首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Signals representing the value assigned to stimuli at the time of choice have been repeatedly observed in ventromedial prefrontal cortex (vmPFC). Yet it remains unknown how these value representations are computed from sensory and memory representations in more posterior brain regions. We used electroencephalography (EEG) while subjects evaluated appetitive and aversive food items to study how event-related responses modulated by stimulus value evolve over time. We found that value-related activity shifted from posterior to anterior, and from parietal to central to frontal sensors, across three major time windows after stimulus onset: 150-250 ms, 400-550 ms, and 700-800 ms. Exploratory localization of the EEG signal revealed a shifting network of activity moving from sensory and memory structures to areas associated with value coding, with stimulus value activity localized to vmPFC only from 400 ms onwards. Consistent with these results, functional connectivity analyses also showed a causal flow of information from temporal cortex to vmPFC. Thus, although value signals are present as early as 150 ms after stimulus onset, the value signals in vmPFC appear relatively late in the choice process, and seem to reflect the integration of incoming information from sensory and memory related regions.  相似文献   

2.
Attentional control ensures that neuronal processes prioritize the most relevant stimulus in a given environment. Controlling which stimulus is attended thus originates from neurons encoding the relevance of stimuli, i.e. their expected value, in hand with neurons encoding contextual information about stimulus locations, features, and rules that guide the conditional allocation of attention. Here, we examined how these distinct processes are encoded and integrated in macaque prefrontal cortex (PFC) by mapping their functional topographies at the time of attentional stimulus selection. We find confined clusters of neurons in ventromedial PFC (vmPFC) that predominantly convey stimulus valuation information during attention shifts. These valuation signals were topographically largely separated from neurons predicting the stimulus location to which attention covertly shifted, and which were evident across the complete medial-to-lateral extent of the PFC, encompassing anterior cingulate cortex (ACC), and lateral PFC (LPFC). LPFC responses showed particularly early-onset selectivity and primarily facilitated attention shifts to contralateral targets. Spatial selectivity within ACC was delayed and heterogeneous, with similar proportions of facilitated and suppressed responses during contralateral attention shifts. The integration of spatial and valuation signals about attentional target stimuli was observed in a confined cluster of neurons at the intersection of vmPFC, ACC, and LPFC. These results suggest that valuation processes reflecting stimulus-specific outcome predictions are recruited during covert attentional control. Value predictions and the spatial identification of attentional targets were conveyed by largely separate neuronal populations, but were integrated locally at the intersection of three major prefrontal areas, which may constitute a functional hub within the larger attentional control network.  相似文献   

3.
Unit and network activity of neurons in the visual, sensorimotor, and frontal cortical areas and dorsal striatum was investigated in cats under conditions of choice of the reinforcement value depending on its delay. The animals did not differ from each other in behavior. After immediate or delayed responses cats got low- or highly-valuable reinforcement, respectively. Single-unit activity in the visual and sensorimotor cortical areas and dorsal striatum was similar during performance of immediate and delayed responses. However, significant inhibition was observed in the frontal neurons during the delay period. The network activity of visual and frontal cortex displayed smaller number of interneuronal interactions during delayed responses as compared to immediate reactions. The network activity of neurons in the brain structures under study pointed to the interstructural interaction, but only during delayed reactions, steady interneuronal communication was observed between the frontal cortex and dorsal striatum. Thus, both types of estimation of cellular activity revealed differences in the ensemble organization during different types of behavior and showed specific reactions of neuronal ensembles.  相似文献   

4.
On the basis of neuronal phenotypes and the mode of development of the mammalian forebrain, the cerebral cortex can be subdivided into deep versus superficial layers, and the striatum into patch versus matrix compartments. Interspecific chimeric Mus musculus----Mus caroli mice were used to determine the contribution of lineage to cellular position within these forebrain compartments. Statistical analysis revealed evidence of both spatial and compartmental lineage segregation. A significant difference in genotype ratio depending on chimeric specimen was observed between areas (regardless of compartment) that were separated by greater than 300 microns in the rostrocaudal plane. Differences were observed between early-born (striatal patch and deep cortex) versus late-born (striatal matrix and superficial cortex) neurons, but not between neurons of cortex as a whole versus neurons of striatum as a whole. The difference between early- and late-born neurons was primarily due to the difference between deep and superficial cortical neurons. On a finer scale of analysis, differences in genotype ratios were seen between radially aligned deep versus superficial cortical compartments, in both the neuronal and glial populations. This evidence is consistent with an early positional and compartmental segregation of forebrain progenitor cells.  相似文献   

