首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The objective of this work was to synthesize cyclic prodrugs 1a-d of RGD peptidomimetics 2a-d with various ring sizes (n[CH2] = 1, 3, 5 and 7) and to evaluate the effect of ring size on their transport, physicochemical, enzymatic stability, and antithrombic properties. The syntheses of cyclic prodrugs 1a-d were achieved by converging two key intermediates, Boc-Phe-O-CH2-OCO-OpNP (5) and H2N-(CH2)n-CO-Asp(OBzl)-OTce (8a-d), to give linear precursors Boc-Phe-O-CH2-OCO-HN-(CH2)n-CO-Asp(OBzl)-OTce (9a-d). The N- and C-terminus protecting groups were removed from 9a-d to give 10a-d. Linear precursors 10a-d were cyclized, and the remaining Bzl-protecting group was removed to produce cyclic prodrugs 1a-d in around 20% overall yield. The linear RGD peptidomimetics (2a-d) were synthesized using standard Boc-amino acid chemistry by solution-phase method. Increasing the ring size by adding methylene groups also increases the hydrophobicity of the cyclic prodrugs and parent RGD peptidomimetics. The transport properties of cyclic prodrugs 1c and 1d were 2.6- and 4.4-fold better than those of parent compounds 2c and 2d, respectively. These results suggest that increasing the hydrophobicity of the cyclic prodrugs and parent RGD peptidomimetics enhanced their transport properties. The hydrodynamic radii of the cyclic prodrugs were also smaller than those of their respective parent compounds, suggesting that the change in size may contribute to their transport properties. The chemical stability of the cyclic prodrugs was affected by the ring size, and the cyclic prodrug with the larger ring size (i.e. 1d) was more stable than the smaller one (i.e. 1a). All the cyclic prodrugs were more stable at pH 4 than at pH 7 and 10. Prodrug-to-drug conversion could be induced by isolated esterase as well as esterase found in human plasma. An increase in the length of methylene group (n[CH2] = 1, 3, 5, 7) enhanced the antithrombic activity of the prodrugs and the parent compounds. In summary, the ring size of cyclic prodrugs affected their transport, physicochemical, and antithrombic properties.  相似文献   

2.
An esterase-sensitive amide prodrug 1 with a modified phenylpropionic acid linker was synthesized. The prodrug can be converted to the drug using isolated porcine esterase and human plasma. Paraoxon, an esterase inhibitor, can inhibit prodrug-to-drug conversion. The conversion of prodrug 1 was via phenol intermediate 9 followed by a lactonization reaction to give lactone 2 and the drug.  相似文献   

3.
In addition to our previously reported fluoro acrylamides Xa inhibitors 2 and 3, a series of potent and novel cyclic diimide amidine compounds has been identified. In efforts to improve their oral bioavailability, replacement of the amidine group with methyl amidrazone gives compounds of moderate potency (14, IC(50)=0.028 microM). In the amidoxime prodrug approach, the amidoxime compounds show good oral bioavailability in rats and dogs. High plasma level of prodrug 26 and significant concentration of active drug 26a were obtained upon oral administration of prodrug 26 in rats.  相似文献   

4.
An 8,5-fused bicyclic peptidomimetic ring system generated by a stereoselective ring metathesis reaction was elaborated into potent inhibitors of interleukin-1beta converting enzyme (ICE, caspase-1). Multiple compounds were found that exhibited ICE IC50 values < 10 nM and were selective over caspase-3 and caspase-8. These active analogs generally possessed good activity (IC50 values < 100 nM) in a whole cell assay measuring IL-1beta production. Pharmacokinetic analysis of the ethyl acetal prodrug form of a selected active lead revealed a compound with a reasonable plasma half-life (1.1 h) and good oral bioavailability (30%).  相似文献   

