首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chromatographic method for the specific determination of cellular low molecular mass thiols has been applied to human muscle tissue. The method is based on the derivatisation of thiols using monobromobimane, which is a specific reagent for the sulphydryl group. The glutathione and cysteine bimane adducts were separated by reversed-phase HPLC, whilst quantitation of the cysteine and glutathione adducts was achieved by fluorescence spectroscopy. The method was found to yield a quantitative recovery of glutathione (ca. 96%), to be sensitive (down to 20 pmol glutathione/per injection) and reveal a low intra-individual coefficient of variation (C.V. < 5%) of the glutathione concentrations in human skeletal muscle. The concentrations of reduced and total glutathione were 1320 ± 37 μmol/kg wet weight (mean ± S.E.M.) and 1525 ± 66 μmol/kg wet weight, respectively. The method was also applied to tissues from nine healthy volunteers to determine if fluctuations in glutathione level occurred over a 24-h period. No diurnal variation of glutathione level in human skeletal muscle was observed.  相似文献   

2.
This report describes a method for using selective cleavage of thioesters to allow differentiation between thioesters and disulfides. The method identifies thiol components (including glutathione, coenzyme A, and cysteine) of low-molecular-weight thioesters and disulfides in cell extracts, as well as thiols bound to protein via thioester or disulfide links. Thioesters were cleaved with 200 mM hydroxylamine under a nitrogen atmosphere in the presence of monobromobimane (mBBr), which forms a fluorescent derivative with the released thiol. For analysis of disulfides, thioesters were cleaved with hydroxylamine in the presence of N-ethylmaleimide to block released thiols: disulfides were then reduced with 10 mM dithiothreitol and subsequently labeled with mBBr. The bimane derivatives were identified and quantified using previously described HPLC methods (G. L. Newton, R. Dorian, and R. C. Fahey, 1981, Anal. Biochem. 114, 383-387). Traditional methods using dithiothreitol and sodium borohydride to cleave disulfides can also cleave thioesters and thus should not be used for specific analysis of disulfides.  相似文献   

3.
A thin-gel isoelectric focusing method has been developed for analysis of protein S-thiolation (formation of mixed disulfides with low molecular weight thiols). The method is rapid and it can be used with 3 to 5 micrograms of a pure protein, or 15 to 20 micrograms of tissue extract protein. It is possible to detect a modification of the protein sulfhydryl by either charged or uncharged thiols, and to determine the quantity of different S-thiolated protein species in a modified sample. The method was used to quantitate the amount of S-thiolation of phosphorylase b in a reaction with oxidized glutathione that produced four S-thiolated forms of the enzyme. The method was also used to detect S-thiolation of two proteins in a cardiac tissue extract treated with diamide. One of the protein bands was shown to be S-thiolated with both cysteine and glutathione, while the other band was S-thiolated only with glutathione.  相似文献   

4.
The thiol redox status of cultured human bronchial fibroblasts has been characterized at various growth conditions using thiol-reactive monobromobimane, with or without the combination of dithiotreitol, a strong reducing agent. This procedure has enabled measurement of the cellular content of reduced glutathione (GSH), total glutathione equivalents, cysteine, total cysteine equivalents, protein sulfhydryls, protein disulfides, and mixed disulfides. Passage of cells with trypsin perturbs the cellular thiol homeostasis and causes a 50% decrease in the GSH content, whereas the total cysteine content is subsequently increased severalfold during cell attachment. During subsequent culture, transient severalfold increased levels of GSH, protein-bound thiols, and protein disulfides are reached, whereas the total cysteine content gradually declines. These changes in the redox balance of both low-molecular-weight thiols and protein-bound thiols correlate with cell proliferation and mostly precede the major growth phase. When the onset of proliferation is inhibited by maintenance of cells in medium containing decreased amounts of serum, the GSH content remains significantly increased. Subsequent stimulation of growth by addition of serum results in decreased GSH levels at the onset of proliferation. In thiol-depleted medium, proliferation is also inhibited, whereas GSH levels are increased to a lesser extent than in complete medium. Exposure to buthionine sulfoximine inhibits growth, prevents GSH synthesis, and results in accumulation of total cysteine, protein-bound cysteine, and protein disulfides. For extracellular cystine, variable rates of cellular uptake correlate with the initial increase in the total cysteine content observed following subculture and with the GSH peak that precedes active proliferation. The results strongly suggest that specific fluctuations in the cellular redox balance of both free low-molecular-weight thiols and protein sulfhydryls are involved in growth regulation of normal human fibroblasts.  相似文献   

