However, the stoichiometric ratio increased and approach the theoretical value with higher BPA concentrations. Over the course of the catalytic reaction, the enzyme became inactivated. Hydrogen peroxide strongly inhibited the enzyme and, thus, when the oxidant was present in quantities in excess of the stoichiometric amount, BPA transformation was significantly reduced.  相似文献   

10.
Bromoperoxidase from the macro-alga Corallina pilulifera is an enzyme that possesses vanadate in the catalytic center, and shows a significant thermostability and stability toward organic solvents. The structural analysis of the recombinant enzyme overexpressed in yeast revealed that it contains one calcium atom per subunit. This has been confirmed by inductively coupled plasma emission spectrometry experiments. The study of the effect of metal ions on the apo-enzyme stability has shown that the calcium ion significantly increased the enzyme stability. In addition, vanadate also increased the thermostability and strontium and magnesium ions had similar effects as calcium. The holo-enzyme shows high stability in a range of organic solvents. The effect of the different ions and solvents on the structure of the enzyme has been studied by circular dichroism experiments. The high stability of the enzyme in the presence of organic solvents is useful for its application as a biocatalyst.  相似文献   

11.
甘蔗渣接枝四乙烯五胺制备治理印染废水的新型吸附剂   总被引:2,自引:0,他引:2  
论文通过在甘蔗渣(sugarcane bagasse,SB)中引入四乙烯五胺获得改性甘蔗渣(modified sugarcane bagasse,MSB),制备出对有机染料伊红和重金属离子Cu2+、Cr3+均有较好吸附能力的吸附剂,并研究了pH、温度、初始浓度等因素对吸附的影响.结果表明当伊红溶液pH为6时,MSB的吸附量比SB提高了18倍,对金属Cu2+ 、Cr3+的吸附量也大大高于SB.染料伊红的吸附过程可以用Langmuir 型吸附等温线较好地模拟,由方程可得25℃下伊红的最大吸附量为399.04 mg·g-1,MSB对伊红的吸附行为符合伪二级吸附动力学模型.实验结果显示改性甘蔗渣(modified sugarcane bagasse,MSB)是一种吸附性能优异的吸附剂,用于处理印染废水与制革废水有较好的应用前景.  相似文献   

12.
We discuss the hydrolysis of cellulose using a pure cellulase: endo-1,4-β-D-glucanase (EG) from the fungus, Aspergillus niger, in buffer, the pure ionic liquid (IL), tris-(2-hydroxyethyl)-methylammonium methylsulfate (HEMA), and various mixtures of the two at different temperatures. Steady-state fluorescence and absorbance studies were performed to monitor the stability and activity of EG using cellulose azure as the substrate. EG attains its highest activity at 45°C in buffer and denatures at ~55°C. On the other hand, HEMA imparts substantial stability to the enzyme, permitting the activity to peak at 75°C. The relative roles of temperature, viscosity, pH, polarity, and the constituent ions of the ILs on the hydrolysis reaction are examined. It is demonstrated that pretreatment of cellulose with ILs such as BMIM Cl, MIM Cl, and HEMA results in more rapid conversion to glucose than hydrolysis with cellulose that is not pretreated. The percent conversion to glucose from pretreated cellulose is increased when the temperature is increased from 45 to 60°C. Two different ILs are used to increase the efficiency of cellulose conversion to glucose. Cellulose is pretreated with BMIM Cl. Subsequent hydrolysis of the pretreated cellulose in 10-20% solutions of HEMA in buffer provides higher yields of glucose at 60°C. Finally, to our knowledge, this is the first study dealing with a pure endoglucanase from commercial A. niger. This enzyme not only shows higher tolerance to ILs, such as HEMA, but also has enhanced thermostability in the presence of the IL.  相似文献   

13.
The thiamin-diphosphate-dependent enzyme benzaldehyde lyase is a very import catalyst for chemoenzymatic synthesis catalyzing the formation and cleavage of (R)-hydroxy ketones. We have studied the stability of the recombinant enzyme and some enzyme variants with respect to pH, temperature, buffer salt, cofactors and organic cosolvents. Stability of BAL in chemoenzymatic synthesis requires the addition of cofactors to the buffer. Reaction temperature should not exceed 37 °C. The enzyme is stable between pH 6 and 8, with pH 8 being the pH-optimum of both the lyase and the ligase reaction. Potassium phosphate and Tris were identified as optimal reaction buffers and the addition of 20 vol% DMSO is useful to enhance both the solubility of aromatic substrates and products and the stability of BAL. The initial broad product range of BAL-catalyzed reactions has been enlarged to include highly substituted hydroxybutyrophenones and aliphatic acyloins.  相似文献   