5.
A novel group of hybrid nitric oxide-releasing anti-inflammatory drugs (11) possessing a 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate, or 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate, nitric oxide (.NO) donor moiety attached via a one-carbon methylene spacer to the carboxylic acid group of (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acids were synthesized. These ester prodrugs (11) all exhibited in vitro inhibitory activity against the cyclooxygenase-2 (COX-2) isozyme (IC(50)=0.94-31.6 microM range). All compounds released .NO upon incubation with phosphate buffer (PBS) at pH 7.4 (3.2-11.3% range). In comparison, the percentage of .NO released was significantly higher (48.6-75.3% range) when these hybrid ester prodrugs were incubated in the presence of rat serum. These incubation studies suggest that both .NO and the parent anti-inflammatory (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acid would be released upon in vivo cleavage by non-specific serum esterases. O(2)-[(E)-2-(4-Acetylaminophenyl)-3-(4-methanesulfonylphenyl)acryloyloxymethyl]-1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (11f) is a moderately potent (IC(50)=0.94 microM) and selective (SI>104) COX-2 inhibitor that released 73% of the theoretical maximal release of two molecules of .NO/molecule of the parent hybrid ester prodrug upon incubation with rat serum. Hybrid ester .NO-donor prodrugs offer a potential drug design concept for the development of anti-inflammatory drugs that are devoid of adverse ulcerogenic and/or cardiovascular side effects.  相似文献   

6.
Cantharidin and its analogues have been of considerable interest as potent inhibitors of the serine/threonine protein phosphatases 1 and 2A (PP1 and PP2A). However, limited modifications to the parent compounds is tolerated. As part of an on-going study we have developed a new series of cantharidin analogues, the cantharimides. Inhibition studies indicate that cantharimides possessing a D- or L-histidine, are more potent inhibitors of PP1 and PP2A (PP1 IC(50)=3.22+/-0.7 microM; PP2A IC(50)=0.81+/-0.1 microM and PP1 IC(50)=2.82+/-0.6 microM; PP2A IC(50)=1.35+/-0.3 microM, respectively) than norcantharidin (PP1 IC(50)=5.31+/-0.76 microM; PP2A IC(50)=2.9+/-1.04 microM) and essentially equipotent with cantharidin (PP1 IC(50)=3.6+/-0.42 microM; PP2A IC(50)=0.36+/-0.08 microM). Cantharimides with non-polar or acidic amino acid residues are only poor inhibitors of PP1 and PP2A.  相似文献   

7.
This paper describes the design, synthesis and pharmacological evaluation of new N-acylhydrazone (NAH) compounds, belonging to the N-substituted-phenyl-1,2,3-triazole-4-acylhydrazone class (2a-p). Classical heteroaromatic ring bioisosterism strategies were applied to the previously reported N-phenylpyrazolyl-4-acylhydrazone derivative 1, elected as lead-compound due to its important anti-aggregating profile on arachidonic acid induced platelet aggregation (IC(50)=24+/-0.5 micro M), from which emerge this new series 2. These new compounds 2a-p were readily synthesized, characterized and tested on platelet aggregation assays induced by collagen (5 micro g/mL), ADP (5 micro M) and arachidonic acid (100 micro M) in rabbit citrated platelet-rich plasma. Compounds 2b, 2d, and 2h were found to be the most potent, exhibiting a significant antiplatelet activity on arachidonic acid- and collagen-induced platelet aggregation. In addition, these new antiplatelet agents are free of gastric ulcerogenic effect and presented discrete anti-inflammatory and analgesic properties. The N-para-chlorophenyltriazolyl-4-acylhydrazone compound 2h produced the highest inhibitory effect on collagen (IC(50)=21.6+/-0.4 micro M) and arachidonic acid-induced platelet aggregation (IC(50)=2.2+/-0.06 micro M), suggesting that the nature of the substituent on the phenyl ring of the N-heteroaromatic system of NAH moiety may be an important structural requirement for the improvement of antiplatelet activity, in comparison with lead-series 1.  相似文献   

8.
Both of aminopeptidase N (APN) and matrix metalloproteinase (MMP) are essential metallopeptidases in the development of tumor invasion and angiogenesis. Novel potent peptidomimetic inhibitors, containing 3-galloylamido-N'-substituted-2,6-piperidinedione-N-acetamide, have been designed and synthesized according to the conformational constraint strategy. The preliminary biological test showed that most of the compounds displayed high inhibitory activity against MMP-2 and low activity against APN except compounds 6 (IC(50)=3.1microM) and 4l (IC(50)=5.2microM) which exhibit similar potency to Bestatin (IC(50)=2.4microM).  相似文献   

