首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identifying insecticide resistance mechanisms is paramount for pest insect control, as the understandings that underpin insect control strategies must provide ways of detecting and managing resistance. Insecticide resistance studies rely heavily on detailed biochemical and genetic analyses. Although there have been many successes, there are also many examples of resistance that still challenge us. As a precursor to rational pest insect control, the biology of the insect, within the contexts of insecticide modes of action and insecticide metabolism, must be well understood. It makes sense to initiate this research in the best model insect system, Drosophila melanogaster, and translate these findings and methodologies to other insects. Here we explore the usefulness of the D. melanogaster model in studying metabolic-based insecticide resistances, target-site mediated resistances and identifying novel insecticide targets, whilst highlighting the importance of having a more complete understanding of insect biology for insecticide studies.  相似文献   

2.
Insecticide research has often relied on model species for elucidating the resistance mechanisms present in the targeted pests. The accuracy and applicability of extrapolations of these laboratory findings to field conditions varies but, for target site resistance, conserved mechanisms are generally the rule rather than the exception (Perry et al., 2011). The spinosyn class of insecticides appear to fit this paradigm and are a pest control option with many uses in both crop and animal protection. Resistance to spinosyns has been identified in both laboratory-selected and field-collected pest insects.Studies using the model insect, Drosophila melanogaster, have identified the nicotinic acetylcholine receptor subunit, Dα6 as an important target of the insecticide spinosad (Perry et al., 2007, Watson et al., 2010). Field-isolated resistant strains of several agricultural pest insects provide evidence that resistance cases are often associated with mutations in orthologues to Dα6 (Baxter et al., 2010, Puinean et al., 2013).The expression of these receptors is difficult in heterologous systems. In order to examine the biology of the Dα6 receptor subunit further, we used Drosophila as a model and developed an in vivo rescue system. This allowed us to express four different isoforms of Dα6 and show that each is able to rescue the response to spinosad. Regulatory sequences upstream of the Dα6 gene able to rescue the resistance phenotype were identified. Expression of other D. melanogaster subunits revealed that the rescue phenotype appears to be Dα6 specific. We also demonstrate that expression of pest insect orthologues of Dα6 from a variety of species are capable of rescuing the spinosad response phenotype, verifying the relevance of this receptor to resistance monitoring in the field. In the absence of a robust heterologous expression system, this study presents an in vivo model that will be useful in analysing many other aspects of these receptors and their biology.  相似文献   

3.
4.
Wolbachia pipientis is a commonly occurring endosymbiont with well-characterised effects on host reproductive biology associated with its infection of the gonads. Wolbachia infections are also widespread in somatic tissues and consequently they have the potential to play a much broader role in host biology. Recently, Wolbachia was shown to alter the locomotion of Drosophila melanogaster in response to food cues in the laboratory. To determine whether this laboratory-based phenotype might translate to real differences for insects in the field, we performed a simple mark-release-recapture experiment with Wolbachia-infected D. melanogaster in a forested habitat. We demonstrate that infected flies are recaptured at twice the rate of uninfected flies, although infection does not affect the distance traveled by those flies recaptured. The differences in recapture could be explained by infection-induced changes in physiology or behavior. If generalizable, such changes may affect the interpretation of behavioral studies for Wolbachia-infected insects and have potential implications for the dynamics of Wolbachia infections in natural populations, including situations where Wolbachia-infected insects are being released for biological control.  相似文献   

5.
Wolbachia are vertically transmitted, obligatory intracellular bacteria that infect a great number of species of arthropods and nematodes. In insects, they are mainly known for disrupting the reproductive biology of their hosts in order to increase their transmission through the female germline. In Drosophila melanogaster, however, a strong and consistent effect of Wolbachia infection has not been found. Here we report that a bacterial infection renders D. melanogaster more resistant to Drosophila C virus, reducing the load of viruses in infected flies. We identify these resistance-inducing bacteria as Wolbachia. Furthermore, we show that Wolbachia also increases resistance of Drosophila to two other RNA virus infections (Nora virus and Flock House virus) but not to a DNA virus infection (Insect Iridescent Virus 6). These results identify a new major factor regulating D. melanogaster resistance to infection by RNA viruses and contribute to the idea that the response of a host to a particular pathogen also depends on its interactions with other microorganisms. This is also, to our knowledge, the first report of a strong beneficial effect of Wolbachia infection in D. melanogaster. The induced resistance to natural viral pathogens may explain Wolbachia prevalence in natural populations and represents a novel Wolbachia–host interaction.  相似文献   