14.
HNL catalysis is usually carried out in a biphasic solvent and at low pH to suppress the non-enzymatic synthesis of racemic cyanohydrins. However, enzyme stability under these conditions remain a challenge. We have investigated the effect of different biocatalytic parameters, i.e., pH, temperature, buffer concentrations, presence of stabilizers, organic solvents, and chemical additives on the stability of Baliospermum montanum hydroxynitrile lyase (BmHNL). Unexpectedly, glycerol (50 mg/mL) added BmHNL biocatalysis had produced >99% of (S)-mandelonitrile from benzaldehyde, while without glycerol it is 54% ee. Similarly, BmHNL had converted 3-phenoxy benzaldehyde and 3,5-dimethoxy benzaldehyde, to their corresponding cyanohydrins in the presence of glycerol. Among the different stabilizers added to BmHNL at low pH, 400 mg/mL of sucrose had increased enzyme’s half-life more than fivefold. BmHNL’s stability study showed half-lives of 554, 686, and 690 h at its optimum pH 5.5, temperature 20 °C, buffer concentration, i.e., 100 mM citrate-phosphate pH 5.5. Addition of benzaldehyde as inhibitor, chemical additives, and the presence of organic solvents have decreased both the stability and activity of BmHNL, compared to their absence. Secondary structural study by CD-spectrophotometer showed that BmHNL’s structure is least affected in the presence of different organic solvents and temperatures.  相似文献   

15.
1. Four different types of alpha-mannosidase activity were shown to occur in several tissues from the rat. There is the Zn2+-dependent enzyme, active at acidic pH, and three enzymes that are active near to neutral pH. 2. The 'neutral' enzymes are activated by Fe2+, Co2+ or Mn2+. 3. Optimum activities for these three enzymes are shown at pH values of 5.2, 6.5 and 7.3. The activity at pH6.5 is the only one evident without metal-ion activation, but activity is enhanced by all three metal ions. The activity at pH 5.2 is seen only in the presence of Fe2+ or Co2+, and the activity at pH7.3 is seen only in the presence of Co2+ or Mn2+ and in a non-chelating buffer medium. 4. The pH6.5-active enzyme is inactivated by EDTA, but activity is restored by excess of metal ion. 5. The enzymes differ markedly in their stability. The pH6.5-active enzyme is very labile and the pH7.3-active enzyme is the most stable. 6. Tissue preparations vary widely in their activity at pH6.5, but where activity is low it can be increased by incubation with one of the activating metal cations. 7. All the enzymes active at neutral pH are inhibited by heavy-metal ions and stabilized to some extent by thiol groups.  相似文献   

16.
Abstract

The present study aims to exploit microbial potential from colder region to produce lipase enzyme stable at low temperatures. A newly isolated bacterium GBPI_508 from Himalayan environment, was investigated for the production of cold-active lipase emphasizing on its aggregation properties. Plate based assays followed by quantitative production of enzyme was estimated under different culture conditions. Further characterization of partially purified enzyme was done for molecular weight determination and activity and stability under varying conditions of pH, temperature, and in presence of organic solvents, inhibitors, and metal ions. The psychrotolerant bacterium was identified as Pseudomonas palleroniana following 16S rRNA gene sequencing. Maximum lipase production by GBPI_508 was recorded in 7?days at 25?°C utilizing yeast extract as nitrogen source and olive oil as substrate in the lipase production medium. Triton X-100 (1%) in the medium as emulsifier significantly enhanced the lipase production. Lipase produced by bacterium showed aggregation which was confirmed by dynamic light scattering and native PAGE. SDS-PAGE followed by zymogram analysis of partially purified enzyme showed two active bands of ~50?kDa and ~54?kDa. Optimum activity of partially purified enzymatic preparation was recorded at 40?°C while the activity remained nearly consistent from pH 7.0 to 12.0, whereas, maximum stability was recorded at pH values 7.0 and 11.0 at 25?°C. Interestingly, lipase in the partially purified fraction retained 60% enzyme activity at 10?°C. Medium chain pNP ester (C10) was the most preferred substrate for the lipase of GBPI_508. The lipase possessed >50% residual activity when incubated with different organic solvents (25% v/v) except toluene and dichloromethane which inhibited the activity below 50%. Partially purified enzyme was also stable in the presence of metal ions and inhibitors. The study suggests applicability of GBPI_508 lipase in low temperature conditions such as cold-active detergent formulations and cold bioremediation.  相似文献   

