首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolite euplotin C (EC), isolated from the marine ciliate Euplotes crassus, is a powerful cytotoxic and pro-apoptotic agent in tumour cell lines. For instance, EC induces the rapid depletion of ryanodine Ca2+ stores, the release of cytochrome c from the mitochondria, and the activation of caspase-3, leading to apoptosis. The purpose of this study was to gain further insight into the mechanisms of EC-induced apoptosis in rat pheochromocytoma PC12 cells. We found that EC increases Bax/Bcl-2 ratio and that Bax is responsible of the EC-induced dissipation of the mitochondrial membrane potential (Δψm). In addition, EC induces the generation of reactive oxygene species (ROS) without involvement of p53. The inhibition of ROS generation prevents, at least in part, the pro-apoptotic effects of EC as well as the effects of EC on Bax, Δψm and intracellular free Ca2+, indicating a cross-talk between different pathways. However, definition of the effector cascade turns out to be more complex than expected and caspase-independent mechanisms, acting in parallel with caspases, should also be considered. Among them, EC increases the expression/activity of calpains downstream of ROS generation, although calpains seem to exert protective effects. D. Cervia and M. Garcia-Gil equally contributed to the work.  相似文献   

2.
Herein, we investigated the protective effect of Salvia sahendica against H2O2-induced cell death in rat pheochromocytoma (PC12) cells. Our data show that S. sahendica blocks apoptosis pathway by inhibition of cytochrome c release from mitochondria and leakage of calcium from endoplasmic reticulum. It also activates/inactivates two members of Bcl-2 family, Bax and Bcl-2. Bax inhibition and Bcl-2 activation suppress release of cytochrome c from mitochondria that prevents cleavage of caspase-3. Besides S. sahendica suppresses ER stress via attenuation of intracellular levels of calcium. Suppression of ER stress decreased calpain activation and subsequently cleavage of caspase-12. Altogether, these results indicate that S. sahendica protects PC12 cells treated with H2O2 via suppression of upstream factors of apoptosis pathway. While oxidative stress is an early event in Alzheimer disease, it seems that S. sahendica prevents deleterious effects of reactive oxygen species by stabilizing mitochondrial membranes and inhibiting ER stress.  相似文献   

3.
Nervous necrosis virus (NNV)-induced, host cell apoptosis mediates secondary necrosis by an ill-understood process. In this study, redspotted grouper nervous necrosis virus (RGNNV) is shown to induce mitochondria-mediated necrotic cell death in GL-av cells (fish cells) via cytochrome c release, and anti-apoptotic proteins are shown to protect these cells from death. Western blots revealed that cytochrome c release coincided with disruption of mitochondrial ultrastructure and preceded necrosis, but did not correlate with caspases activation. To identify the mediator(s) of this necrotic process, a protein synthesis inhibitor (cycloheximide; CHX; 0.33 μg/ml) was used to block cytochrome c release as well as PS exposure and mitochondrial membrane permeability transition pore (MMP) loss. CHX (0.33 μg/ml) completely blocked viral protein B2 expression, and partly blocked protein A, protein α, and a pro-apoptotic death protein (Bad) expression. Overexpression of B2 gene increased necrotic-like cell death up to 30% at 48 h post-transfection, suggesting that newly synthesized protein (B2) may be involved in this necrotic process. Finally, necrotic death was prevented by overexpression of Bcl-2 family proteins, zfBcl-xL and xfMcl-1a. Thus, new protein synthesis and release of cytochrome c are required for RGNNV-induced necrotic cell death, which can be blocked by anti-apoptotic Bcl-2 members. J.-L. Wu and J.-R. Hong contributed equally to the research.  相似文献   

