首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
《IRBM》2022,43(6):640-657
ObjectivesImage segmentation plays an important role in the analysis and understanding of the cellular process. However, this task becomes difficult when there is intensity inhomogeneity between regions, and it is more challenging in the presence of the noise and clustered cells. The goal of the paper is propose an image segmentation framework that tackles the above cited problems.Material and methodsA new method composed of two steps is proposed: First, segment the image using B-spline level set with Region-Scalable Fitting (RSF) active contour model, second apply the Watershed algorithm based on new object markers to refine the segmentation and separate clustered cells. The major contributions of the paper are: 1) Use of a continuous formulation of the level set in the B-spline basis, 2) Develop the energy function and its derivative by introducing the RSF model to deal with intensity inhomogeneity, 3) For the Watershed, propose a relevant choice of markers that considers the cell properties.ResultsExperimental results are performed on widely used synthetic images, in addition to simulated and real biological images, without and with additive noise. They attest the high quality of segmentation of the proposed method in terms of quantitative and qualitative evaluation.ConclusionThe proposed method is able to tackle many difficulties at the same time: overlapped intensities, noise, different cell sizes and clustered cells. It provides an efficient tool for image segmentation especially biological ones.  相似文献   

3.
Retinal blood vessel detection and analysis play vital roles in early diagnosis and prevention of several diseases, such as hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. This paper presents an automated algorithm for retinal blood vessel segmentation. The proposed algorithm takes advantage of powerful image processing techniques such as contrast enhancement, filtration and thresholding for more efficient segmentation. To evaluate the performance of the proposed algorithm, experiments were conducted on 40 images collected from DRIVE database. The results show that the proposed algorithm yields an accuracy rate of 96.5%, which is higher than the results achieved by other known algorithms.  相似文献   

4.
Retinal blood vessel detection and analysis play vital roles in early diagnosis and prevention of several diseases, such as hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. This paper presents an automated algorithm for retinal blood vessel segmentation. The proposed algorithm takes advantage of powerful image processing techniques such as contrast enhancement, filtration and thresholding for more efficient segmentation. To evaluate the performance of the proposed algorithm, experiments were conducted on 40 images collected from DRIVE database. The results show that the proposed algorithm yields an accuracy rate of 96.5%, which is higher than the results achieved by other known algorithms.  相似文献   

5.
Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.  相似文献   

6.
BACKGROUND: Morphologic examination of bone marrow and peripheral blood samples continues to be the cornerstone in diagnostic hematology. In recent years, interest in automatic leukocyte classification using image analysis has increased rapidly. Such systems collect a series of images in which each cell must be segmented accurately to be classified correctly. Although segmentation algorithms have been developed for sparse cells in peripheral blood, the problem of segmenting the complex cell clusters characterizing bone marrow images is harder and has not been addressed previously. METHODS: We present a novel algorithm for segmenting clusters of any number of densely packed cells. The algorithm first oversegments the image into cell subparts. These parts are then assembled into complete cells by solving a combinatorial optimization problem in an efficient way. RESULTS: Our experimental results show that the algorithm succeeds in correctly segmenting densely clustered leukocytes in bone marrow images. CONCLUSIONS: The presented algorithm enables image analysis-based analysis of bone marrow samples for the first time and may also be adopted for other digital cytometric applications where separation of complex cell clusters is required.  相似文献   

7.
Automatic image segmentation of immunohistologically stained breast tissue sections helps pathologists to discover the cancer disease earlier. The detection of the real number of cancer nuclei in the image is a very tedious and time consuming task. Segmentation of cancer nuclei, especially touching nuclei, presents many difficulties to separate them by traditional segmentation algorithms. This paper presents a new automatic scheme to perform both classification of breast stained nuclei and segmentation of touching nuclei in order to get the total number of cancer nuclei in each class. Firstly, a modified geometric active contour model is used for multiple contour detection of positive and negative nuclear staining in the microscopic image. Secondly, a touching nuclei method based on watershed algorithm and concave vertex graph is proposed to perform accurate quantification of the different stains. Finally, benign nuclei are identified by their morphological features and they are removed automatically from the segmented image for positive cancer nuclei assessment. The proposed classification and segmentation schemes are tested on two datasets of breast cancer cell images containing different level of malignancy. The experimental results show the superiority of the proposed methods when compared with other existing classification and segmentation methods. On the complete image database, the segmentation accuracy in term of cancer nuclei number is over than 97%, reaching an improvement of 3–4% over earlier methods.  相似文献   