17.
Endoxylanase, for which the optimum temperature is 60 degrees C (optimum pH 7), is labile to heat. Because the isoelectric point (pI) value of this xylanase is 10.6, the net charge of this enzyme is positive at pH 7. Thus, ions are likely to influence its enzyme structure and the thermal stability of endoxylanase may improve. Among the various ions tested, orthophosphate anion (HPO(4)(2-)) was found to significantly improve not only the stability but the activity of xylanase. When K(2)HPO(4) concentration was increased from 50 mM to 1.2 M, the T(m )value of xylanase was increased from 60.0 degrees C to 74.5 degrees C. The affinity of xylanase on xylan also increased along with K(2)HPO(4) concentration. Thus, the xylanase activity at 0.6 M K(2)HPO(4) was 2.3-fold higher than that at 50 mM K(2)HPO(4), and 120.2-fold higher than that in 40 mM MOPS buffer. This enhanced activity in the presence of K(2)HPO(4 )probably takes place because the orthophosphate anion affects the binding and catalytic residues of endoxylanase.  相似文献   

18.
The impact of high hydrostatic pressure and temperature on the stability and catalytic activity of alpha-amylase from barley malt has been investigated. Inactivation experiments with alpha-amylase in the presence and absence of calcium ions have been carried out under combined pressure-temperature treatments in the range of 0.1-800 MPa and 30-75 degrees C. A stabilizing effect of Ca(2+) ions on the enzyme was found at all pressure-temperature combinations investigated. Kinetic analysis showed deviations of simple first-order reactions which were attributed to the presence of isoenzyme fractions. Polynomial models were used to describe the pressure-temperature dependence of the inactivation rate constants. Derived from that, pressure-temperature isokinetic diagrams were constructed, indicating synergistic and antagonistic effects of pressure and temperature on the inactivation of alpha-amylase. Pressure up to 200 MPa significantly stabilized the enzyme against temperature-induced inactivation. On the other hand, pressure also hampers the catalytic activity of alpha-amylase and a progressive deceleration of the conversion rate was detected at all temperatures investigated. However, for the overall reaction of blocked p-nitrophenyl maltoheptaoside cleavage and simultaneous occurring enzyme inactivation in ACES buffer (0.1 M, pH 5.6, 3.8 mM CaCl(2)), a maximum of substrate cleavage was identified at 152 MPa and 64 degrees C, yielding approximately 25% higher substrate conversion after 30 min, as compared to the maximum at ambient pressure and 59 degrees C.  相似文献   

19.
Staphylococcus epidermidis isolated from spoiled frozen marine fish samples exhibited optimum lipase activity of 8.1 U within 72 h in batch fermentation. Inducible effect of different sugars, nitrogen sources, salts and metal ions were studied on enzyme production. Trybutyrin induced the enzyme production by twofold. Addition of lactose in the production medium further improved lipase production. Sodium chloride increased lipase production whereas the presence of metals in the media had an inhibitory effect. Cells of immobilized S. epidermidis in agar beads (3%) increased lipase production compared with free cells. The optimum temperature and pH for enzyme activity was 20 degrees C and 7.0 respectively. Lipase retained its 85% stability at pH 6.0 and at 40 degrees C. Immobilized cells with high lipolytic activity and stability may provide commercial advantages over conventional methods of lipase production.  相似文献   

20.
The effect of pH, mental ions, and denaturing reagents on the thermal stability of thermophilic alpha-amylase [EC 3.2.1.1] were examined. The enzyme was most stable at around pH 9.2, which is coincident with the isoelectric point of the enzyme. The stability of the enzyme was increased by the addition of calcium, strontium, and sodium ions. The addition of calcium ions markedly stabilized the enzyme. The protective effects of calcium and sodium ions were additive. At room temperature, no detectable destruction of the helical structure of the enzyme was observed after incubation for 1 hr in the presence of 1% sodium dodecylsulfate, 8 M urea or 6 M guanidine-HC1. The addition of 8 M urea or 6 M guanidine-HC1 lowered the thermal denaturation temperature of the enzyme. The enzyme contained one atom of tightly bound intrinsic calcium per molecule which could not be removed by electrodialysis unless the enzyme was denatured. The rate constants of inactivation and denaturation reactions in the absence and presence of calcium ions were measured and thermodynamic parameters were determined. The presence of calcium ions caused a remarkable decrease in the activation entropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号