4.
Hepatocellular carcinoma is one of the most common and deadly forms of human malignancies. JS‐K, O2‐(2, 4‐dinitrophenyl) 1‐ [(4‐ethoxycarbonyl) piperazin‐1‐yl] diazen‐1‐ium‐1, 2‐diolate, has the ability to induce apoptosis of tumor cell lines. In the present study, JS‐K inhibited the proliferation of HepG2 cells in a time‐ and concentration‐dependent manner and significantly induced apoptosis. JS‐K enhanced the ratio of Bax‐to‐Bcl‐2, released of cytochrome c (Cyt c) from mitochondria and the activated caspase‐9/3. JS‐K caused an increasing cytosolic Ca2+ and the loss of mitochondrial membrane potential. Carboxy‐PTIO (a NO scavenger) and BAPTA‐AM (an intracellular Ca2+ chelator) significantly blocked an increasing cytosolic Ca2+ in JS‐K‐induced HepG2 cells apoptosis, especially Carboxy‐PTIO. Meanwhile, Carboxy‐PTIO and BAPTA‐AM treatment both attenuate JS‐K‐induced apoptosis through upregulation of Bcl‐2, downregulation of Bax, reduction of Cyt c release from mitochondria to cytoplasm and inactivation of caspase‐9/3. In summary, JS‐K induced HepG2 cells apoptosis via Ca2+/caspase‐3‐mediated mitochondrial pathway.  相似文献   

5.

Background  

Mitochondria are dynamic organelles that move along actin filaments, and serve as calcium stores in plant cells. The positioning and dynamics of mitochondria depend on membrane-cytoskeleton interactions, but it is not clear whether microfilament cytoskeleton has a direct effect on mitochondrial function and Ca2+ storage. Therefore, we designed a series of experiments to clarify the effects of actin filaments on mitochondrial Ca2+ storage, cytoplasmic Ca2+ concentration ([Ca2+]c), and the interaction between mitochondrial Ca2+ and cytoplasmic Ca2+ in Arabidopsis root hairs.  相似文献   

6.
In this study, the effect of aucubin on H2O2-induced apoptosis was studied by using a rat pheochromocytoma (PC12) cell line. We have analyzed the apoptosis of H2O2-induced PC12 cells, H2O2-induced apoptosis appeared to correlate with lower Bcl-2 expression, higher Bax expression and sequential activation of caspase-3 leading to cleavage of poly-ADP-ribose polymerase (PARP). Aucubin not only inhibited lower Bcl-2 expression, high Bax expression, but also modulated caspase-3 activation, PARP cleavage, and eventually protected against H2O2-induced apoptosis. These results indicated that aucubin can obstruct H2O2-induced apoptosis by regulating of the expression of Bcl-2 and Bax, as well as suppression of caspases cascade activation.  相似文献   

7.
Mitochondria in Ca2+ Signaling and Apoptosis   总被引:8,自引:0,他引:8  
Cellular Ca2+ signals are crucial in the control of most physiological processes, cell injuryand programmed cell death; mitochondria play a pivotal role in the regulation of such cytosolicCa2+ ([Ca2+]c) signals. Mitochondria are endowed with multiple Ca2+ transport mechanismsby which they take up and release Ca2+ across their inner membrane. These transport processesfunction to regulate local and global [Ca2+]c, thereby regulating a number of Ca2+-sensitivecellular mechanisms. The permeability transition pore (PTP) forms the major Ca2+ effluxpathway from mitochondria. In addition, Ca2+ efflux from the mitochondrial matrix occursby the reversal of the uniporter and through the inner membrane Na+/Ca2+ exchanger. Duringcellular Ca2+ overload, mitochondria take up [Ca2+]c, which, in turn, induces opening of PTP,disruption of mitochondrial membrane potential (m) and cell death. In apoptosis signaling,collapse of ;m and cytochrome c release from mitochondria occur followed by activationof caspases, DNA fragmentation, and cell death. Translocation of Bax, an apoptotic signalingprotein from the cytosol to the mitochondrial membrane, is another step during thisapoptosis-signaling pathway. The role of permeability transition in the context of cell death in relationto Bcl-2 family of proteins is discussed.  相似文献   