6.
  1. Model organisms such as Drosophila melanogaster have been key tools for advancing our fundamental and applied knowledge in biological and biomedical sciences. However, model organisms have become intertwined with the idea of controlled and stable laboratory environments, and their natural history has been overlooked.
  2. In holometabolous insects, lack of natural history information on larval ecology has precluded major advances in the field of developmental ecology, especially in terms of manipulations of population density early in life (i.e., larval density). This is because of relativistic and to some extent, arbitrary methodologies employed to manipulate larval densities in laboratory studies. As a result, these methodologies render comparisons between species impossible, precluding our understanding of macroevolutionary responses to population densities during development that can be derived from comparative studies.
  3. We recently proposed a new conceptual framework to address this issue, and here, we provide the first natural history investigation of Drosophila melanogaster larval density under such framework. First, we characterized the distribution of larval densities in a wild population of D. melanogaster using rotting apples as breeding substrate in a suburban area in Sweden.
  4. Next, we compiled the commonly used methodologies for manipulating larval densities in laboratory studies from the literature and found that the majority of laboratory studies identified did not manipulate larval densities below or above the densities observed in nature, suggesting that we have yet to study true life history and physiological responses to low and high population densities during D. melanogaster development.
  5. This is, to our knowledge, the first direct natural history account of larval density in nature for this model organism. Our study paves the way for a more integrated view of organismal biology which re‐incorporates natural history of model organisms into hypothesis‐driven research in developmental ecology.
  相似文献   

7.
Predicting gene functions by integrating large-scale biological data remains a challenge for systems biology. Here we present a resource for Drosophila melanogaster gene function predictions. We trained function-specific classifiers to optimize the influence of different biological datasets for each functional category. Our model predicted GO terms and KEGG pathway memberships for Drosophila melanogaster genes with high accuracy, as affirmed by cross-validation, supporting literature evidence, and large-scale RNAi screens. The resulting resource of prioritized associations between Drosophila genes and their potential functions offers a guide for experimental investigations.  相似文献   

8.
We investigate the thermoregulatory behaviors of larvae of four species of Drosophila (D. melanogaster, D. subobscura, D. pseudoobscura, and D. mojavensis), a thermotolerant strain of Drosophila melanogaster (T strain) known to differ in thermal biology, and two mutant stocks of D. melanogaster that have (as adults) defective thermoregulatory behavior. We describe and evaluate new techniques to measure two indices of maximum voluntary temperature of insect larvae. Both measures were highly repeatable within lines (species, strains, or mutants). One measure (temperature at which larvae stood upright) differed among lines consistent with expectations based on adult thermal ecology, suggesting that this measure will be useful measures of thermoregulatory set-points of larvae. The second measure (temperature of emergence from media) is less discriminatory.  相似文献   

9.
Drosophila melanogaster is one of the most widely used model systems in biology. However, little is known about its associated bacterial community. As a first step towards understanding these communities, we compared bacterial 16S rRNA gene sequence libraries recovered from 11 natural populations of adult D. melanogaster. Bacteria from these sequence libraries were grouped into 74 distinct taxa, spanning the phyla Proteobacteria, Bacteroidetes, and Firmicutes, which were unevenly spread across host populations. Summed across populations, the distribution of abundance of genera was closely fit by a power law. We observed differences among host population locations both in bacterial community richness and in composition. Despite this significant spatial variation, no relationship was observed between species richness and a variety of abiotic factors, such as temperature and latitude. Overall, bacterial communities associated with adult D. melanogaster hosts are diverse and differ across host populations.  相似文献   

10.
Many insects, including Drosophila melanogaster, have a rich repertoire of olfactory behavior. Combination of robust behavioral assays, physiological and molecular tools render D. melanogaster as highly suitable system for olfactory studies. The small number of neurons in the olfactory system of fruit flies, especially the number of sensory neurons in the larval stage, makes the exploration of sensory coding at all stages of its nervous system a potentially tractable goal, which is not possible in the foreseeable future in any mammalian preparation. Advances in physiological recordings, olfactory signaling and detailed analysis of behavior, can place larvae in a position to ask previously unanswerable questions.  相似文献   

11.
The recent advances in biocontrol of stored-grain insects using formulated and unformulated strains of entomopathogenic fungi (EPF) are reviewed and discussed. Several liquid and dry formulations of EPF strains were developed and used against these insects. However, a literature search revealed lack of any commercially registered product of these formulations. Therefore, in order to achieve an effective control of these insects, the following potential areas of future research have been identified and discussed: (i) screening for new effective strains of EPF, in addition to new effective formulations, (ii) applying the most effective strains and formulations selected in the previous step under storage conditions, (iii) optimising the proportions of ingredients in the selected formulations and (iv) integrating the products of the most effective formulations, after registration and commercialisation, in the integrated pest management programmes of stored-grain insects. Such products would constitute an appropriate alternative control means to synthetic insecticides and fumigants commonly used for control of these insects. The various obstacles pertaining to how the selected EPF products are planned to be used in ‘real world’ in stored-grain protection are also critically discussed.  相似文献   

12.