5.
Extinction of conditioned fear is an active learning process requiring N-methyl-D-aspartate receptors (NMDARs), but the timing, location, and neural mechanisms of NMDAR-mediated processing in extinction are a matter of debate. Here we show that infusion of the NMDAR antagonist CPP into the ventromedial prefrontal cortex (vmPFC) prior to, or immediately after, extinction training impaired 24 hr recall of extinction. These findings indicate that consolidation of extinction requires posttraining activation of NMDARs within the vmPFC. Using multichannel unit recording, we observed that CPP selectively reduced burst firing in vmPFC neurons, suggesting that bursting in vmPFC is necessary for consolidation of extinction. In support of this, we found that the degree of bursting in infralimbic vmPFC neurons shortly after extinction predicted subsequent recall of extinction. We suggest that NMDAR-dependent bursting in the infralimbic vmPFC initiates calcium-dependent molecular cascades that stabilize extinction memory, thereby allowing for successful recall of extinction.  相似文献   

6.
Recent progress in neuroscience revealed diverse regions of the CNS which moderate autonomic and affective responses. The ventro-medial prefrontal cortex (vmPFC) plays a key role in these regulations. There is evidence that vmPFC activity is associated with cardiovascular changes during a motor task that are mediated by parasympathetic activity. Moreover, vmPFC activity makes important contributions to regulations of affective and stressful situations. This review selectively summarizes literature in which vmPFC activation was studied in healthy subjects as well as in patients with affective disorders. The reviewed literature suggests that vmPFC activity plays a pivotal role in biopsychosocial processes of disease. Activity in the vmPFC might link affective disorders, stressful environmental conditions, and immune function.  相似文献   

7.
Carbamylcholine stimulated phospholipase C activity in astrocytes in primary culture from the mesencephalon but not from the striatum or cerebral cortex of the mouse embryo. An alpha 1-adrenergic-mediated response was observed in all astrocyte populations. 2-Chloroadenosine potentiated the alpha 1-adrenergic response in mesencephalic and striatal astrocytes but not in cortical astrocytes. It also stimulated the carbamylcholine-evoked response in mesencephalic astrocytes. Through cell-cell cooperation, 2-chloroadenosine potentiated the neuronal carbamylcholine-evoked activation of phospholipase C in homotopic cocultures (neuro-glial) from the striatum but not in homotopic cocultures (neuro-glial) from the cerebral cortex or in heterotopic cocultures (cortical astrocytes-striatal neurons; striatal astrocytes-cortical neurons.  相似文献   

8.
Value representations in the primate striatum during matching behavior   总被引:1,自引:0,他引:1  
Lau B  Glimcher PW 《Neuron》2008,58(3):451-463
Choosing the most valuable course of action requires knowing the outcomes associated with the available alternatives. The striatum may be important for representing the values of actions. We examined this in monkeys performing an oculomotor choice task. The activity of phasically active neurons (PANs) in the striatum covaried with two classes of information: action-values and chosen-values. Action-value PANs were correlated with value estimates for one of the available actions, and these signals were frequently observed before movement execution. Chosen-value PANs were correlated with the value of the action that had been chosen, and these signals were primarily observed later in the task, immediately before or persistently after movement execution. These populations may serve distinct functions mediated by the striatum: some PANs may participate in choice by encoding the values of the available actions, while other PANs may participate in evaluative updating by encoding the reward value of chosen actions.  相似文献   

9.
The orbitofrontal cortex (OFC) and piriform cortex are involved in encoding the predictive value of olfactory stimuli in rats, and neural responses to olfactory stimuli in these areas change as associations are learned. This experience-dependent plasticity mirrors task-related changes previously observed in mesocortical dopamine neurons, which have been implicated in learning the predictive value of cues. Although forms of associative learning can be found at all ages, cortical dopamine projections do not mature until after postnatal day 35 in the rat. We hypothesized that these changes in dopamine circuitry during the juvenile and adolescent periods would result in age-dependent differences in learning the predictive value of environmental cues. Using an odor-guided associative learning task, we found that adolescent rats learn the association between an odor and a palatable reward significantly more slowly than either juvenile or adult rats. Further, adolescent rats displayed greater distractibility during the task than either juvenile or adult rats. Using real-time quantitative PCR and immunohistochemical methods, we observed that the behavioral deficit in adolescence coincides with a significant increase in D1 dopamine receptor expression compared to juvenile rats in both the OFC and piriform cortex. Further, we found that both the slower learning and increased distractibility exhibited in adolescence could be alleviated by experience with the association task as a juvenile, or by an acute administration of a low dose of either the dopamine D1 receptor agonist SKF-38393 or the D2 receptor antagonist eticlopride. These results suggest that dopaminergic modulation of cortical function may be important for learning the predictive value of environmental stimuli, and that developmental changes in cortical dopaminergic circuitry may underlie age-related differences in associative learning.  相似文献   