8.
Studies were designed to investigate the effects of baicalein on mouse–rat hybrid retina ganglion cells (N18) to better understand its effect on apoptosis and apoptosis-related genes in vitro. Cell viability, reactive oxygen species (ROS), cytoplasmic Ca2+, mitochondrial membrane potential (MMP), apoptosis induction, and caspases-3 activity were examined by flow cytometric assay. Apoptosis-associated proteins such as p53, Bax, Bcl-2, cytochrome c, and caspase-3 were examined by Western blot. We demonstrated the increase in the levels of p53, Bax, and cytochrome c and decrease in the level of Bcl-2, which are associated with the induction of apoptotic cell death after 24 h treatment with baicalein in N18 cells. Baicalein induced an increase in the cytoplasmic levels of ROS and Ca2+ in 1 h and reached their peak at 3 h, and thereafter a loss of MMP by flow cytometry. We also demonstrated a release of the cytochrome c from mitochondria into cytosol and an activation of caspase-3, which led to the occurrence of apoptosis in N18 cells treated with baicalein by Western blot. Pretreatment was conducted with BAPTA (intracellular calcium chelator) in baicalein-treated cells, the decline of MMP was recovered, and the increase in the level of cytoplasmic Ca2+ was suppressed, and the proportion of apoptosis was also markedly diminished. In conclusion, our data suggests that oxidative stress and cellular Ca2+ modulates the baicalein-induced cell death via a Ca2+-dependent mitochondrial death pathway in N18 cells.  相似文献   

9.
This study employed confocal laser scanning microscopy to monitor the effect of H2O2 on cytosolic as well as mitochondrial calcium (Ca2+) concentrations, mitochondrial inner membrane potential (m) and flavine adenine dinucleotide (FAD) oxidation state in isolated mouse pancreatic acinar cells. The results show that incubation of pancreatic acinar cells with H2O2, in the absence of extracellular Ca2+ ([Ca2+]o) led to an increase either in cytosolic and in mitochondrial Ca2+ concentration. Additionally, H2O2 induced a depolarization of mitochondria and increased oxidized FAD level. Pretreatment of cells with the mitochondrial inhibitors rotenone or cyanide inhibited the response induced by H2O2 on mitochondrial inner membrane potential but failed to block oxidation of FAD in the presence of H2O2. However, the H2O2-evoked effect on FAD state was blocked by pretreatment of cells with the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP). On the other hand, perfusion of cells with thapsigargin (Tps), an inhibitor of the SERCA pump, led to an increase in mitochondrial Ca2+ concentration and in oxidized FAD level, and depolarized mitochondria. Pretreatment of cells with thapsigargin inhibited H2O2-evoked changes in mitochondrial Ca2+ concentration but not those in membrane potential and FAD state. The present results have indicated that H2O2 can evoke marked changes in mitochondrial activity that might be due to the oxidant nature of H2O2. This in turn could represent the mechanism of action of ROS to induce cellular damage leading to cell dysfunction and generation of pathologies in the pancreas. (Mol Cell Biochem 269: 165–173, 2005)  相似文献   