Background

Drosophila mojavensishas been a model system for genetic studies of ecological adaptation and speciation. However, despite its use for over half a century, no linkage map has been produced for this species or its close relatives.

Results

We have developed and mapped 90 microsatellites in D. mojavensis, and we present a detailed recombinational linkage map of 34 of these microsatellites. A slight excess of repetitive sequence was observed on the X-chromosome relative to the autosomes, and the linkage groups have a greater recombinational length than the homologous D. melanogaster chromosome arms. We also confirmed the conservation of Muller's elements in 23 sequences between D. melanogaster and D. mojavensis.

Conclusions

The microsatellite primer sequences and localizations are presented here and made available to the public. This map will facilitate future quantitative trait locus mapping studies of phenotypes involved in adaptation or reproductive isolation using this species.  相似文献   

13.
Identifying molecular mechanisms of insecticide resistance is important for preserving insecticide efficacy, developing new insecticides and implementing insect control. The metabolic detoxification of insecticides is a widespread resistance mechanism. Enzymes with the potential to detoxify insecticides are commonly encoded by members of the large cytochrome P450, glutathione S-transferase and carboxylesterase gene families, all rapidly evolving in insects. Here, we demonstrate that the model insect Drosophila melanogaster is useful for functionally validating the role of metabolic enzymes in conferring metabolism-based insecticide resistance. Alleles of three well-characterized genes from different pest insects were expressed in transgenic D. melanogaster : a carboxylesterase gene (αE7) from the Australian sheep blowfly Lucilia cuprina, a glutathione S-transferase gene (GstE2) from the mosquito Anopheles gambiae and a cytochrome P450 gene (Cyp6cm1) from the whitefly Bemisia tabaci. For all genes, expression in D. melanogaster resulted in insecticide resistance phenotypes mirroring those observed in resistant populations of the pest species. Using D. melanogaster to assess the potential for novel metabolic resistance mechanisms to evolve in pest species is discussed.  相似文献   

14.
A series of laboratory selection experiments onDrosophila melanogaster over the past two decades has provided insights into the specifics of life-history tradeoffs in the species and greatly refined our understanding of how ecology and genetics interact in life-history evolution. Much of what has been learnt from these studies about the subtlety of the microevolutionary process also has significant implications for experimental design and inference in organismal biology beyond life-history evolution, as well as for studies of evolution in the wild. Here we review work on the ecology and evolution of life-histories in laboratory populations ofD. melanogaster, emphasizing how environmental effects on life-history-related traits can influence evolutionary change. We discuss life-history tradeoffs—many unexpected—revealed by selection experiments, and also highlight recent work that underscores the importance to life-history evolution of cross-generation and cross-life-stage effects and interactions, sexual antagonism and sexual dimorphism, population dynamics, and the possible role of biological clocks in timing life-history events. Finally, we discuss some of the limitations of typical selection experiments, and how these limitations might be transcended in the future by a combination of more elaborate and realistic selection experiments, developmental evolutionary biology, and the emerging discipline of phenomics.  相似文献   

15.
The post-genomic era is marked by a pressing need to functionally characterize genes through understanding gene-gene interactions, as well as interactions between biological pathways. Exploiting a phenomenon known as synthetic lethality, in which simultaneous loss of two interacting genes leads to loss of viability, aids in the investigation of these interactions. Although synthetic lethal screening is a powerful technique that has been used with great success in many model organisms, including Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans, this approach has not yet been applied in the zebrafish, Danio rerio. Recently, the zebrafish has emerged as a valuable system to model many human disease conditions; thus, the ability to conduct synthetic lethal screening using zebrafish should help to uncover many unknown disease-gene interactions. In this article, we discuss the concept of synthetic lethality and provide examples of its use in other model systems. We further discuss experimental approaches by which the concept of synthetic lethality can be applied to the zebrafish to understand the functions of specific genes.  相似文献   