5.
Melanocytes contain several substances formed by the nucleophilic addition of cysteine to dopaquinone. 5-S-Cysteinyldopa is the quantitatively dominant catecholic amino acid belonging to this group of compounds. Glutathione is the thiol most abundantly present in all cells studied, and the reactivity of the SH-group of this tripeptide with dopaquinone is about one-third that of cysteine. However, the amount of glutathionyldopa is at least two orders of magnitude less than that of cysteinyldopa in the melanocyte. A rapid metabolism of glutathionyldopa has therefore been suggested as an explanation for the above-mentioned findings. The enzyme responsible for hydrolysis of the γ-glutamyl bond of glutathione, γ-glutamyltranspeptidase, is present in the melanocyte, but in small quantities. Furthermore, S-cysteinylglycinyldopa, which is the product of hydrolysis by γ-glutamyltranspeptidase, is found in only very small amounts. These facts taken together contradict the hypothesis that S-cysteinyldopas in the melanocyte are formed from S-glutathionyldopas. The present investigation on IGR1 melanoma cells was performed by in situ derivatization of thiols with monobromobimane. Quantitation of the stable bimane adducts of cysteine and glutathione was achieved by reverse-phase high-performance liquid chromatography with fluorimetric detection. The concentration of reduced cysteine in the melanocytes was found to be a few percent of that of reduced glutathione. The quantities of 5-S-cysteinyldopa, 5-S-glutathionyldopa, cysteine, and glutathione observed in the cultured melanoma cells could best be explained by a pronounced compartmentalization of cysteine within the melanocyte, with a high cysteine concentration at the site of the dopaquinone formation.  相似文献   

6.
A simple and specific method for analyzing thiols and disulfides on the basis of the reversibility of N-ethylmaleimide (NEM) alkylation of thiols is described. When the adduct of NEM and glutathione (GSH) was electrolyzed at neutral pH, all of the GSH was recovered. When the adduct was exposed to pH 11.0 for 15 min at 30 degrees C before electrolysis, GSH was not detected. The same behavior was observed after protein thiols reacted with NEM. This pH-dependent production of thiol from the adduct was used to assay GSH and oxidized glutathione in yeast cells, to assay sulfhydryl groups and disulfide bonds in authentic proteins, and to protect thiols from oxidation during enzymatic digestion of protein. This method is useful for assay of thiols and disulfides of both small and large molecules and can be used to identify labile thiols in biological samples that are oxidized during extraction procedures.  相似文献   

7.
An assay that measures the reduced, oxidized, and protein-bound forms of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma is described. Oxidized and protein-bound thiols are converted to their reduced counterparts by the use of NaBH4, and, following derivatization with monobromobimane (mBrB), the thiol-bimane adducts are quantified by reversed-phase ion-pair liquid chromatography and fluorescence detection. The presence of 50 microM dithioerythritol provides linearity of the standard curves at very low thiol concentrations. Selective determination of the oxidized forms was accomplished by blocking free sulfhydryl groups with N-ethylmaleimide (NEM) and excess NEM is inactivated by the subsequent addition of NaBH4. The reduced forms of the thiols in plasma were trapped with minimal oxidation by derivatizing blood samples at the time of collection. This was attained by drawing blood directly into tubes containing isotonic solutions of mBrB or NEM. The assay is sufficiently sensitive (less than 2 pmol) to detect the various forms of the four thiol compounds in human plasma. The analytical recovery of cysteine, cysteinylglycine, homocysteine, and glutathione was close to 100%, and the within-day precision corresponded to a coefficient of variation of 7, 8, 6, and 7%, respectively. The assay has been used to determine the various forms of the four thiol compounds in human plasma.  相似文献   