10.
C-reactive protein (CRP) is an important predictive factor for cardiac disorders including acute myocardial infarction. Therapeutic inhibition of CRP has been shown to be a promising new approach to cardioprotection in acute myocardial infarction in rat models, but the direct effects of CRP on cardiac myocytes are poorly defined. In this study, we investigated the effects of CRP on cardiac myocytes and its molecular mechanism involved. Neonatal rat cardiac myocytes were exposed to hypoxia for 8 h. Hypoxia induced myocyte apoptosis under serum-deprived conditions, which was accompanied by cytochrome c release from mitochondria into cytosol, as well as activation of Caspase-9, Caspase-3. Hypoxia also increased Bax and decreased Bcl-2 mRNA and protein expression, thereby significantly increasing Bax/Bcl-2 ratio. Cotreatment of CRP (100 μg/ml) under hypoxia significantly increased the percentage of apoptotic myocytes, translocation of cytochrome c, Bax/Bcl-2 ratio, and the activity of Caspase-9 and Caspase-3. However, no effects were observed on myocyte apoptosis when cotreatment of CRP under normoxia. Furthermore, Bcl-2 overexpression significantly improved cellular viability through inhibition of hypoxia or cotreatment with CRP induced Bax/Bcl-2 ratio changes and cytochrome c release from mitochondria to cytosol, and significantly blocked the activity of Caspase-9 and Caspase-3. The present study demonstrates that CRP could enhance apoptosis in hypoxia-stimulated myocytes through the mitochondrion-dependent pathway but CRP alone has no effects on neonatal rat cardiac myocytes under normoxia. Bcl-2 overexpression might prevent CRP-induced apoptosis by inhibiting cytochrome c release from the mitochondria and block activation of Caspase-9 and Caspase-3. Jin Yang and Junhong Wang contributed equally to this work.  相似文献   

11.
In order to confirm that mechanosensitive Ca2+ channels are activated by membrane stretching, we stretched or compressed the plasma membrane of Chara by applying osmotic shrinkage or swelling of the cell by varying the osmotic potential of the bathing medium. Aequorin studies revealed that treatments causing membrane stretching induced a transient but large increase in cytoplasmic concentration of Ca2+ (Δ[Ca2+]c). However, the observed Δ[Ca2+]c decreased during the treatments, resulting in membrane compression. A second experiment was carried out to study the relationship between changes in membrane potential (ΔE m) and stretching or compression of the plasma membrane. Significant ΔE m values, often accompanied by an action potential, were observed during the initial exchange of the bathing medium from a hypotonic medium to a hypertonic one (plasmolysis). ΔE m appears to be triggered by a partial stretching of the membrane as it was peeled from the cell wall. After plasmolysis, other exchanges from hypertonic to hypotonic media, with their accompanying membrane stretching, always induced large ΔE m values and were often accompanied by an action potential. By contrast, action potentials were scarcely observed during other exchanges from hypotonic to hypertonic solutions (=membrane compression). Thus, we concluded that activation of the mechanosensitive channels is triggered by membrane stretching in Chara.  相似文献   

12.
Antizymes delicately regulate ornithine decarboxylase (ODC) enzyme activity and polyamine transportation. One member of the family, antizyme-1, plays vital roles in molecular and cellular functions, including developmental regulation, cell cycle, proliferation, cell death, differentiation and tumorigenesis. However, the question of how does it participate in the cell apoptotic mechanism is still unsolved. To elucidate the contribution of human antizyme-1 in haematopoietic cell death, we examine whether inducible overexpression of antizyme enhances apoptotic cell death. Antizyme reduced the viability in a dose- and time-dependent manner of human leukemia HL-60 cells, acute T leukemia Jurkat cells and mouse macrophage RAW 264.7 cells. The apoptosis-inducing activities were determined by nuclear condensation, DNA fragmentation, sub-G1 appearance, loss of mitochondrial membrane potential (Δψ m ), release of mitochondrial cytochrome c into cytoplasm and proteolytic activation of caspase 9 and 3. Following conditional antizyme overexpression, all protein levels of cyclin-dependent kinases (Cdks) and cyclins are not significantly reduced, except cyclin D, before their entrance into apoptotic cell death. However, introduced cyclin D1 into Jurkat T tetracycline (Tet)-On cell system still couldn’t rescue cells from apoptosis. Antizyme doesn’t influence the expression of tumor suppressor p53 and its downstream p21, but it interferes in the expressions of Bcl-2 family. Inducible antizyme largely enters mitochondria resulting in cytochrome c release from mitochondria to cytosol following Bcl-xL decrease and Bax increase. According to these data, we suggest that antizyme induces apoptosis mainly through mitochondria-mediated and cell cycle-independent pathway. Furthermore, antizyme induces apoptosis not only by Bax accumulation reducing the function of the Bcl-2 family, destroying the Δψ m , and releasing cytochrome c to cytoplasm but also by the activation of apoptosomal caspase cascade.  相似文献   

