首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The over-expression of Arabidopsis CAX1 and CAX2 causes transgenic tomato plants to reveal severe Ca2+ deficiency-like symptoms such as tip-burn and/or blossom end rot, despite there being sufficient Ca2+ in each plant part. To correct the symptoms and to moderately enhance the calcium level, a worldwide vegetable tomato was genetically engineered using a modified Arabidopsis cation/H+ antiporter sCAX2A, a mutant form of Arabidopsis CAX2. Compared with the wild-type, the sCAX2A-expressing tomato plants demonstrated elevated Ca2+ levels in the fruits with almost no changes in the levels of Mn2+, Cu2+, and Fe2+. Moreover, expression of sCAX2A in tomato plants did not show any significant alterations in their morphological phenotypes. Unlike 35S::sCAX1 construct, sCAX2A antiporter gene driven by 35S promoter can be a valuable tool for enriching Ca2+ contents in the tomato fruit without additional accumulation of the undesirable cations.  相似文献   

2.
3.
Although gibberellins (GAs) have been shown to induce development of the physiological disorder blossom-end rot (BER) in tomato fruit (Solanum lycopersicum), the mechanisms involved remain largely unexplored. BER is believed to result from calcium (Ca) deficiency, but the relationship between Ca content and BER incidence is not strong. Our objectives were to better understand how GAs and a GA biosynthesis inhibitor affect BER development in tomato fruit. Tomato plants of two BER-susceptible cultivars, ‘Ace 55 (Vf)’ and ‘AB2,’ were grown in a greenhouse environment and subjected to Ca-deficiency conditions. Plants were treated weekly during fruit growth and development with 300 mg L?1 GA4+7, 300 mg L?1 prohexadione-calcium (Apogee®, a GA biosynthesis inhibitor), or water beginning 1 day after flower pollination. GA4+7 treatment induced an increase in BER incidence in both cultivars up to 100%, whereas ‘Ace 55 (Vf)’ and ‘AB2’ plants treated with Apogee did not show BER incidence. The number of functional xylem vessels was higher in the placental and pericarp tissue of tomato fruit treated with Apogee at the early stages of fruit growth. Treatment with Apogee also increased fruit pericarp Ca concentration. GA4+7 treatment enhanced the expression of the putative CAX and Ca-ATPase genes, that code for proteins involved in Ca movement into storage organelles. The lowest water-soluble apoplastic Ca concentration and the highest membrane leakage values were observed in the pericarp of GA4+7-treated fruit. These results suggest that GAs consistently reduced fruit Ca uptake and water-soluble apoplastic Ca concentration, leading to leakier plasma membranes and an increase in BER development in fruit tissue of both tomato cultivars.  相似文献   

4.
Kim CK  Han JS  Lee HS  Oh JY  Shigaki T  Park SH  Hirschi K 《Plant cell reports》2006,25(11):1226-1232
Previously, we made a chimeric Arabidopsis thaliana vacuolar transporter CAX2B [a variant of N-terminus truncated form of CAX2 (sCAX2) containing the “B” domain from CAX1] that has enhanced calcium (Ca2+) substrate specificity and lost the manganese (Mn2+) transport capability of sCAX2. Here, we demonstrate that potato (Solanum tuberosum L.) tubers expressing the CAX2B contain 50–65% more calcium (Ca2+) than wild-type tubers. Moreover, expression of CAX2B in potatoes did not show any significant increase of the four metals tested, particularly manganese (Mn2+). The CAX2B-expressing potatoes have normally undergone the tuber/plant/tuber cycle for three generations; the trait appeared stable through the successive generations and showed no deleterious alternations on plant growth and development. These results demonstrate the enhanced substrate specificity of CAX2B in potato. Therefore, CAX2B can be a valuable tool for Ca2+ nutrient enrichment of potatoes with reduced accumulation of undesirable metals.  相似文献   