16.
17.
《Journal of Asia》2022,25(4):102001
The fall armyworm, Spodoptera frugiperda, is an emerging invasive pest in Taiwan that feeds on a wide range of crops and causes serious damage. Herein, an entomopathogenic fungal library (EFLib) was constructed to identify potential microbes to control FAW. Twenty-eight indigenous entomopathogenic fungi (EPF) were isolated and investigated for their potential pathogenicity, with Metarhizium pinghaense (Mp-NCHU-124) and Beauveria bassiana (Bb-NCHU-157) exerting dose-dependent effects on the 4th instar FAW larvae. The non-ionic surfactant Silwet L-77 rapidly killed FAW larvae after spraying at a concentration of 300 mg/kg and the toxic effect of Silwet L-77 on FAW larvae was dose-dependent. When the EPF isolates (106 conidia/mL) were applied to FAW larvae in combination with the non-ionic surfactant Silwet L-77 (30–90 mg/kg), the mortality rate dramatically increased and the LT50 reduced, with increased fungal mycosis (Mp-NCHU-124: 38% to 72% and Bb-NCHU-157: 20 to 62%), indicating the high compatibility of EPF with the non-ionic surfactant. Thus, the Silwet L-77+EPF combined formulation has potential for practical field application for FAW pest control and sustainable agriculture in the future.  相似文献   

18.
19.
Fruit-flies of the genus Drosophila are characterized by overwhelming variation in fertilization traits such as copulatory plug formation, sperm storage organ use, and nutritional ejaculatory donation. Despite extensive research on the genetic model Drosophila melanogaster, little is known about the molecular underpinnings of these interspecific differences. This study employs a proteomic approach to pin-point candidate seminal fluid proteins in Drosophila mojavensis, a cactophilic fruit-fly that exhibits divergent reproductive biology when compared to D. melanogaster. We identify several classes of candidate seminal fluid proteins not previously documented in the D. melanogaster male ejaculate, including metabolic enzymes, nutrient transport proteins, and clotting factors. Conversely, we also define 29 SFPs that are conserved despite >40 million years of Drosophila evolution. We discuss our results in terms of universal processes in insect reproduction, as well as the specialized reproductive biology of D. mojavensis.  相似文献   

20.
Chitin, the most abundant aminopolysaccharide in nature, is a rigid and resistant structural component that contributes to the mechanical strength of chitin-containing organisms. Chemically, it is a linear cationic heteropolysaccharide composed of N-acetyl-D-glucosamine and D-glucosamine units. The enzymatic degradation of chitin is performed by a chitinolytic system with synergistic and consecutive action. Diverse organisms (containing chitin or not) produce a great variety of chitinolytic enzymes with different specificities and catalytic properties. Their physiological roles involve nutrition, parasitism, chitin recycling, morphogenesis, and/or defense. Microorganisms, as the main environmental chitin degraders, constitute a very important natural source of chitinolytic enzymes. Nowadays, the most used method for pest and plant diseases control is the utilization of chemical agents, causative of significant environmental pollution. Social concern has generated the search for alternative control systems (i.e., biological control), which contribute to the generation of sustainable agricultural development. Interactions among the different organisms are the natural bases of biological control. Interest in chitinolytic enzymes in the field of biological control has arisen due to their possible involvement in antagonistic activity against pathogenic chitin-containing organisms. The absence of chitin in plants and vertebrate animals allows the consideration of safe and selective “target” molecules for control of chitin-containing pathogenic organisms. Fungi show appropriate characteristics as potential biological control agents of insects, fungi, and nematodes due to the production of fungal enzymes with antagonistic action. The antagonistic interactions between fungi and plant nematode parasites are among the most studied experimental models because of the high economic relevance. Fungi which target nematodes are known as nematophagous fungi. The nematode egg is the only structural element where the presence of chitin has been demonstrated. In spite of being one of the most resistant biological structures, eggs are susceptible to being attacked by egg-parasitic fungi. A combination of physical and chemical phenomena result in their complete destruction. The contribution of fungal chitinases to the in vitro rupture of the eggshell confirms their role as a pathogenic factor. Chitinases have been produced by traditional fermentation methods, which have been improved by optimizing the culture conditions for industrial processes. Although wild-type microorganisms constitute an alternative source of chitinolytic enzymes, the advances in molecular biology are allowing the genetic transformation of fungi to obtain strains with high capability as biocontrol agents. Simultaneously, a better understanding of rhizosphere interactions, additional to the discovery of new molecular biology tools, will allow the choosing of better alternatives for the biological control of nematodes in order to achieve an integrated management of the soil ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号