13.
Pseudomonas aeruginosa is a gram-negative opportunistic pathogen that is cytotoxic towards a variety of eukaryotic cells. To investigate the effect of this bacterium on monocyte, we infected human U937 cells with the P. aeruginosa strain in vitro. To explore the expression of Bcl-2 and Bax as well as caspase-3/9 activation in the apoptosis of human U937 cells induced by P. aeruginosa, Hoechst 33258 staining and Giemsa staining as well as Flow cytometry analysis were used to determine the rate of apoptosis, and the expressions of Bcl-2 and Bax were assayed by RT-PCR and Western blotting respectively. Bax protein conformation change was assayed by immunoprecipitation. Cytochrome c release was measured by Western blotting. Moreover, exposure of U937 cells to P. aeruginosa measured caspase-3/9 activity. It was found that the apoptosis of human U937 cells could be induced by Pseudomonas aeruginosa in a dose- and time-dependent manner. Also, there were a tendency of alterations with an increased expression level of Bax and a reduced expression level of Bcl-2, increased levels of cytochrome c release, and also with an increased activation of caspase-3/9 and Bax protein conformation change. For the evaluation of the role of caspases, caspase-3/9 inhibitors Z-DEVD-FMK and Z-LEHD-FMK respectively were used. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked P. aeruginosa-induced U937 apoptosis. It is concluded that P. aeruginosa can induce apoptosis with an up-regulated expression of Bax and a down-regulated expression of Bcl-2, which resulted in increased levels of cytochrome c release and increased caspase-3 and -9 in human U937 cells.  相似文献   

14.
Plasminogen Kringle 5(K5) is a proteolytic fragment of plasminogen, which displays potent anti-angiogenic activities. K5 has been shown to induce apoptosis in proliferating endothelial cells; however the exact mechanism has not been well explored. The present study was designed to elucidate the possible molecular mechanism of K5-induced endothelial cell apoptosis. Our results showed that K5 inhibited basic fibroblast growth factors activated in human umbilical vein endothelial cells (HUVECs), indicating proliferation in a dose-dependent manner and induced endothelial cell death via apoptosis. K5 exposure activated caspase 7, 8 and 9. These results suggested that both the intrinsic mitochondrial apoptosis pathway and extrinsic pathway might be involved in K5-induced apoptosis. K5 reduced mitochondrial membrane potential (MMP) of HUVECs, demonstrating mitochondrial depolarization in HUVECs. K5 increased the ratio of Bak to Bcl-xL on mitochondria, decreased the ratio in cytosol, and had no effect on the total amounts of these proteins. K5 also did not effect on Bax/Bcl-2 distribution. K5 increased the ratio of Bak to Bcl-xL on mitochondrial that resulted in mitochondrial depolarization, cytochrome c release and consequently the cleavage of caspase 9. These results suggested that K5 induces endothelial cell apoptosis at least in part via activating mitochondrial apoptosis pathway. The regulation of K5 on Bak and Bcl-xL distribution may play an important role in endothelial cell apoptosis. These results provide further insight into the anti-angiogenesis roles of K5 in angiogenesis-related ocular diseases and solid tumors.  相似文献   