9.
Structure-based design, synthesis, and biological evaluation of a series of peptidomimetic beta-secretase inhibitors incorporating hydroxyethylamine isosteres are described. We have identified inhibitor 24 which has shown exceedingly potent activity in memapsin 2 enzyme inhibitory (K(i) 1.8 nM) and cellular (IC(50)=1 nM in Chinese hamster ovary cells) assays. Inhibitor 24 has also shown very impressive in vivo properties (up to 65% reduction of plasma A beta) in transgenic mice. The X-ray structure of protein-ligand complex of memapsin 2 revealed critical interactions in the memapsin 2 active site.  相似文献   

10.
Stampidine [2',3'-didehydro-2',3'-dideoxythymidine 5'-[p-bromophenyl methoxyalaninyl phosphate], a prodrug of stavudine (STV/d4T) with improved anti-HIV activity, is undergoing development as a novel nonspermicidal microbicide. Here, we report the stability of stampidine as a function of pH, preparation of a novel thermoreversible ovule formulation for mucosal delivery, its dissolution profile in synthetic vaginal fluid, and its mucosal toxicity potential as well as systemic absorption in the rabbit model. Stampidine was most stable under acidic conditions. Stampidine was solubilized in a thermoreversible ovule formulation composed of polyethylene glycol 400, polyethylene glycol fatty acid esters, and polysorbate 80. Does were exposed intravaginally for 14 days to an ovule formulation with and without 0.5%, 1%, or 2% stampidine corresponding to 1 x 107- to 4 x 107-fold higher than its in vitro anti-HIV IC50 value. Vaginal tissues harvested on Day 15 were evaluated for mucosal toxicity and cellular inflammation. Additionally, does were exposed intravaginally to stampidine, and plasma collected at various time points was assayed by analytical HPLC for the prodrug and its bioactive metabolites. Stampidine did not cause mucosal inflammation. The vaginal irritation scores for 0.5-2% stampidine were within the acceptable range for clinical trials. The prodrug and its major metabolites were undetectable in the blood plasma. The marked stability of stampidine at acidic pH, its rapid spreadability, together with its lack of mucosal toxicity or systemic absorption of stampidine via a thermoreversible ovule may provide the foundation for its clinical development as an easy-to-use, safe, and effective broad-spectrum anti-HIV microbicide without contraceptive activity.  相似文献   

11.
To improve the low water-solubility of HIV protease inhibitors, we synthesized water-soluble prodrugs of KNI-727, a potent small-sized dipeptide-type HIV-1 protease inhibitor consisting of an Apns-Dmt core (Apns; allophenylnorstatine, Dmt; (R)-5,5-dimethyl-1,3-thiazolidine-4-carboxylic acid) as inhibitory machinery. These prodrugs contained an O-acyl peptidomimetic structure with an ionized amino group leading to an increase in water-solubility, and were designed to regenerate the corresponding parent drugs based on the O-->N intramolecular acyl migration reaction via a five-membered ring intermediate at the alpha-hydroxy-beta-amino acid residue, that is Apns. The synthetic prodrug 3a improved the water-solubility (13 mg/mL) more than 8000-fold in comparison with the parent compound, which is the practically acceptable value as water-soluble drug. Furthermore, to understand the structural effects of the O-acyl moiety on the migration rate, we evaluated several phenylacetyl-type and benzoyl-type prodrugs. These prodrugs were stable as an HCl salt and in a strongly acidic solution corresponding to gastric juice (pH 2.0), and could be converted to the parent compounds promptly under aqueous conditions from slightly acidic to basic pH at 37 degrees C.  相似文献   