5.
6.
7.
Recombinant Ca2+-ATPase from tomato (i.e. LCA1 for Lycopersicon esculentum [Since the identification and naming of LCA1, the scientific name for the tomato has been changed to Solanum lycopersicum.] Ca-ATPase) was heterologously expressed in yeast for structure-function characterization. We investigate the differences between plant and animal Ca pumps utilizing comparisons between chicken and rabbit SERCA-type pumps with Arabidopsis (ECA1) and tomato plant (LCA1) Ca2+-ATPases. Enzyme function was confirmed by the ability of each Ca2+-ATPase to rescue K616 growth on EGTA-containing agar and directly via in vitro ATP hydrolysis. We found LCA1 to be ∼300-fold less sensitive to thapsigargin than animal SERCAs, whereas ECA1 was thapsigargin-resistant. LCA1 showed typical pharmacological sensitivities to cyclopiazonic acid, vanadate, and eosin, consistent with it being a PIIA-type Ca2+-ATPase. Possible amino acid changes responsible for the reduced plant thapsigargin-sensitivity are discussed. We found that LCA1 also complemented K616 yeast growth in the presence of Mn2+, consistent with moving Mn2+ into the secretory pathway and functionally compensating for the lack of secretory pathway Ca-ATPases (SPCAs) in plants.  相似文献   

8.

Key message

PsSEOF-1 binds to calcium and its expression is upregulated by salinity treatment. PsSEOF - 1 -overexpressing transgenic tobacco showed enhanced salinity stress tolerance by maintaining cellular ion homeostasis and modulating ROS-scavenging pathway.

Abstract

Calcium (Ca2+) plays important role in growth, development and stress tolerance in plants. Cellular Ca2+ homeostasis is achieved by the collective action of channels, pumps, antiporters and by Ca2+ chelators present in the cell like calcium-binding proteins. Forisomes are ATP-independent mechanically active motor proteins known to function in wound sealing of injured sieve elements of phloem tissue. The Ca2+-binding activity of forisome and its role in abiotic stress signaling were largely unknown. Here we report the Ca2+-binding activity of pea forisome (PsSEO-F1) and its novel function in promoting salinity tolerance in transgenic tobacco. Native PsSEO-F1 promoter positively responded in salinity stress as confirmed using GUS reporter. Overexpression of PsSEO-F1 tobacco plants confers salinity tolerance by alleviating ionic toxicity and increased ROS scavenging activity which probably results in reduced membrane damage and improved yield under salinity stress. Evaluation of several physiological indices shows an increase in relative water content, electrolyte leakage, proline accumulation and chlorophyll content in transgenic lines as compared with null-segregant control. Expression of several genes involved in cellular homeostasis is perturbed by PsSEO-F1 overexpression. These findings suggest that PsSEO-F1 provides salinity tolerance through cellular Ca2+ homeostasis which in turn modulates ROS machinery providing indirect link between Ca2+ and ROS signaling under salinity-induced perturbation. PsSEO-F1 most likely functions in salinity stress tolerance by improving antioxidant machinery and mitigating ion toxicity in transgenic lines. This finding should make an important contribution in our better understanding of the significance of calcium signaling in phloem tissue leading to salinity stress tolerance.
  相似文献   

9.
Bottle gourd (Lagenaria siceraria Standl.) has been commonly used as a source of rootstock for watermelon. To improve its performance as a rootstock without adverse effects on the scion, the bottle gourd was genetically engineered using a modified Arabidopsis Ca2+/H+ exchanger sCAX2B. This transporter provides enhanced Ca2+ substrate specificity and decreased Mn2+ transport capability. Our previous work demonstrated that sCAX2B bottle gourds were more robust and nutrient dense than controls. Here, several cucurbit crops were test-grafted onto the transgenic bottle gourd to determine its effect on the scions. The grafted watermelons and melons onto the transgenic rootstocks appeared to show more robust growth than the controls 35 days after greenhouse transplanting. Watermelon fruits with the watermelon/transgenic bottle gourd (scion/rootstock) combination demonstrated higher osmotic pressure and more soluble solids than controls. These results suggest that sCAX2B expression in the bottle gourd rootstock facilitates improved watermelon quality through the translocation of nutrients and/or water toward enhancing the biomass of scion.  相似文献   

10.
11.
Calcium (Ca2+) signaling modules are essential for adjusting plant growth and performance to environmental constraints. Differential interactions between sensors of Ca2+ dynamics and their molecular targets are at the center of the transduction process. Calmodulin (CaM) and CaM-like (CML) proteins are principal Ca2+-sensors in plants that govern the activities of numerous downstream proteins with regulatory properties. The families of IQ67-Domain (IQD) proteins are a large class of plant-specific CaM/CML-targets (e.g., 33 members in A. thaliana) which share a unique domain of multiple varied CaM retention motifs in tandem orientation. Genetic studies in Arabidopsis and tomato revealed first roles for IQD proteins related to basal defense response and plant development. Molecular, biochemical and histochemical analysis of Arabidopsis IQD1 demonstrated association with microtubules as well as targeting to the cell nucleus and nucleolus. In vivo binding to CaM and kinesin light chain-related protein-1 (KLCR1) suggests a Ca2+-regulated scaffolding function of IQD1 in kinesin motor-dependent transport of multiprotein complexes. Furthermore, because IQD1 interacts in vitro with single-stranded nucleic acids, the prospect arises that IQD1 and other IQD family members facilitate cellular RNA localization as one mechanism to control and fine-tune gene expression and protein sorting.  相似文献   