15.
In an earlier study, we showed that mitochondria hyperpolarized after short periods of oxygen-glucose deprivation (OGD), and this response appeared to be associated with subsequent apoptosis or survival. Here, we demonstrated that hyperpolarization following short periods of OGD (30 min; 30OGD group) increased the cytosolic Ca2+ ([Ca2+]c) buffering capacity in mitochondria. After graded OGD (0 min (control), 30 min, 120 min), rat cultured hippocampal neurons were exposed to glutamate, evoking Ca2+influx. The [Ca2+]c level increased sharply, followed by a rapid increase in mitochondrial Ca2+ [Ca2+]m. The increase in the [Ca2+]m level accompanied a reduction in the [Ca2+]c level. After reaching a peak, the [Ca2+]c level decreased more rapidly in the 30OGD group than in the control group. This buffering reaction was pronounced in the 30OGD group, but not in the 120OGD group. The enhanced buffering capacity of the mitochondria may be linked to preconditioning after short-term ischemic episodes.  相似文献   

16.
Ca2+ may trigger apoptosis in β-cells. Hence, the control of intracellular Ca2+ may represent a potential approach to prevent β-cell apoptosis in diabetes. Our objective was to investigate the effect and mechanism of action of plasma membrane Ca2+-ATPase (PMCA) overexpression on Ca2+-regulated apoptosis in clonal β-cells. Clonal β-cells (BRIN-BD11) were examined for the effect of PMCA overexpression on cytosolic and mitochondrial [Ca2+] using a combination of aequorins with different Ca2+ affinities and on the ER and mitochondrial pathways of apoptosis. β-cell stimulation generated microdomains of high [Ca2+] in the cytosol and subcellular heterogeneities in [Ca2+] among mitochondria. Overexpression of PMCA decreased [Ca2+] in the cytosol, the ER, and the mitochondria and activated the IRE1α-XBP1s but inhibited the PRKR-like ER kinase-eIF2α and the ATF6-BiP pathways of the ER-unfolded protein response. Increased Bax/Bcl-2 expression ratio was observed in PMCA overexpressing β-cells. This was followed by Bax translocation to the mitochondria with subsequent cytochrome c release, opening of the permeability transition pore, and apoptosis. In conclusion, clonal β-cell stimulation generates microdomains of high [Ca2+] in the cytosol and subcellular heterogeneities in [Ca2+] among mitochondria. PMCA overexpression depletes intracellular [Ca2+] stores and, despite a decrease in mitochondrial [Ca2+], induces apoptosis through the mitochondrial pathway. These data open the way to new strategies to control cellular Ca2+ homeostasis that could decrease β-cell apoptosis in diabetes.  相似文献   

17.
Bcl-2 and Bcl-XL are pro-survival members of the Bcl-2 family. These proteins have been shown to antagonize the pro-apoptotic activity of Bax and promote cell survival through blocking Bax translocation from the cytosol to mitochondria and by preventing the release of cytochrome c. However, it has been recently reported that transiently expressed Bcl-2 unexpectedly leads to significant cell toxicity. To study this intriguing phenomenon, we have carried out further analyses into the properties of transiently expressed Bcl-2. We found that various isoforms of human and different species of Bcl-2 were equally capable of inducing apoptosis. In addition, we discovered that transient expression of Bcl-2, unlike its pro-survival homolog Bcl-XL, can lead to the release of cytochrome c from mitochondria and that the resulting cell death can be inhibited by caspase and calpain inhibitors. Moreover, we have shown that unlike the pro-apoptotic protein Bid, the toxicity associated with the transient expression of Bcl-2 occurs independent of the activity of the endogenous Bax. Finally, we found that in spite of its intrinsic toxicity, transiently expressed Bcl-2 is fully capable of blocking the ectopically expressed Bax from localizing to mitochondria. Taken together, these studies demonstrate that transiently expressed Bcl-2 displays opposing functional properties.  相似文献   