10.
Galiñanes GL  Braz BY  Murer MG 《PloS one》2011,6(12):e28473
Evoked striatal field potentials are seldom used to study corticostriatal communication in vivo because little is known about their origin and significance. Here we show that striatal field responses evoked by stimulating the prelimbic cortex in mice are reduced by more than 90% after infusing the AMPA receptor antagonist CNQX close to the recording electrode. Moreover, the amplitude of local field responses and dPSPs recorded in striatal medium spiny neurons increase in parallel with increasing stimulating current intensity. Finally, the evoked striatal fields show several of the basic known properties of corticostriatal transmission, including paired pulse facilitation and topographical organization. As a case study, we characterized the effect of local GABA(A) receptor blockade on striatal field and multiunitary action potential responses to prelimbic cortex stimulation. Striatal activity was recorded through a 24 channel silicon probe at about 600 μm from a microdialysis probe. Intrastriatal administration of the GABA(A) receptor antagonist bicuculline increased by 65±7% the duration of the evoked field responses. Moreover, the associated action potential responses were markedly enhanced during bicuculline infusion. Bicuculline enhancement took place at all the striatal sites that showed a response to cortical stimulation before drug infusion, but sites showing no field response before bicuculline remained unresponsive during GABA(A) receptor blockade. Thus, the data demonstrate that fast inhibitory connections exert a marked temporal regulation of input-output transformations within spatially delimited striatal networks responding to a cortical input. Overall, we propose that evoked striatal fields may be a useful tool to study corticostriatal synaptic connectivity in relation to behavior.  相似文献   

11.
The presence of vasoactive intestinal polypeptide (VIP) receptors coupled to an adenylate cyclase was demonstrated on membranes of neurons or glial cells grown in primary cultures originating from the cerebral cortex, striatum, and mesencephalon of mouse embryos. A biphasic pattern of activation was observed in all these cell types, involving distinct high- and low-apparent-affinity mechanisms. The absence of additive effects of VIP and 3,4-dihydroxyphenylethylamine (DA, dopamine), isoproterenol (ISO), and 5-hydroxytryptamine (5-HT, serotonin) suggests that the peptide receptors are colocated with each of the corresponding amine receptors on neuronal membranes of the three structures studied. The nonadditivity between the VIP- and ISO-induced responses on cortical and striatal glial membranes reveals as well a colocation of VIP and beta-adrenergic-sensitive adenylate cyclases on the same cells. A subpopulation of mesencephalic glia could possess only one of the two types of receptors, as a partial additivity of the VIP and ISO responses was seen. In addition, VIP modified the characteristics of the somatostatin inhibitory effect on adenylate cyclase activity of neuronal membranes from the cerebral cortex and striatum but not from those of the mesencephalon. On striatal and mesencephalic glial membranes the somatostatin inhibitory effect was observed only in the presence of VIP. However, as previously seen with ISO, the presence of VIP did not allow the appearance of a somatostatin inhibitory response on cortical glial membranes. This suggests that cortical glia are devoid of somatostatin receptors.  相似文献   

12.
The inhomogeneous distribution of the receptive fields of cortical neurons influences the cortical representation of the orientation of short lines seen in visual images. We construct a model of the response of populations of neurons in the human primary visual cortex by combining realistic response properties of individual neurons and cortical maps of orientation and location preferences. The encoding error, which characterizes the difference between the parameters of a visual stimulus and their cortical representation, is calculated using Fisher information as the square root of the variance of a statistically efficient estimator. The error of encoding orientation varies considerably with the location and orientation of the short line stimulus as modulated by the underlying orientation preference map. The average encoding error depends only weakly on the structure of the orientation preference map and is much smaller than the human error of estimating orientation measured psychophysically. From this comparison we conclude that the actual mechanism of orientation perception does not make efficient use of all the information available in the neuronal responses and that it is the decoding of visual information from neuronal responses that limits psychophysical performance. Action Editor: Terrence Sejnowski  相似文献   

