首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wolbachia manipulate insect host biology through a variety of means that result in increased production of infected females, enhancing its own transmission. A Wolbachia strain (wInn) naturally infecting Drosophila innubila induces male killing, while native strains of D. melanogaster and D. simulans usually induce cytoplasmic incompatibility (CI). In this study, we transferred wInn to D. melanogaster and D. simulans by embryonic microinjection, expecting conservation of the male-killing phenotype to the novel hosts, which are more suitable for genetic analysis. In contrast to our expectations, there was no effect on offspring sex ratio. Furthermore, no CI was observed in the transinfected flies. Overall, transinfected D. melanogaster lines displayed lower transmission rate and lower densities of Wolbachia than transinfected D. simulans lines, in which established infections were transmitted with near-perfect fidelity. In D. simulans, strain wInn had no effect on fecundity and egg-to-adult development. Surprisingly, one of the two transinfected lines tested showed increased longevity. We discuss our results in the context of host-symbiont co-evolution and the potential of symbionts to invade novel host species.  相似文献   

2.
Many species of Drosophila form conspecific pupa aggregations across the breeding sites. These aggregations could result from species-specific larval odor recognition. To test this hypothesis we used larval odors of D. melanogaster and D. pavani, two species that coexist in the nature. When stimulated by those odors, wild type and vestigial (vg) third-instar larvae of D. melanogaster pupated on conspecific larval odors, but individuals deficient in the expression of the odor co-receptor Orco randomly pupated across the substrate, indicating that in this species, olfaction plays a role in pupation site selection. Larvae are unable to learn but can smell, the Syn97CS and rut strains of D. melanogaster, did not respond to conspecific odors or D. pavani larval cues, and they randomly pupated across the substrate, suggesting that larval odor-based learning could influence the pupation site selection. Thus, Orco, Syn97CS and rut loci participated in the pupation site selection. When stimulated by conspecific and D. melanogaster larval cues, D. pavani larvae also pupated on conspecific odors. The larvae of D. gaucha, a sibling species of D. pavani, did not respond to D. melanogaster larval cues, pupating randomly across the substrate. In nature, D. gaucha is isolated from D. melanogaster. Interspecific hybrids, which result from crossing pavani female with gaucha males clumped their pupae similarly to D. pavani, but the behavior of gaucha female x pavani male hybrids was similar to D. gaucha parent. The two sibling species show substantial evolutionary divergence in organization and functioning of larval nervous system. D. melanogaster and D. pavani larvae extracted information about odor identities and the spatial location of congener and alien larvae to select pupation sites. We hypothesize that larval recognition contributes to the cohabitation of species with similar ecologies, thus aiding the organization and persistence of Drosophila species guilds in the wild.  相似文献   

3.
Genic variation in natural populations of Drosophila simulans was surveyed using allozymic and two-dimensional electrophoretic techniques. Consistent with some previous reports, allozymic heterozygosity appeared lower than in the sibling species D. melanogaster (0.07 vs. 0.16). No variation was detected by two-dimensional electrophoresis of 19 lines scored for 70 abundant proteins. This is consistent with reported reductions in estimates of genic heterozygosity by two-dimensional electrophoresis in D. melanogaster, Mus musculus, and man. Although the amount of intraspecific variation detected in abundant proteins was lower than that detected for allozymes in D. simulans and D. melanogaster, the genetic distances between the sibling species calculated from the two data sets are not significantly different (0.35 and 0.20). The allozyme and two-dimensional electrophoresis data confirmed the impression from other measures of genetic variation (mitochondrial DNA restriction maps and inversion polymorphisms) that D. simulans is substantially less variable than D. melanogaster.  相似文献   

4.
We investigated the role of Drosophila larva olfactory system in identification of congeners and aliens. We discuss the importance of these activities in larva navigation across substrates, and the implications for allocation of space and food among species of similar ecologies. Wild type larvae of cosmopolitan D. melanogaster and endemic D. pavani, which cohabit the same breeding sites, used species-specific volatiles to identify conspecifics and aliens moving toward larvae of their species. D. gaucha larvae, a sibling species of D. pavani that is ecologically isolated from D. melanogaster, did not respond to melanogaster odor cues. Similar to D. pavani larvae, the navigation of pavani female x gaucha male hybrids was influenced by conspecific and alien odors, whereas gaucha female x pavani male hybrid larvae exhibited behavior similar to the D. gaucha parent. The two sibling species exhibited substantial evolutionary divergence in processing the odor inputs necessary to identify conspecifics. Orco (Or83b) mutant larvae of D. melanogaster, which exhibit a loss of sense of smell, did not distinguish conspecific from alien larvae, instead moving across the substrate. Syn 97CS and rut larvae of D. melanogaster, which are unable to learn but can smell, moved across the substrate as well. The Orco (Or83b), Syn 97CS and rut loci are necessary to orient navigation by D. melanogaster larvae. Individuals of the Trana strain of D. melanogaster did not respond to conspecific and alien larval volatiles and therefore navigated randomly across the substrate. By contrast, larvae of the Til-Til strain used larval volatiles to orient their movement. Natural populations of D. melanogaster may exhibit differences in identification of conspecific and alien larvae. Larval locomotion was not affected by the volatiles.  相似文献   