12.
To improve the low water-solubility of HIV protease inhibitors, we synthesized water-soluble prodrugs of KNI-272 and KNI-279 which are potent HIV-1 protease inhibitors consisting of an Apns–Thz core structure (Apns; allophenylnorstatine, Thz; thiazolidine-4-carboxylic acid) as an inhibitory machinery. The prodrugs, which contained an O-acyl peptidomimetic structure with an ionized amino group leading to the increase of water-solubility, were designed to regenerate the corresponding parent drugs based on the ON intramolecular acyl migration reaction at the -hydroxy-β-amino acid residue, that is allophenylnorstatine. The synthetic prodrugs 3, 4, 6, and 7 improved the water-solubility (>300 mg/mL) more than 4000-fold in comparison with the parent compounds, which is the practically acceptable value as water-soluble drugs. These prodrugs were stable as an HCl salt and in a strongly acidic solution corresponding to gastric juice (pH 2.0), and could be converted to the parent compounds promptly in the aqueous condition from slightly acidic to basic pH at 37 °C, with the suitable migration rate, via a five-membered ring intermediate. Using a similar method, we synthesized a prodrug (12) of ritonavir, a clinically useful HIV-1 protease inhibitor as an anti-AIDS drug. In contrast to the prodrugs 3, 4, 6, and 7, the prodrug 12 was very slowly converted to ritonavir probably through a six-membered ring intermediate, with the t1/2 value of 32 h that may not be suitable for practical use.  相似文献   

13.
A new class of hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrugs (NONO-coxibs 12a-b) wherein an O(2)-acetoxymethyl 1-(2-carboxypyrrolidin-1-yl)diazen-1-ium-1,2-diolate (11, O(2)-acetoxymethyl PROLI/NO) NO-donor moiety was covalently coupled to the bromomethyl group of 5-(4-bromomethylphenyl)-1-(4-aminosulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (9a), and its methanesulfonyl analog (9b), were synthesized. The diazen-1-ium-1,2-diolate compounds 12a-b released a low amount of NO upon incubation with phosphate buffer (PBS) at pH 7.4 (6.1-8.2% range). In comparison, the percentage NO released was significantly higher (76-77% of the theoretical maximal release of two molecules of NO/molecule of the parent hybrid ester prodrug) when the diazen-1-ium-1,2-diolate ester prodrugs 12a-b were incubated in the presence of rat serum. These incubation studies suggest that both NO and the anti-inflammatory 5-(4-hydroxymethylphenyl)-1-(4-aminosulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (10a), and its methanesulfonyl analog (10b), would be released from the parent NONO-coxib 12a or 12b upon in vivo cleavage by non-specific serum esterases. The hydroxymethyl compounds 10a-b were weak inhibitors of the cyclooxygenase-1 (COX-1) and COX-2 isozymes (IC(50)=3.7-10.5 microM range). However, the hydroxymethyl compounds 10a-b and the parent NONO-coxibs 12a-b exhibited good AI activities (ED(50)=76.7-111.6 micromol/kg po range) that were greater than that exhibited by the reference drugs aspirin (ED(50)=710 micromol/kg po) and ibuprofen (ED(50)=327 micromol/kg po), but less than that of celecoxib (ED(50)=30.9mumol/kg po). These studies indicate hybrid ester AI/NO-donor prodrugs (NONO-coxibs) constitutes a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.  相似文献   

14.
A new group of hybrid nitric oxide-releasing anti-inflammatory drugs wherein an O(2)-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (11a-d), or 2-nitrooxyethyl (12a-d), (*)NO-donor moiety is attached directly to the carboxylic acid group of (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acids were synthesized. The 2-nitrooxyethyl ester prodrugs (12a-d) all exhibited in vitro inhibitory activity against the cyclooxygenase-2 (COX-2) isozyme (IC(50)=0.07-2.8 microM range). All compounds released a low amount of (*)NO upon incubation with phosphate buffer (PBS) at pH 7.4 (1.0-4.8% range). In comparison, the percentage (*)NO released was significantly higher (76.2-83.0% range) when the diazen-1-ium-1,2-diolate ester prodrugs were incubated in the presence of rat serum, or moderately higher (7.6-10.1% range) when the nitrooxyethyl ester prodrugs were incubated in the presence of L-cysteine. These incubation studies suggest that both (*)NO and the parent anti-inflammatory (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acid would be released upon in vivo cleavage by non-specific serum esterases in the case of the diazen-1-ium-1,2-diolate esters (11a-d), or interaction with systemic thiols in the case of the nitrate esters (12a-d). O(2)-Acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (E)-3-(4-methanesulfonylphenyl)-2-phenylacrylate (11a) released 83% of the theoretical maximal release of 2 molecules of (*)NO/molecule of the parent hybrid ester prodrug upon incubation with rat serum. Hybrid ester anti-inflammatory/(*)NO donor prodrugs offer a potential drug design concept targeted toward the development of anti-inflammatory drugs that are devoid of adverse ulcerogenic and/or cardiovascular effects.  相似文献   