13.
1. The striatum is part of a multisynaptic loop involved in translating higher order cognitive activity into action. The main striatal computational unit is the medium spiny neuron, which integrates inputs arriving from widely distributed cortical neurons and provides the sole striatal output.2. The membrane potential of medium spiny neurons' displays shifts between a very negative resting state (down state) and depolarizing plateaus (up states) which are driven by the excitatory cortical inputs.3. Because striatal spiny neurons fire action potentials only during the up state, these plateau depolarizations are perceived as enabling events that allow information processing through cerebral cortex – basal ganglia circuits. In vivo intracellular recording techniques allow to investigate simultaneously the subthreshold behavior of the medium spiny neuron membrane potential (which is a reading of distributed patterns of cortical activity) and medium spiny neuron firing (which is an index of striatal output).4. Recent studies combining intracellular recordings of striatal neurons with field potential recordings of the cerebral cortex illustrate how the analysis of the input–output transformations performed by medium spiny neurons may help to unveil some aspects of information processing in cerebral cortex – basal ganglia circuits, and to understand the origin of the clinical manifestations of Parkinson's disease and other neurologic and neuropsychiatric disorders that result from alterations in dopamine-dependent information processing in the cerebral cortex – basal ganglia circuits.  相似文献   

14.
In cats, we studied the influences of stimulation of the periaqueductal gray (PAG) and locus coeruleus (LC) on postsynaptic processes evoked in neurons of the somatosensory cortex by stimulation of nociceptive (intensive stimulation of the tooth pulp) and non-nociceptive (moderate stimulations of the infraorbital nerve and ventroposteromedial nucleus of the thalamus) afferent inputs. Twelve cells activated exclusively by nociceptors and 16 cells activated by both nociceptive and non-nociceptive influences (hereafter, nociceptive and convergent neurons, respectively) were recorded intracellularly. In neurons of both groups, responses to nociceptive stimulation (of sufficient intensity) looked like an EPSP-spike-IPSP (the latter, of significant duration, up to 200 msec) complex. Electrical stimulation of the PAG (which could itself evoke activation of the cortical neurons under study) resulted in long-term suppression of synaptic responses evoked by excitation of nociceptors (inhibition reached its maximum at a test interval of 600 to 800 msec). We observed a certain parallelism between conditioning influences of PAG activation and effects of systemic injections of morphine. Isolated stimulation of LC by a short high-frequency train of stimuli evoked primary excitatory responses (complex EPSPs) in a part of the examined cortical neurons, while in other cells high-amplitude and long-lasting IPSP (up to 120 msec) were observed. Independently of the type of the primary response to PAG stimulation, the latter resulted in long-term (several seconds) suppression of the responses evoked in cortical cells by stimulation of the nociceptive inputs. The mechanisms of modulatory influences coming from opioidergic and noradrenergic brain systems to somatosensory cortex neurons activated due to excitation of high-threshold (nociceptive) afferent inputs are discussed.Neirofiziologiya/Neurophysiology, Vol. 37, No. 1, pp. 61–73, January–February, 2005.  相似文献   

15.
In acute experiments with 9 anesthetized and immobilized cats, the relative tangential square of the activated cortical columns in area 17 was mapped by the intrinsic optical signal under stimulation with grids of different orientation. We examined the "oblique effect", i.e. the greater representation of neurons tuned to the vertical and horizontal orientations vs. oblique orientations in the primary visual cortex. The square of the activated parts of the cortex was estimated under different threshold criteria (80, 60 and 40% of the maximum). The "oblique effect" was not observed in our study: the areas of activation of the cortical columns did not differ statistically for two basic vs. oblique orientations. Reasons for the difference between the results of electrophysiological and optical mapping are suggested and possible contributions of the experimental protocol (anesthesia) and individual visual experience in different animals' samples to the origin of these differences are discussed.  相似文献   

16.
A possible mechanism of participation of cholinergic striatal interneurons and dopaminergic cells in conditioned selection of a certain types of motor activity is proposed. This selection is triggered by simultaneous increase in the activity of dopaminergic cells and a pause in the activity of cholinergic interneurons in response to a conditioned stimulus. This pause is promoted by activation of striatal inhibitory interneurons and action of dopamine at D2 receptors on cholinergic cells. Opposite changes in dopamine and acetylcholine concentration synergistically modulate the efficacy of corticostriatal inputs, modulation rules for the "strong" and "weak" corticostriatal inputs are opposite. Subsequent reorganization of neuronal firing in the loop cortex--basal ganglia--thalamus--cortex results in amplification of activity of the group of cortical neurons that strongly activate striatal cells, and simultaneous suppression of activity of another group of cortical neurons that weakly activate striatal cells. These changes can underlie a conditioned selection of motor activity performed with involvement of the motor cortex. As follows from the proposed model, if the time delay between conditioned and unconditioned stimuli does not exceed the latency of responses of dopaminergic and cholinergic cells (about 100 ms), conditioned selection of motor activity and learning is problematic.  相似文献   