5.
We investigated dispersal patterns of Drosophila larvae searchingfor pupation sites over three substrates to determine the roleof spatial heterogeneity and presence of other species on prepupationbehavior. We used D. melanogaster, D. hydei, and D. pavani whoseparents emerged from apples collected in one orchard. Each speciesshowed different preferences for substrates on which to pupate,particularly in the presence of another Drosophila species.Larval locomotion rate and turning behavior in D. melanogaster,D. hydei, and D. pavani were modified depending this upon thetype of substrate (agar and sand) on which the larvae crawled.These two behaviors are involved in dispersal and aggregationof pupae. Distance between pupae of the same species decreaseswhen larvae of another species pupate on the same substrate.Aggregated distributions over the substrates lead to patcheswith few or no individuals. These could serve as pupation sitesfor other Drosophila species that, in nature, also emerge fromsmall breeding sites.  相似文献   

6.
Insect cold tolerance varies at both the population and species levels. Carbohydrate cryoprotectants and membrane remodeling are two main mechanisms hypothesised to increase chilling tolerance in Drosophila melanogaster, as part of both long-term (i.e., evolutionary) change and rapid cold-hardening (RCH). We used cold-selected lines of D. melanogaster with and without a pre-exposure that induces RCH to test three hypotheses: (1) that increased cold tolerance would be associated with increased free glucose; (2) that increased cold tolerance would be associated with desaturation of membrane phospholipid fatty acids; and (3) that increased cold tolerance would be associated with a change in phospholipid head group composition. We used colourimetric assays to measure free glucose and a combination of thin layer chromatography-flame ionization detection and gas chromatography to measure membrane composition. We observed a consistent decrease in free glucose with RCH, and no relationship between free glucose and basal cold tolerance. Also, phospholipid head group ratios and fatty acid composition showed no change following an RCH treatment. Thus, we conclude that changes in free glucose and membrane composition are unlikely to be significant determinants of variation in cold tolerance of D. melanogaster.  相似文献   

7.
8.
9.
S. P. Roberts  M. E. Feder 《Oecologia》1999,121(3):323-329
We demonstrate that natural heat stress on wild larval Drosophila melanogaster results in severe developmental defects in >10% of eclosing adults, and that increased copy number of the gene encoding the major inducible heat shock protein of D. melanogaster, Hsp70, is sufficient to reduce the incidence of such abnormalities. Specifically, non-adult D. melanogaster inhabiting necrotic fruit experienced severe, often lethal heat stress in natural settings. Adult flies eclosing from wild larvae that had survived natural heat stress exhibited severe developmental anomalies of wing and abdominal morphology, which should dramatically affect fitness. The frequency of developmental abnormalities varied along two independent natural thermal gradients, exceeding 10% in adults eclosing from larvae developing in warm, sunlit fruit. When exposed to natural heat stress, D. melanogaster larvae with the wild-type number of hsp70 genes (n=10) developed abnormal wings significantly more frequently than a transgenic sister strain with 22 copies of the hsp70 gene. Received: 19 April 1999 / Accepted: 16 July 1999  相似文献   

10.
Recent studies under semi-natural conditions have revealed various unique features of activity/rest rhythms in Drosophilids that differ from those under standard laboratory conditions. An additional afternoon peak (A-peak) has been reported for Drosophila melanogaster and another species D. malerkotliana while D. ananassae exhibited mostly unimodal diurnal activity. To tease apart the role of light and temperature in mediating these species-specific behaviours of four Drosophilid species D. melanogaster, D. malerkotliana, D. ananassae, and Zaprionus indianus we simulated gradual natural light and/or temperature cycles conditions in laboratory. The pattern observed under semi-natural conditions could be reproduced in the laboratory for all the species under a variety of simulated conditions. D. melanogaster and D. malerkotliana showed similar patterns where as D. ananassae consistently exhibited predominant morning activity under almost all regimes. Z. indianus showed clearly rhythmic activity mostly when temperature cycles were provided. We find that gradually changing light intensities reaching a sufficiently high peak value can elicit A-peak in D. melanogaster, D. malerkotliana, and D. ananassae even at mild ambient temperature. Furthermore, we show that high mid-day temperature could induce A-peak in all species even under constant light conditions suggesting that this A-peak is likely to be a stress response.  相似文献   