8.
The molecular structure of the nuclear matrix is still poorly understood. We have tried to assess which proteins are important structural elements by examining the process of stabilization of the nuclear matrix by sodium tetrathionate. Sodium tetrathionate stabilizes the nuclear matrix by oxidizing sulfhydryl groups to disulfides. We show that tetrathionate-stabilized matrices are disassembled in buffers containing SDS, indicating that the stabilized nuclear matrix is not a continuous network of cross-linked proteins. Using monobromobimane, a thiol-specific fluorescent reagent, we show that many protein thiols in the stabilized matrix are oxidized. By chromatography on activated thiol-Sepharose we estimated that about 50% of the matrix proteins had oxidized sulfhydryl groups. The protein composition of the material bound to activated thiol-Sepharose was similar to that of the not-bound material. A few proteins are highly enriched in the fraction that was bound to the column. This indicates that many matrix protein species are partially oxidized and that some proteins are completely oxidized. The oxidized protein thiols are found in relatively large complexes as determined by SDS gel-electrophoresis under nonreducing conditions. These results are interpreted in terms of protein-protein interactions in the matrix. The possible role of thiols and disulfides in the in vivo organization of the nucleus is discussed.  相似文献   

9.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

10.
A simple and specific method for analyzing thiols and disulfides on the basis of the reversibility of N-ethylmaleimide (NEM) alkylation of thiols is described. When the adduct of NEM and glutathione (GSH) was electrolyzed at neutral pH, all of the GSH was recovered. When the adduct was exposed to pH 11.0 for 15 min at 30°C before electrolysis, GSH was not detected. The same behavior was observed after protein thiols reacted with NEM. This pH-dependent production of thiol from the adduct was used to assay GSH and oxidized glutathione in yeast cells, to assay sulfhydryl groups and disulfide bonds in authentic proteins, and to protect thiols from oxidation during enzymatic digestion of protein. This method is useful for assay of thiols and disulfides of both small and large molecules and can be used to identify labile thiols in biological samples that are oxidized during extraction procedures.  相似文献   

11.

S-glutathionylated proteins (GSSP), i.e., protein-mixed disulfides with glutathione (GSH), are considered a suitable biomarker of oxidative stress. In fact, they occur within cells at low level and their concentration increases markedly under pro-oxidant conditions. Plasma is something different, since it is physiologically rich in S-thiolated proteins (RSSP), i.e., protein-mixed disulfides with various types of low molecular mass thiols (LMM-SH). However, albumin, which is largely the most abundant plasma protein, possesses a cysteine residue at position 34 that is mostly reduced (about 60%) under physiological conditions, but easily involved in the formation of additional RSSP in the presence of oxidants. The quantification of GSSP requires special attention to sample handling, since their level can be overestimated as a result of artefactual oxidation of GSH. We have developed the present protocol to avoid this methodological problem. Samples should be treated as soon as possible after their collection with the alkylating agent N-ethylmaleimide that masks –SH groups and prevents their oxidation. The GSH released from mixed disulfides by reduction with dithiothreitol is then labeled with the fluorescent probe monobromobimane and quantified by HPLC. The method can be applied to many different biological samples, comprising blood components, red blood cell plasma membrane, cultured cells, and solid organs from animal models.