18.
The irradiation of fat-containing food forms 2-dodecylcyclobutanone (2-DCB) from palmitic acid (PA). In this study, we investigated whether 2-DCB and PA induce apoptosis in human lymphoma U937 cells. We found that cell viability decreased by 2-DCB and apoptosis was induced by 2-DCB and PA. 2-DCB and PA significantly enhanced the formation of intracellular reactive oxygen species (ROS). Apoptosis induced by 2-DCB and PA was strongly prevented by an antioxidant, N-acetyl-l-cysteine. The treatment with 2-DCB and PA resulted in the loss of mitochondrial membrane potential, and Fas, caspase-8 and caspase-3 activation. Pretreatment with a pan-caspase inhibitor (z-VAD) significantly inhibited apoptosis induced by 2-DCB and PA. Moreover, 2-DCB and PA also induced Bax up-regulation, the reduction in Bcl-2 expression level, Bid cleavage and the release of cytochrome c from the mitochondria to the cytosol. In addition, an increase in intracellular Ca2+ concentration ([Ca2+]i) was observed after the treatment with 2-DCB and PA. Our results indicated that intracellular ROS generation, the modulation of the Fas-mitochondrion-caspase-dependent pathway and the increase in [Ca2+]i involved in apoptosis are induced by 2-DCB and PA in U937 cells.  相似文献   

19.
Cell death following photodynamic therapy (PDT) with the photosensitizer Pc 4 involves the intrinsic pathway of apoptosis. To evaluate the importance of Bax in apoptosis after PDT, we compared the PDT responses of Bax-proficient (Bax+/−) and Bax knock-out (BaxKO) HCT116 human colon cancer cells. PDT induced a slow apoptotic process in HCT Bax+/− cells following a long delay in the activation of Bax and release of cytochrome c from mitochondria. Although cytochrome c was not released from mitochondria following PDT in BaxKO cells, an alternative mechanism of caspase-dependent apoptosis with extensive chromatin and DNA degradation was found in these cells. This alternative process was less efficient and slower than the normal apoptotic process observed in Bax+/− cells. Early events upon PDT, such as the loss of mitochondrial membrane potential, photodamage to Bcl-2, and activation of p38 MAP kinase, were observed in both HCT116 cell lines. In spite of differences in the efficiency and mode of apoptosis induced by PDT in the Bax+/− and BaxKO cells, they were found to be equally sensitive to killing by PDT, as determined by loss of clonogenicity. Thus, for Pc 4-PDT, the commitment to cell death occurs prior to and independent of Bax activation, but the process of cellular disassembly differs in Bax-expressing vs. non-expressing cells.  相似文献   

20.
Diallyl disulfide (DADS), a component of garlic, has been shown to induce growth inhibition and apoptosis in human cancer cell types. The present studies were designed to investigate the effects of DADS on mouse–rat hybrid retina ganglion cells (N18) to better understand its effect on apoptosis and apoptosis-related genes in vitro. Cell viability, cell cycle analysis, reactive oxygen species (ROS), Ca2+ production, mitochondria membrane potential, apoptosis induction, associated gene expression and caspases-3 activity were examined by flow cytometric assay and/or Western blot. After 24-h treatment with DADS, a dose- and time-dependent decrease in the viability of N18 cells was observed and the approximate IC50 was 27.6 μM. The decreased percentage of viable cells are associated with the production of ROS then followed by the production of Ca2+ which is induced by DADS. DADS induced apoptosis in N18 cells via the activation of caspase-3. DADS increased the protein levels of p53, cytochrome c and phosphated JNK within 24 h of treatment and it decreased the levels of Bcl-2 and those factors may have led to the mitochondria depolarization of N18 cells. DADS induced apoptosis were accompanied by increased levels of Ca2+ and decreased mitochondrial membrane potential which then led to release the cytochrome c, cleavage of pro-caspase-3. Deleted levels of Ca2+ by BAPTA-AM 10 μM (intracellular calcium chelator) then led to decrease DADS-induced apoptosis. Inhibition of caspase-3 activation by inhibitor (z-VAD-fmk) completely blocked DADS-induced apoptosis on N18 cells. The results indicated that oxidative stress modulates cell proliferation and Ca2+ modulates the cell death induced by DADS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号