15.
Grieco P  Cai M  Mayorov AV  Trivedi D  Hruby VJ 《Peptides》2006,27(2):472-481
Cyclic melanotropin peptides, designed with an aromatic amino acid substitution at the N-terminal position of the MT-II-type scaffold, were prepared by solid-phase peptide synthesis and evaluated for their ability to bind to and activate human melanocortin-1, -3, -4, and -5 receptors. The structure-activity studies of these MT-II analogues have identified a selective antagonist at the hMC4R (H-Phe-c[Asp-Pro-d-Nal(2')-Arg-Trp-Gly-Lys]-NH(2), pA(2)=8.7), a selective partial agonist at the hMC4R (H-d-Nal(2')-c[Asp-Pro-d-Phe-Arg-Trp-Gly-Lys]-NH(2), IC(50)=11nM, EC(50)=56nM), and a selective partial agonist at the hMC3R (H-d-Phe-c[Asp-Pro-d-Phe-Arg-Trp-Lys]-NH(2), IC(50)=3.7nM, EC(50)=4.9nM). Aromatic amino acid substitution at the N-terminus in conjuction with the expansion of the 23-membered cyclic lactam MT-II scaffold to a 26-membered scaffold by addition of a Gly residue in position 10 leads to melanotropin peptides with enhanced receptor selectivity.  相似文献   

16.
2',6'-Dimethyl substitution of the Tyr(1) residue in opioid agonist peptides and deletion of the N-terminal amino group, as achieved by replacement of Tyr(1) with 3-(2,6-dimethyl-4-hydroxyphenyl)propanoic acid (Dhp), have been shown to produce opioid antagonists. To examine the effect of beta-methylation of Dhp(1) in opioid peptides on the activity profile, stereoselective syntheses of (3S)- and (3R)-3-methyl-3-(2,6-dimethyl-4-hydroxyphenyl)propanoic acid [(3S)- and (3R)-Mdp] were carried out. In comparison with the cyclic parent antagonist peptide Dhp-c[D-Cys-Gly-Phe(pNO(2))-D-Cys]NH(2), the methylated analogue (3S)-Mdp-c[D-Cys-Gly-Phe(pNO(2))-D-Cys]NH(2) showed higher micro, delta and kappa antagonist potencies in functional assays and higher binding affinities for micro, delta and kappa opioid receptors (K(i)(micro)=2.03 nM; K(i)(delta)=2.34 nM; K(i)(kappa)=49.5 nM), whereas the corresponding (3R)-Mdp(1)-analogue was less potent by 1-2 orders of magnitude.  相似文献   

17.
2-Chloroethylphosphonic acid (ethephon) as the dianion phosphorylates butyrylcholinesterase (BChE) at its active site. In contrast, the classical organophosphorus esterase inhibitors include substituted-phenyl dialkylphosphates (e.g., paraoxon) with electron-withdrawing aryl substituents. The chloroethyl and substituted-phenyl moieties are combined in this study as 2-chloro-1-(substituted-phenyl)ethylphosphonic acids (1) to define the structure--activity relationships and mechanism of BChE inhibition by ethephon and its analogues. Phenyl substituents considered are 3- and 4-nitro, 3- and 4-dimethylamino, and 3- and 4-trimethylammonium. Phosphonic acids were synthesized via the corresponding O,O-diethyl phosphonate precursors followed by deprotection with trimethylsilyl bromide. They decompose under basic conditions about 100-fold faster than ethephon to yield the corresponding styrene derivatives. Electron-withdrawing substituents on the phenyl ring decrease the hydrolysis rate while electron-donating substituents increase the rate. The 4-trimethylammonium analogue has the highest affinity (K(i)=180 microM) and potency (IC(50)=19 microM) in first binding reversibly at the substrate site (possibly with stabilization in a dianion--monoanion environment) and then progressively and irreversibly inhibiting the enzyme activity. These observations suggest dissociation of chloride as the first and rate-limiting step both in the hydrolysis and by analogy in phosphorylation of BChE by bound at the active site.  相似文献   