  相似文献   

12.
Both metalloprotein and flavin-linked sulfhydryl oxidases catalyze the oxidation of thiols to disulfides with the reduction of oxygen to hydrogen peroxide. Despite earlier suggestions for a role in protein disulfide bond formation, these enzymes have received comparatively little general attention. Chicken egg white sulfhydryl oxidase utilizes an internal redox-active cystine bridge and a FAD moiety in the oxidation of a range of small molecular weight thiols such as glutathione, cysteine, and dithiothreitol. The oxidase is shown here to exhibit a high catalytic activity toward a range of reduced peptides and proteins including insulin A and B chains, lysozyme, ovalbumin, riboflavin-binding protein, and RNase. Catalytic efficiencies are up to 100-fold higher than for reduced glutathione, with typical K(m) values of about 110-330 microM/protein thiol, compared with 20 mM for glutathione. RNase activity is not significantly recovered when the cysteine residues are rapidly oxidized by sulfhydryl oxidase, but activity is efficiently restored when protein disulfide isomerase is also present. Sulfhydryl oxidase can also oxidize reduced protein disulfide isomerase directly. These data show that sulfhydryl oxidase and protein disulfide isomerase can cooperate in vitro in the generation and rearrangement of native disulfide pairings. A possible role for the oxidase in the protein secretory pathway in vivo is discussed.  相似文献   

13.
The behavior of glucose-6-phosphate dehydrogenase (G6PD)-deficient red cell membrane proteins upon treatment with diamide, the thiol-oxidizing agent (Kosower, N.S. et al. (1969) Biochem. Biophys. Res. Commun. 37, 593–596), was studied with the aid of monobromobimane, a fluorescent labeling agent (Kosower, N.S., Kosower, E.M., Newton, G.L. and Ranney, H.M. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 3382–3386) convenient for following membrane thiol group status. In diamide-treated G6PD-deficient red cells (and in glucose deprived normal cells), glutathione (GSH) is oxidized to glutathione disulfide (GSSG). When cellular GSH is absent, membrane protein thiols are oxidized with the formation of intrachain and interchain disulfides. Differences in sensitivity to oxidation are found among membrane thiols. In diamidetreated normal red cells, GSH is regenerated in the presence of glucose and membrane disulfides reduced. In G6PD-deficient cells, GSSG is not reduced, and the oxidative damage (disulfide formation) in the membrane not repaired. Reduction of membrane disulfides does occur after the addition of GSH to these membranes. A direct link between the thiol status of the cell membrane and cellular GSH is thereby established. GSH serves as a reductant of membrane protein disulfides, in addition to averting membrane thiol oxidation.  相似文献   

14.
The time for solubilization of the bovine zona pellucida in a hypotonic buffer containing 5% (v/v) beta-mercaptoethanol and 7 mol urea l-1 increased by 10% after fertilization. Coupling with a specific fluorescent thiol probe, monobromobimane (mBBr), was markedly greater in the zona pellucida of ovarian eggs compared with fertilized eggs, indicating that the cysteine residues in the zona pellucida of unfertilized eggs are oxidized to cystines during fertilization. After endo-beta-galactosidase digestion to remove N-acetyllactosamine repeats of the carbohydrate chains, three zona pellucida glycoproteins (ZPA, ZPB and ZPC) coupled with the fluorescent bimane groups were fractionated efficiently by reverse-phase HPLC. Estimation of bimane groups in the three components and SDS-PAGE revealed that intramolecular disulfide bonds in ZPA and intra- and intermolecular disulfide bonds in ZPB were formed during fertilization, but oxidation of cysteine residues in ZPC was low. Specific proteolysis of ZPA during fertilization was also observed. These results indicate that the formation of disulfide linkages together with specific proteolysis result in the construction of a rigid zona pellucida structure, which is responsible for hardening of the zona pellucida.  相似文献   