8.
MOTIVATION: Automated identification of cell cycle phases captured via fluorescent microscopy is very important for understanding cell cycle and for drug discovery. In this article, we propose a novel cell detection method that utilizes both the intensity and shape information of the cell for better segmentation quality. In contrast to conventional off-line learning algorithms, an Online Support Vector Classifier (OSVC) is thus proposed, which removes support vectors from the old model and assigns new training examples weighted according to their importance to accommodate the ever-changing experimental conditions. RESULTS: We image three cell lines using fluorescent microscopy under different experiment conditions, including one treated with taxol. Then, we segment and classify the cell types into interphase, prophase, metaphase and anaphase. Experimental results show the effectiveness of the proposed system in image segmentation and cell phase identification. AVAILABILITY: The software and test datasets are available from the authors.  相似文献   

9.
Leucocyte segmentation is one of the most crucial functionalities for an automatic leucocyte recognition system. In this paper, an algorithm is proposed to segment the leucocytes from the overlapping cell images. It consists of two main steps. The first step involves generation of a combined image based on the saturation and green channels (CIBSGC) by means of the different distribution characteristics of the leucocyte nucleus. A weight coefficient is used to adjust the CIBSGC for extracting the nucleus and estimating the location of the leucocyte. Second, a method of phase detection and spiral interpolation identifies the overlapping regions of cells and determines the leucocyte edge curve. The performance is evaluated by three parameters: sensitivity, positive predictive value and pixel number error. Experimental results validate that the proposed algorithm can successfully segment the overlapping leucocyte with the satisfactory performance for two cell image datasets under different recording conditions.  相似文献   

10.
Leucocyte segmentation is one of the most crucial functionalities for an automatic leucocyte recognition system. In this paper, an algorithm is proposed to segment the leucocytes from the overlapping cell images. It consists of two main steps. The first step involves generation of a combined image based on the saturation and green channels (CIBSGC) by means of the different distribution characteristics of the leucocyte nucleus. A weight coefficient is used to adjust the CIBSGC for extracting the nucleus and estimating the location of the leucocyte. Second, a method of phase detection and spiral interpolation identifies the overlapping regions of cells and determines the leucocyte edge curve. The performance is evaluated by three parameters: sensitivity, positive predictive value and pixel number error. Experimental results validate that the proposed algorithm can successfully segment the overlapping leucocyte with the satisfactory performance for two cell image datasets under different recording conditions.  相似文献   

11.
Microarray technology plays an important role in drawing useful biological conclusions by analyzing thousands of gene expressions simultaneously. Especially, image analysis is a key step in microarray analysis and its accuracy strongly depends on segmentation. The pioneering works of clustering based segmentation have shown that k-means clustering algorithm and moving k-means clustering algorithm are two commonly used methods in microarray image processing. However, they usually face unsatisfactory results because the real microarray image contains noise, artifacts and spots that vary in size, shape and contrast. To improve the segmentation accuracy, in this article we present a combination clustering based segmentation approach that may be more reliable and able to segment spots automatically. First, this new method starts with a very simple but effective contrast enhancement operation to improve the image quality. Then, an automatic gridding based on the maximum between-class variance is applied to separate the spots into independent areas. Next, among each spot region, the moving k-means clustering is first conducted to separate the spot from background and then the k-means clustering algorithms are combined for those spots failing to obtain the entire boundary. Finally, a refinement step is used to replace the false segmentation and the inseparable ones of missing spots. In addition, quantitative comparisons between the improved method and the other four segmentation algorithms--edge detection, thresholding, k-means clustering and moving k-means clustering--are carried out on cDNA microarray images from six different data sets. Experiments on six different data sets, 1) Stanford Microarray Database (SMD), 2) Gene Expression Omnibus (GEO), 3) Baylor College of Medicine (BCM), 4) Swiss Institute of Bioinformatics (SIB), 5) Joe DeRisi’s individual tiff files (DeRisi), and 6) University of California, San Francisco (UCSF), indicate that the improved approach is more robust and sensitive to weak spots. More importantly, it can obtain higher segmentation accuracy in the presence of noise, artifacts and weakly expressed spots compared with the other four methods.  相似文献   