11.
We investigated the existing susceptibility differences of the hazelnut weevil, Curculio nucum L. (Coleoptera:, Curculionidae) to entomopathogenic nematodes by assessing the main route of entry of the nematodes, Steinernema carpocapsae strain B14 and S. feltiae strain D114, into larvae and adult insects, as well as host immune response. Our results suggested that S. carpocapsae B14 and S. feltiae D114 primarily entered adult insects and larvae through the anus. Larvae were more susceptible to S. feltiae D114 than S. carpocapsae B14 and adults were highly susceptible to S. carpocapsae B14 but displayed low susceptibility to S. feltiae D114. Penetration rate correlated with nematode virulence. We observed little evidence that hazelnut weevils mounted any cellular immune response toward S. carpocapsae B14 or S. feltiae D114. We conclude the differential susceptibility of hazelnut weevil larvae and adults to S. carpocapsae B14 and S. feltiae D114 primarily reflected differences in the ability of these two nematodes to penetrate the host.  相似文献   

12.
13.
14.
Historically, studies of reptilian thermal biology have compared ambient temperatures (Ta) to body temperatures (Tb) from the animal under study, with Tb usually taken from the cloaca and various instruments being used to measure Tb. The advent of surgically implanted miniature temperature loggers has offered the opportunity to test the efficacy of cloacal Tb as a measurement in thermoregulatory studies. We expected that there was a difference between skin, cloacal, and core Tb's. Temperatures were measured from various positions on leopard tortoises (Stigmochelys pardalis) using thermocouples and miniature temperature loggers, including surgically implanted temperature loggers. Measurements of temperature from various positions on and in the tortoise were significantly different from Ta. Cloacal Tb's were significantly lower than all other body temperatures measured, and core Tb's were significantly different from cloacal Tb, skin and carapace temperatures. In addition, significant differences were found between measures of temperature from other parts of the body. The variations between core Tb, cloacal Tb and other measures of Tb indicated that there are large thermal gradients within the body of a relatively large tortoise at any given time with cloacal Tb not an accurate measure of core Tb.  相似文献   

15.
Programmed cell death (PCD) and phagocytotic activity of immune cells play a pivotal role in insect development. We examined the influence of Zn2+, an important element to fundamental biological processes, on phagocytosis and apoptosis of hemocytes in two fly species: Musca domestica and Drosophila melanogaster. Hemocytes were isolated from the third instar larvae of both species and treated for 3 h with zinc chloride solutions, containing 0.35 mM or 1.7 mM of Zn2+, and untreated as control. Phagocytotic activity of hemocytes was examined by flow cytometry after adding latex fluorescent beads to the medium, while apoptosis was evaluated by application of annexinV-FITC and pan-caspase-FITC inhibitor. Mitochondrial viability was determined by measuring resazurin absorbancy in the cell medium. The obtained results showed that Zn2+ increases phagocytosis and affects PCD of both species hemocytes but each in a different way. Zinc decreases fraction of annexin-positive hemocytes in M. domestica but increases it in D. melanogaster. The pan-caspase analysis revealed low and high activity of caspases in hemocytes of M. domestica and D. melanogaster, respectively. Zn2+ also decreased the viability of hemocyte mitochondria but only in D. melanogaster. It suggests that flies use different pathways of PCD, or that Zn plays a different role in this process in M. domestica than in D. melanogaster.  相似文献   

16.
Maternally transmitted endosymbiotic bacteria of the genus Spiroplasma associate with numerous insect species, including the genus Drosophila. Among the Spiroplasma strains associated with Drosophila, several manipulate their host??s reproduction by killing the male offspring of the infected females. Although the male-killing mechanism is not well understood, previous studies of non-native strains transferred to D. melanogaster (strain Oregon-R) indicate that the male-killing strain achieves higher densities than two non-male-killing strains. Whether this pattern of higher male-killing strain densities occurs in other host-symbiont strain combinations is not known. Herein, we used quantitative PCR to examine infection densities of one non-male-killing strain native to D. hydei (Hyd1), and two male-killing strains; one native to D. nebulosa (NSRO), and one native to D. melanogaster (MSRO; recently discovered), upon artificial transfer to D. melanogaster (strain Canton-S). Infection densities were examined at four weekly intervals in adult flies, across three consecutive generations following artificial transfer. Infection densities of the non-male-killing strain were significantly lower than those of the two male killers immediately after adult emergence. At later time points, however, the non-male-killing strain (Hyd1) is capable of proliferating to densities similar to those of the two male-killing strains (NSRO and MSRO) in D. melanogaster (Canton-S). We also examined the effect of co-infection by the heritable bacterium Wolbachia, on Spiroplasma densities and male-killing ability. Wolbachia had little to no effect of Spiroplasma densities, but the male-killing ability of MSRO was lower in the presence of Wolbachia. Generation post-infection had little effect on Spiroplasma densities, but affected the male-killing ability.  相似文献   