15.
The distribution of the glutathionyl moiety between reduced and oxidized forms in rat plasma was markedly different than that for the cysteinyl moiety. Most of the glutathionyl moiety was present as mixed disulfides with cysteine and protein whereas most of the cysteinyl moiety was present as cystine. Seventy percent of total glutathione equivalents was bound to proteins in disulfide linkage. The distribution of glutathione equivalents in the acid-soluble fraction was 28.0% as glutathione, 9.5% as glutathione disulfide, and 62.6% as the mixed disulfide with the cysteinyl moiety. In contrast, 23% of total cysteine equivalents was protein-bound. The distribution of cysteine equivalents in the acid-soluble fraction was 5.9% as cysteine, 83.1% as cystine, and 10.8% as the mixed disulfide with the glutathionyl moiety. A first-order decline in glutathione occurred upon in vitro incubation of plasma and was due to increased formation of mixed disulfides of glutathione with cysteine and protein. This indicates that plasma thiols and disulfides are not at equilibrium, but are in a steady-state maintained in part by transport of these compounds between tissues during the inter-organ phase of their metabolism. The large amounts of protein-bound glutathione and cysteine provide substantial buffering which must be considered in analysis of transient changes in glutathione and cysteine. In addition, this buffering may protect against transient thiol-disulfide redox changes which could affect the structure and activity of plasma and plasma membrane proteins.  相似文献   

16.
The acrosome of marsupial spermatozoa is a robust structure which, unlike its placental counterpart, resists disruption by detergent or freeze/thawing and does not undergo a calcium ionophore induced acrosome reaction. In this study specific fluorescent thiol labels, bromobimanes, were used to detect reactive thiols in the intact marsupial spermatozoon and examine whether disulfides play a role in the stability of the acrosome. Ejaculated brushtail possum (Trichosurus vulpecula) and tammar wallaby (Macropus eugenii) spermatozoa were washed by swim up and incubated with or without dithiothreitol (DTT) in order to reduce disulfides to reactive thiols. Spermatozoa were then washed by centrifugation and treated with monobromobimane (mBBr), a membranepermeable bromobimane, or with monobromotrimethylammoniobimane (qBBr), a membrane-impermeable bromobimane. Labelled spermatozoa were examined by fluorescence microscopy and sperm proteins (whole sperm proteins and basic nuclear proteins) were analysed by gel electrophoresis. The membrane-permeable agent mBBr lightly labelled the perimeter of the acrosome of non-DTT-treated possum and wallaby spermatozoa, indicating the presence of peri-acrosomal thiol groups. After reduction of sperm disulfides by DTT, mBBr labelled the entire acrosome of both species. The membrane-impermeable agent qBBr did not label any part of the acrosome in non-DTT or DTT-treated wallaby or possum spermatozoa. Thiols and disulfides are thus associated with the marsupial acrosome. They are not found on the overlying plasma membrane but are either in the acrosomal membranes and/or matrix. The sperm midpiece and tail were labelled by mBBr, with increased fluorescence observed in DTT-treated spermatozoa. The nucleus was not labelled in non-DTT or DTT-treated spermatozoa. Electrophoretic analysis confirmed the microscopic observations: Basic nuclear protein (protamines) lacked thiols or disulfide groups. Based on these findings, the stability of the marsupial acrosome may be due in part to disulfide stabilization of the acrosomal membranes and/or acrosomal matrix. In common with placental mammals, thiol and disulfide containing proteins appear to play a role in the stability of sperm tail structures. It was confirmed that the fragile marsupial sperm nucleus lacked thiols and disulfides. © 1994 Wiley-Liss, Inc.  相似文献   