12.

Background

Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies.

Results

We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation.First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce.We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images.

Conclusions

FogBank produces single cell segmentation from confluent cell sheets with high accuracy. It can be applied to microscopy images of multiple cell lines and a variety of imaging modalities. The code for the segmentation method is available as open-source and includes a Graphical User Interface for user friendly execution.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0431-x) contains supplementary material, which is available to authorized users.  相似文献   

13.
Automated cell imaging systems facilitate fast and reliable analysis of biological events at the cellular level. In these systems, the first step is usually cell segmentation that greatly affects the success of the subsequent system steps. On the other hand, similar to other image segmentation problems, cell segmentation is an ill-posed problem that typically necessitates the use of domain-specific knowledge to obtain successful segmentations even by human subjects. The approaches that can incorporate this knowledge into their segmentation algorithms have potential to greatly improve segmentation results. In this work, we propose a new approach for the effective segmentation of live cells from phase contrast microscopy. This approach introduces a new set of “smart markers” for a marker-controlled watershed algorithm, for which the identification of its markers is critical. The proposed approach relies on using domain-specific knowledge, in the form of visual characteristics of the cells, to define the markers. We evaluate our approach on a total of 1,954 cells. The experimental results demonstrate that this approach, which uses the proposed definition of smart markers, is quite effective in identifying better markers compared to its counterparts. This will, in turn, be effective in improving the segmentation performance of a marker-controlled watershed algorithm.  相似文献   

14.
《IRBM》2014,35(1):20-26
We describe a semi-supervised organ segmentation method for Computed Tomography images. In a first step, a dense oversegmentation of the image is created with an Eikonal-based algorithm. The proposed superpixel algorithm ourperforms state-of-the-art algorithms on classical metrics. In a second step, the semi-supervised segmentation is performed on the underlying Region Adjacency Graph created from the oversegmentation. As the complexity is greatly reduced, the organ segmentation can be performed in real-time.  相似文献   

15.
An image segmentation process was derived from an image model that assumed that cell images represent objects having characteristic relationships, limited shape properties and definite local color features. These assumptions allowed the design of a region-growing process in which the color features were used to iteratively aggregate image points in alternation with a test of the convexity of the aggregate obtained. The combination of both local and global criteria allowed the self-adaptation of the algorithm to segmentation difficulties and led to a self-assessment of the adequacy of the final segmentation result. The quality of the segmentation was evaluated by visual control of the match between cell images and the corresponding segmentation masks proposed by the algorithm. A comparison between this region-growing process and the conventional gray-level thresholding is illustrated. A field test involving 700 bone marrow cells, randomly selected from May-Grünwald-Giemsa-stained smears, allowed the evaluation of the efficiency, effectiveness and confidence of the algorithm: 96% of the cells were evaluated as correctly segmented by the algorithm's self-assessment of adequacy, with a 98% confidence. The principles of the other major segmentation algorithms are also reviewed.  相似文献   