17.
Phenotypic plasticity of abdomen pigmentation was investigated in populations of the sibling species Drosophila melanogaster and D. simulans, living in sympatry in two French localities. Ten isofemale lines of each population and species were grown at different constant temperatures spanning their complete thermal range from 12 to 31°C. Genetic variability between isofemale lines was not affected by growth temperature, but was consistently less in D. simulans. For all traits, the dark pigmentation of the abdominal segments decreased according to growth temperature, in agreement with the thermal budget adaptive hypothesis. The shapes of the response curves were different between the abdominal segments, but for a given segment, quite similar in the two species. On average D. simulans was lighter than D. melanogaster, but the difference was mainly expressed at higher temperatures. An interesting result was the difference observed between the two localities: flies from the colder locality (Villeurbanne) were found to be darker than flies from the warmer locality (Bordeaux). Interestingly, this difference was expressed only at low temperatures, 21°C and below, that is, at temperatures encountered in natural conditions. This suggests an adaptive response resulting in a change of the shape of reaction norm and involving genotype-environment interactions. When comparing the genetic structure of geographic populations for quantitative traits, several laboratory environments should be preferred to a single one.  相似文献   

18.
Spiroplasma endosymbionts are maternally inherited microorganisms which infect many arthropod species. In some Drosophila species, it acts as a reproductive manipulator, spreading in populations by killing the sons of infected mothers. Distinct Drosophila melanogaster populations from Brazil exhibit variable male-killing Spiroplasma prevalences. In this study, we investigated the presence of variability for the male-killing phenotype among Drosophila and/or Spiroplasma strains and verified if it correlates with the endosymbiont prevalence in natural populations. For that, we analyzed the male-killing expression when Spiroplasma strains from different populations were transferred to a standard D. melanogaster line (Canton-S) and when a common Spiroplasma strain was transferred to different wild-caught D. melanogaster lines, both at optimal and challenging temperatures for the bacteria. No variation was observed in the male-killing phenotype induced by different Spiroplasma strains. No phenotypic variability among fly lines was detected at optimal temperature (23 °C), as well. Conversely, significant variation in the male-killing expression was revealed among D. melanogaster lines at 18.5 °C, probably caused by imperfect transmission of the endosymbiont. Distinct lines differed in their average sex ratios as well as in the pattern of male-killing expression as the infected females aged. Greater variation occurred among lines from one locality, although there was no clear correlation between the male-killing intensity and the endosymbiont prevalence in each population. Imperfect transmission or male killing may also occur in the field, thus helping to explain the low or intermediate prevalences reported in nature. We discuss the implications of our results for the dynamics of male-killing Spiroplasma in natural populations.  相似文献   

19.
We investigated pupa distributions of D. simulans, D. buzzatii, D. melanogaster, D. immigrans and D. hydei on a number of natural breeding sites. Pupae of all five species showed aggregated distributions, which prompted us to examine these aggregations in a more detail for two species that commonly co-occur in breeding sites, D. simulans and D. buzzatii. We found that pupae of both species tend to be aggregated in conspecific clusters. Subsequent experiments revealed that both species are attracted to the odors of other larvae, though only D. buzzatii differentiated between conspecifics and heterospecifics (they preferred conspecific). Furthermore, third instar larvae of both species preferred more alkaline substrates. Altogether, our results demonstrate that Drosophila species form conspecific pupa aggregations in natural breeding sites, and that pupation site selection depends on interactions among conspecific and heterospecific larvae and on chemical characteristics of the breeding sites.  相似文献   

20.
We evaluated the thermal biology of two sympatric saxicolous species of the genus Phymaturus, endemic from the Argentine Payunia region. Taking into account that the distributional range of Phymaturus roigorum (the largest species) is greater than the range of P. payuniae, we evaluated the habitat (type of rocks) used by these species. We recorded body temperature and operative temperatures in different habitats, and we determined the preferred body temperature in the laboratory. We compared the thermal quality of habitats occupied and not occupied by Phymaturus payuniae, and the accuracy and effectiveness of thermoregulation between species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号