12.
Here we demonstrate that fruit from tomato (Lycopersicon esculentum) plants expressing Arabidopsis (Arabidopsis thaliana) H(+)/cation exchangers (CAX) have more calcium (Ca2+) and prolonged shelf life when compared to controls. Previously, using the prototypical CAX1, it has been demonstrated that, in yeast (Saccharomyces cerevisiae) cells, CAX transporters are activated when the N-terminal autoinhibitory region is deleted, to give an N-terminally truncated CAX (sCAX), or altered through specific manipulations. To continue to understand the diversity of CAX function, we used yeast assays to characterize the putative transport properties of CAX4 and N-terminal variants of CAX4. CAX4 variants can suppress the Ca2+ hypersensitive yeast phenotypes and also appear to be more specific Ca2+ transporters than sCAX1. We then compared the phenotypes of sCAX1- and CAX4-expressing tomato lines. The sCAX1-expressing tomato lines demonstrate increased vacuolar H(+)/Ca2+ transport, when measured in root tissue, elevated fruit Ca2+ level, and prolonged shelf life but have severe alterations in plant development and morphology, including increased incidence of blossom-end rot. The CAX4-expressing plants demonstrate more modest increases in Ca2+ levels and shelf life but no deleterious effects on plant growth. These findings suggest that CAX expression may fortify plants with Ca2+ and may serve as an alternative to the application of CaCl2 used to extend the shelf life of numerous agriculturally important commodities. However, judicious regulation of CAX transport is required to assure optimal plant growth.  相似文献   

13.
Elevations in extracellular calcium ([Ca2+]o) are known to stimulate cytosolic calcium ([Ca2+]cyt) oscillations to close stomata. However, the underlying mechanisms regulating this process remain largely to be determined. Here, through the functional characterization of the calcium underaccumulation mutant cau1, we report that the epigenetic regulation of CAS, a putative Ca2+ binding protein proposed to be an external Ca2+ sensor, is involved in this process. cau1 mutant plants display increased drought tolerance and stomatal closure. A mutation in CAU1 significantly increased the expression level of the calcium signaling gene CAS, and functional disruption of CAS abolished the enhanced drought tolerance and stomatal [Ca2+]o signaling in cau1. Map-based cloning revealed that CAU1 encodes the H4R3sme2 (for histone H4 Arg 3 with symmetric dimethylation)-type histone methylase protein arginine methytransferase5/Shk1 binding protein1. Chromatin immunoprecipitation assays showed that CAU1 binds to the CAS promoter and modulates the H4R3sme2-type histone methylation of the CAS chromatin. When exposed to elevated [Ca2+]o, the protein levels of CAU1 decreased and less CAU1 bound to the CAS promoter. In addition, the methylation level of H4R3sme2 decreased in the CAS chromatin. Together, these data suggest that in response to increases in [Ca2+]o, fewer CAU1 protein molecules bind to the CAS promoter, leading to decreased H4R3sme2 methylation and consequent derepression of the expression of CAS to mediate stomatal closure and drought tolerance.  相似文献   

14.
15.
The first tuber mustard calmodulin-like (CML) gene BjAAR1 (Brassica juncea var. tumida Tsen et Lee Abiotic stress and Abscisic acid (ABA) Responsive gene 1) was cloned and characterized. The protein encoded by BjAAR1 contains four predicted Ca2+ binding sites (EF-hand motif) and its recombinant protein can bind Ca2+ in vitro. qRT-PCR showed that the expression level of BjAAR1 was rather high in non-swollen stem of tuber mustard and largely reduced in swollen stem. Expression of BjAAR1 enhanced ABA- and stress-induced gene expression in Arabidopsis (Arabidopsis thaliana). Transgenic plants also exhibited hypersensitivity to NaCl, mannitol, and ABA during the seed germination and post-germination stages. ABA biosynthesis inhibitor, norflurazon (NF), rescued hypersensitivity phenotype of transgenic plants to NaCl and mannitol, indicating that BjAAR1 functions in multiple abiotic stresses response through ABA-dependent process.  相似文献   