17.
The derivatisation of intact rat hepatocytes with monobromobimane resulted in rapid labelling of accessible protein thiols in several subcellular fractions. The derivatisation procedure did not cause acute cytotoxicity, nor did it alter the buoyant densities of the fractions or their gross protein compositions. Quantitation of the fluorescence irreversibly associated with the fractions demonstrated considerable intracellular heterogeneity in this pool of thiols. Values were highest in cytosol (ca. 90 nmol/mg protein), intermediate in microsomes (ca. 65 nmol/mg protein) and mitochondria (ca. 45 nmol/mg protein) and lowest in a crude fraction containing both nuclei and plasma membrane (ca. 35 nmol/mg protein). Similar values were obtained from microsomes and cytosol derivatised after fractionation but there were significant increases of ca. 100% in corresponding values from isolated mitochondria and the nuclear/plasma membrane fraction. These results are discussed in terms of the dynamic fluxes in monobromobimane protein thiols during fractionation and the applicability of this noninvasive method to studies of the mechanism(s) of toxicity of reactive xenobiotics and the role(s) of protein thiols in normal cellular function.  相似文献   

18.
S-Nitrosothiols may cause many of the biological effects of NO and cellular effects have been attributed to S-nitrosylation of reactive protein sulfhydryls. This report examines the effect of S-nitrosothiols on the low-molecular-weight thiols and protein thiols in NIH/3T3 cells. A low concentration of S-nitrosocysteine increased the cysteine content of the cells, with no evidence of either low-molecular-weight thiol or protein S-nitrosylation. Millimolar amounts of S-nitrosocysteine produced S-nitrosoglutathione (GSNO), cysteinyl glutathione, cysteine, and glutathione disulfide. Large amounts of protein S-nitrosylation and lesser amounts of protein S-glutathiolation and S-cysteylation were also observed. GSNO and S-nitroso-N-acetylpenicillamine (SNAP) were much less effective than S-nitrosocysteine, but a combination of cysteine and GSNO produced S-nitrosocysteine-like effects. In cultured hepatocytes, millimolar S-nitrosocysteine was significantly less effective since the cells contained three times more glutathione than NIH/3T3 cells. Results suggest that S-nitrosocysteine enters cells intact, and low concentrations do not significantly increase cellular pools of S-nitrosothiol or S-nitrosylated protein. Millimolar concentrations of S-nitrosocysteine generate S-nitrosylated, S-glutathiolated, and S-cysteylated proteins, as well as a variety of low-molecular-weight disulfides and S-nitrosothiols.  相似文献   

19.
Low-molecular-mass thiols, such as glutathione (GSH), and their associated disulfides are ubiquitous in nature, and based upon the many known functions of these compounds, their identification and accurate measurement is essential. Our objectives were to develop a simple method for the simultaneous measurement of thiols and disulfides in biological samples using HPLC with dual electrochemical detection (HPLC-DED). Particular emphasis was placed on the applicability to a wide variety of important GSH-related thiols and disulfides, including γ-Glu-Cys, Cys-Gly, their disulfides, and the mixed disulfide of glutathione and cysteine (CSSG), validation on different types of biological samples, maintenance of chromatographic resolution and reproducibility with routine and extended use, and enhancement of assay sensitivity. To this end, optimal HPLC conditions including mobile phase, column, and electrode polishing procedures were established and the method was applied to, and validated on a variety of biological samples. This improved methodology should prove to be a useful tool in studies on the metabolism of GSH and other thiols and disulfides and their role in cellular homeostasis and disease processes.  相似文献   

20.
S-Thiolation is crucial for protection and regulation of thiol-containing proteins during oxidative stress and is frequently achieved by the formation of mixed disulfides with glutathione. However, many Gram-positive bacteria including Bacillus subtilis lack the low molecular weight (LMW) thiol glutathione. Here we provide evidence that S-thiolation by the LMW thiol cysteine represents a general mechanism in B. subtilis. In vivo labeling of proteins with [(35)S]cysteine and nonreducing two-dimensional PAGE analyses revealed that a large subset of proteins previously identified as having redox-sensitive thiols are modified by cysteine in response to treatment with the thiol-specific oxidant diamide. By means of multidimensional shotgun proteomics, the sites of S-cysteinylation for six proteins could be identified, three of which are known to be S-glutathionylated in other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号