18.
The Arg-Gly-Asp (RGD) sequence is a universal cell-recognition site of various extracellular proteins that interact with integrin cell-surface receptors. In order to design low-molecular-mass RGD protein antagonists, the determination of the biologically active conformation is a prerequisite. We present a method that yields detailed insight into the steric factors which govern the binding of the ligands to their receptors by systematically scanning the conformational space accessible for the tripeptide sequence RGD. The investigation is based on the conformationally controlled design of homodetic cyclic oligopeptides and their structural determination, coupled with biological assays. For this purpose, a whole set of cyclic pentapeptides and hexapeptides has been synthesized and their three-dimensional structures in solution analyzed by modern two-dimensional NMR techniques in combination with restrained and free molecular dynamics simulations. Their biological activity was compared with that of linear GRGDS in inhibition assays of tumor cell adhesion to laminin P1 and vitronectin substrates. An up to 100-fold, and in part selective, increase in activity was observed for two cyclic pentapeptides. Most other peptides showed a decreased activity which, however, was useful to correlate activity with rather small variations in conformation. Detailed comparative studies of the systematically designed conformations and the corresponding anti-adhesive activities offer an access to lead structures for a rational indirect drug design of peptide and peptidomimetic pharmaceuticals with strong interfering activity for integrin-mediated cell-cell and cell-matrix interactions.  相似文献   

19.
Fourteen modified norcantharidin analogues have been synthesised and screened for their ability to inhibit the serine/threonine protein phosphatases 1 and 2A. The most potent compounds found were 10 (PP1 IC(50)=13+/-5 microM; PP2A IC(50)=7+/-3 microM) and 16 (PP1 IC(50)=18+/-8 microM; PP2A IC(50)=3.2+/-0.4 microM). Overall, only analogues possessing at least one acidic residue at the former anhydride warhead displayed any PP1 or PP2A inhibitory action. The ability of these analogues to inhibit PP1 and PP2A correlates well with their observed anti-cancer activity against a panel of five cancer cell lines: A2780 (human ovarian carcinoma), G401 (human kidney carcinoma), HT29 (human colorectal carcinoma), H460 (human lung carcinoma) and L1210 (murine leukemia).  相似文献   

20.
Cyclic nucleotide phosphodiesterase activity of human peripheral blood mononuclear cells was significantly increased following a short (30 min) incubation with the mitogenic lectin Concanavalin A. Con A stimulated phosphodiesterase activity to the same extent whatever the subcellular compartment (homogenate, cytosol or pellet). Further separation of the Con A-activated mononuclear cells into lymphocyte-enriched and monocyte-enriched populations showed that the Con A-induced increase of phosphodiesterase activity exclusively affected the lymphocyte-enriched population. In lymphocytes, cyclic GMP phosphodiesterase activity was more importantly enhanced by Con A (+275%) than cyclic AMP phosphodiesterase activity (+75%). The increase of both activities occurred as early as from 10 min of Con A incubation and proved to be maximal with Con A doses of 2.5 and 5 micrograms per 10(6) cells, lower and higher doses being less effective. Inhibition experiments with reference inhibitors suggested that, among the high affinity phosphodiesterase isoforms, the cyclic GMP-inhibited enzyme might be more selectively enhanced by Con A than the cyclic AMP-specific, Rolipram-sensitive one. The non-mitogenic lectin Helix pomatia hemagglutinin, was not able to enhance cyclic nucleotide phosphodiesterase activity of human mononuclear cells whereas anti-CD3 monoclonal antibody, although being less effective than Con A, exhibited a significant stimulatory effect. Putting together these results suggest that the early increase in phosphodiesterase activity might be a normal step involved in the mitogenic activation of human lymphocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号