17.
Human hippocampal neurons predict how well word pairs will be remembered   总被引:5,自引:0,他引:5  
Cameron KA  Yashar S  Wilson CL  Fried I 《Neuron》2001,30(1):289-298
What is the neuronal basis for whether an experience is recalled or forgotten? In contrast to recognition, recall is difficult to study in nonhuman primates and rarely is accessible at the single neuron level in humans. We recorded 128 medial temporal lobe (MTL) neurons in patients implanted with intracranial microelectrodes while they encoded and recalled word paired associates. Neurons in the amygdala, entorhinal cortex, and hippocampus showed altered activity during encoding (9%), recall (22%), and both task phases (23%). The responses of hippocampal neurons during encoding predicted whether or not subjects later remembered the pairs successfully. Entorhinal cortex neuronal activity during retrieval was correlated with recall success. These data provide support at the single neuron level for MTL contributions to encoding and retrieval, while also suggesting there may be differences in the level of contribution of MTL regions to these memory processes.  相似文献   

18.
Visual responses in the cortex and lateral geniculate nucleus (LGN) are often associated with synchronous oscillatory patterning. In this short review, we examine the possible relationships between subcortical and cortical synchronization mechanisms. Our results obtained from simultaneous multi-unit recordings show strong synchronization of oscillatory responses between retina, LGN and cortex, indicating that cortical neurons can be synchronized by oscillatory activity relayed through the LGN. This feed-forward synchronization mechanism operating in the 60 to 120 Hz frequency range was observed mostly for static stimuli. In response to moving stimuli, by contrast, cortical synchronization was independent of oscillatory inputs from the LGN, with oscillation frequency in the range of 30 to 60 Hz. The functional implications of synchronization of activity from parallel channels are discussed, in particular its significance for signal transmission and cortical integration processes.  相似文献   

19.
Han L  Zhang Y  Lou Y  Xiong Y 《PloS one》2012,7(4):e34837
Auditory cortical plasticity can be induced through various approaches. The medial geniculate body (MGB) of the auditory thalamus gates the ascending auditory inputs to the cortex. The thalamocortical system has been proposed to play a critical role in the responses of the auditory cortex (AC). In the present study, we investigated the cellular mechanism of the cortical activity, adopting an in vivo intracellular recording technique, recording from the primary auditory cortex (AI) while presenting an acoustic stimulus to the rat and electrically stimulating its MGB. We found that low-frequency stimuli enhanced the amplitudes of sound-evoked excitatory postsynaptic potentials (EPSPs) in AI neurons, whereas high-frequency stimuli depressed these auditory responses. The degree of this modulation depended on the intensities of the train stimuli as well as the intervals between the electrical stimulations and their paired sound stimulations. These findings may have implications regarding the basic mechanisms of MGB activation of auditory cortical plasticity and cortical signal processing.  相似文献   

20.
Distributed coding of sound locations in the auditory cortex   总被引:3,自引:0,他引:3  
Although the auditory cortex plays an important role in sound localization, that role is not well understood. In this paper, we examine the nature of spatial representation within the auditory cortex, focusing on three questions. First, are sound-source locations encoded by individual sharply tuned neurons or by activity distributed across larger neuronal populations? Second, do temporal features of neural responses carry information about sound-source location? Third, are any fields of the auditory cortex specialized for spatial processing? We present a brief review of recent work relevant to these questions along with the results of our investigations of spatial sensitivity in cat auditory cortex. Together, they strongly suggest that space is represented in a distributed manner, that response timing (notably first-spike latency) is a critical information-bearing feature of cortical responses, and that neurons in various cortical fields differ in both their degree of spatial sensitivity and their manner of spatial coding. The posterior auditory field (PAF), in particular, is well suited for the distributed coding of space and encodes sound-source locations partly by modulations of response latency. Studies of neurons recorded simultaneously from PAF and/or A1 reveal that spatial information can be decoded from the relative spike times of pairs of neurons - particularly when responses are compared between the two fields - thus partially compensating for the absence of an absolute reference to stimulus onset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号