16.
We have investigated the molecular basis of intracellular Ca2+ handling in human colon carcinoma cells (HT29) versus normal human mucosa cells (NCM460) and its contribution to cancer features. We found that Ca2+ stores in colon carcinoma cells are partially depleted relative to normal cells. However, resting Ca2+ levels, agonist-induced Ca2+ increases, store-operated Ca2+ entry (SOCE), and store-operated currents (ISOC) are largely enhanced in tumor cells. Enhanced SOCE and depleted Ca2+ stores correlate with increased cell proliferation, invasion, and survival characteristic of tumor cells. Normal mucosa cells displayed small, inward Ca2+ release-activated Ca2+ currents (ICRAC) mediated by ORAI1. In contrast, colon carcinoma cells showed mixed currents composed of enhanced ICRAC plus a nonselective ISOC mediated by TRPC1. Tumor cells display increased expression of TRPC1, ORAI1, ORAI2, ORAI3, and STIM1. In contrast, STIM2 protein was nearly depleted in tumor cells. Silencing data suggest that enhanced ORAI1 and TRPC1 contribute to enhanced SOCE and differential store-operated currents in tumor cells, whereas ORAI2 and -3 are seemingly less important. In addition, STIM2 knockdown decreases SOCE and Ca2+ store content in normal cells while promoting apoptosis resistance. These data suggest that loss of STIM2 may underlie Ca2+ store depletion and apoptosis resistance in tumor cells. We conclude that a reciprocal shift in TRPC1 and STIM2 contributes to Ca2+ remodeling and tumor features in colon cancer.  相似文献   

17.
18.
Cytosolic calcium homeostasis is pivotal for intracellular signaling and requires sensing of calcium concentrations in the cytosol and accessible stores. Numerous Ca2+ binding sites have been characterized in cytosolic proteins. However, little is known about Ca2+ binding inside organelles, like the vacuole. The slow vacuolar (SV) channel, encoded by Arabidopsis thaliana TPC1, is regulated by luminal Ca2+. However, the D454/fou2 mutation in TPC1 eliminates vacuolar calcium sensitivity and increases store calcium content. In a search for the luminal calcium binding site, structure modeling indicated a possible coordination site formed by residues Glu-450, Asp-454, Glu-456, and Glu-457 on the luminal side of TPC1. Each Glu residue was replaced by Gln, the modified genes were transiently expressed in loss-of-TPC1-function protoplasts, and SV channel responses to luminal calcium were recorded by patch clamp. SV channels lacking any of the four negatively charged residues appeared altered in calcium sensitivity of channel gating. Our results indicate that Glu-450 and Asp-454 are directly involved in Ca2+ binding, whereas Glu-456 and Glu-457 are probably involved in connecting the luminal Ca2+ binding site to the channel gate. This novel vacuolar calcium binding site represents a potential tool to address calcium storage in plants.  相似文献   

19.
In plants, high capacity tonoplast cation/H+ antiport is mediated in part by a family of cation exchanger (CAX) transporters. Functional association between CAX1 and CAX3 has previously been shown. In this study we further examine the interactions between CAX protein domains through the use of nonfunctional halves of CAX transporters. We demonstrate that a protein coding for an N-terminal half of an activated variant of CAX1 (sCAX1) can associate with the C-terminal half of either CAX1 or CAX3 to form a functional transporter that may exhibit unique transport properties. Using yeast split ubiquitin, in planta bimolecular fluorescence complementation, and gel shift experiments, we demonstrate a physical interaction among the half proteins. Moreover, the half-proteins both independently localized to the same yeast endomembrane. Co-expressing variants of N- and C-terminal halves of CAX1 and CAX3 in yeast suggested that the N-terminal region mediates Ca2+ transport, whereas the C-terminal half defines salt tolerance phenotypes. Furthermore, in yeast assays, auto-inhibited CAX1 could be differentially activated by CAX split proteins. The N-terminal half of CAX1 when co-expressed with CAX1 activated Ca2+ transport, whereas co-expressing C-terminal halves of CAX variants with CAX1 conferred salt tolerance but no apparent Ca2+ transport. These findings demonstrate plasticity through hetero-CAX complex formation as well as a novel means to engineer CAX transport.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号