16.
17.
The paper presents a new approach for medical image segmentation. Exudates are a visible sign of diabetic retinopathy that is the major reason of vision loss in patients with diabetes. If the exudates extend into the macular area, blindness may occur. Automated detection of exudates will assist ophthalmologists in early diagnosis. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after getting optimized by Pillar algorithm; pillars are constructed in such a way that they can withstand the pressure. Improved pillar algorithm can optimize the K-means clustering for image segmentation in aspects of precision and computation time. This evaluates the proposed approach for image segmentation by comparing with Kmeans and Fuzzy C-means in a medical image. Using this method, identification of dark spot in the retina becomes easier and the proposed algorithm is applied on diabetic retinal images of all stages to identify hard and soft exudates, where the existing pillar K-means is more appropriate for brain MRI images. This proposed system help the doctors to identify the problem in the early stage and can suggest a better drug for preventing further retinal damage.  相似文献   

18.
Automated image detection and segmentation in blood smears.   总被引:4,自引:0,他引:4  
S S Poon  R K Ward  B Palcic 《Cytometry》1992,13(7):766-774
A simple technique which automatically detects and then segments nucleated cells in Wright's giemsa-stained blood smears is presented. Our method differs from others in 1) the simplicity of our algorithms; 2) inclusion of touching (as well as nontouching) cells; and 3) use of these algorithms to segment as well as to detect nucleated cells employing conventionally prepared smears. Our method involves: 1) acquisition of spectral images; 2) preprocessing the acquired images; 3) detection of single and touching cells in the scene; 4) segmentation of the cells into nuclear and cytoplasmic regions; and 5) postprocessing of the segmented regions. The first two steps of this algorithm are employed to obtain high-quality images, to remove random noise, and to correct aberration and shading effects. Spectral information of the image is used in step 3 to segment the nucleated cells from the rest of the scene. Using the initial cell masks, nucleated cells which are just touching are detected and separated. Simple features are then extracted and conditions applied such that single nucleated cells are finally selected. In step 4, the intensity variations of the cells are then used to segment the nucleus from the cytoplasm. The success rate in segmenting the nucleated cells is between 81 and 93%. The major errors in segmentation of the nucleus and the cytoplasm in the recognized nucleated cells are 3.5% and 2.2%, respectively.  相似文献   

19.
Precise liver segmentation in abdominal MRI images is one of the most important steps for the computer-aided diagnosis of liver pathology. The first and essential step for diagnosis is automatic liver segmentation, and this process remains challenging. Extensive research has examined liver segmentation; however, it is challenging to distinguish which algorithm produces more precise segmentation results that are applicable to various medical imaging techniques. In this paper, we present a new automatic system for liver segmentation in abdominal MRI images. The system includes several successive steps. Preprocessing is applied to enhance the image (edge-preserved noise reduction) by using mathematical morphology. The proposed algorithm for liver region extraction is a combined algorithm that utilizes MLP neural networks and watershed algorithm. The traditional watershed transformation generally results in oversegmentation when directly applied to medical image segmentation. Therefore, we use trained neural networks to extract features of the liver region. The extracted features are used to monitor the quality of the segmentation using the watershed transform and adjust the required parameters automatically. The process of adjusting parameters is performed sequentially in several iterations. The proposed algorithm extracts liver region in one slice of the MRI images and the boundary tracking algorithm is suggested to extract the liver region in other slices, which is left as our future work. This system was applied to a series of test images to extract the liver region. Experimental results showed positive results for the proposed algorithm.  相似文献   

20.
The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non‐invasive determination of these characteristics. We present an image‐processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (<1 s per 1,208 × 960 pixels image). Based on the high segmentation performance, it was possible to precisely determine culture confluency, cell density, and the morphology of cellular objects, demonstrating the wide applicability of our algorithm for typical microscopy image processing pipelines. Furthermore, PCM image segmentation was used to facilitate the interpretation and analysis of fluorescence microscopy data, enabling the determination of temporal and spatial expression patterns of a fluorescent reporter. We created a software toolbox (PHANTAST) that bundles all the algorithms and provides an easy to use graphical user interface. Source‐code for MATLAB and ImageJ is freely available under a permissive open‐source license. Biotechnol. Bioeng. 2014;111: 504–517. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号