首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

A wide range of stimuli evoke rapid and transient increases in [Ca2+]cyt in plant cells which are transmitted by protein sensors that contain EF-hand motifs. Here, a group of Oryza sativa L. genes encoding calmodulin (CaM) and CaM-like (CML) proteins that do not possess functional domains other than the Ca2+-binding EF-hand motifs was analyzed.  相似文献   

2.
Ca2+ rise and nitric oxide (NO) generation are essential early steps in plant innate immunity and initiate the hypersensitive response (HR) to avirulent pathogens. Previous work from this laboratory has demonstrated that a loss-of-function mutation of an Arabidopsis (Arabidopsis thaliana) plasma membrane Ca2+-permeable inwardly conducting ion channel impairs HR and that this phenotype could be rescued by the application of a NO donor. At present, the mechanism linking cytosolic Ca2+ rise to NO generation during pathogen response signaling in plants is still unclear. Animal nitric oxide synthase (NOS) activation is Ca2+/calmodulin (CaM) dependent. Here, we present biochemical and genetic evidence consistent with a similar regulatory mechanism in plants: a pathogen-induced Ca2+ signal leads to CaM and/or a CaM-like protein (CML) activation of NOS. In wild-type Arabidopsis plants, the use of a CaM antagonist prevents NO generation and the HR. Application of a CaM antagonist does not prevent pathogen-induced cytosolic Ca2+ elevation, excluding the possibility of CaM acting upstream from Ca2+. The CaM antagonist and Ca2+ chelation abolish NO generation in wild-type Arabidopsis leaf protein extracts as well, suggesting that plant NOS activity is Ca2+/CaM dependent in vitro. The CaM-like protein CML24 has been previously associated with NO-related phenotypes in Arabidopsis. Here, we find that innate immune response phenotypes (HR and [avirulent] pathogen-induced NO elevation in leaves) are inhibited in loss-of-function cml24-4 mutant plants. Pathogen-associated molecular pattern-mediated NO generation in cells of cml24-4 mutants is impaired as well. Our work suggests that the initial pathogen recognition signal of Ca2+ influx into the cytosol activates CaM and/or a CML, which then acts to induce downstream NO synthesis as intermediary steps in a pathogen perception signaling cascade, leading to innate immune responses, including the HR.  相似文献   

3.
In plants, Ca2+, phosphatidylinositol phosphates (PtdInsPs) and inositol phosphates are major components of intracellular signaling. Several kinds of proteins and enzymes, such as calmodulin (CaM), protein kinase, protein phosphatase, and the Ca2+ channel, mediate the signaling. Two new Ca2+-binding proteins were identified from Arabidopsis thaliana and named PCaP1 and PCaP2 [plasma membrane (PM)-associated Ca2+(cation)-binding protein 1 and 2]. PCaP1 has an intrinsically disordered region in the central and C-terminal parts. The PCaP1 gene is expressed in most tissues and the PCaP2 gene is expressed predominantly in root hairs and pollen tubes. We recently demonstrated that these proteins are N-myristoylated, stably anchored in the PM, and are bound with phosphatidylinositol phosphates, especially PtdInsP2s. Here we propose a model for the switching mechanism of Ca2+-signaling mediated by PtdInsPs. Ca2+ forms a complex with CaM (Ca2+-CaM) when there is an increase in the cytosol free Ca2+. The binding of PCaPs with Ca2+-CaM causes PCaPs to release PtdInsPs. Until the release of PtdInsPs, the signaling is kept in the resting state.Key words: calcium signal, calmodulin, inositol phosphate, intrinsically disordered protein, myristoylation, phosphatidylinositol phosphate, plasma membrane  相似文献   

4.
In addition to the well‐known Ca2+ sensor calmodulin, plants possess many calmodulin‐like proteins (CMLs) that are predicted to have specific roles in the cell. Herein, we described the biochemical and biophysical characterization of recombinant Arabidopsis thaliana CML14. We applied isothermal titration calorimetry to analyze the energetics of Ca2+ and Mg2+ binding to CML14, and nuclear magnetic resonance spectroscopy, together with intrinsic and ANS‐based fluorescence, to evaluate the structural effects of metal binding and metal‐induced conformational changes. Furthermore, differential scanning calorimetry and limited proteolysis were used to characterize protein thermal and local stability. Our data demonstrate that CML14 binds one Ca2+ ion with micromolar affinity (Kd ~ 12 µM) and the presence of 10 mM Mg2+ decreases the Ca2+ affinity by ~5‐fold. Although binding of Ca2+ to CML14 increases protein stability, it does not result in a more hydrophobic protein surface and does not induce the large conformational rearrangement typical of Ca2+ sensors, but causes only localized structural changes in the unique functional EF‐hand. Our data, together with a molecular modelling prediction, provide interesting insights into the biochemical properties of Arabidopsis CML14 and may be useful to direct additional studies aimed at understanding its physiological role.  相似文献   

5.
Calcium (Ca2+) signaling modules are essential for adjusting plant growth and performance to environmental constraints. Differential interactions between sensors of Ca2+ dynamics and their molecular targets are at the center of the transduction process. Calmodulin (CaM) and CaM-like (CML) proteins are principal Ca2+-sensors in plants that govern the activities of numerous downstream proteins with regulatory properties. The families of IQ67-Domain (IQD) proteins are a large class of plant-specific CaM/CML-targets (e.g., 33 members in A. thaliana) which share a unique domain of multiple varied CaM retention motifs in tandem orientation. Genetic studies in Arabidopsis and tomato revealed first roles for IQD proteins related to basal defense response and plant development. Molecular, biochemical and histochemical analysis of Arabidopsis IQD1 demonstrated association with microtubules as well as targeting to the cell nucleus and nucleolus. In vivo binding to CaM and kinesin light chain-related protein-1 (KLCR1) suggests a Ca2+-regulated scaffolding function of IQD1 in kinesin motor-dependent transport of multiprotein complexes. Furthermore, because IQD1 interacts in vitro with single-stranded nucleic acids, the prospect arises that IQD1 and other IQD family members facilitate cellular RNA localization as one mechanism to control and fine-tune gene expression and protein sorting.  相似文献   

6.
During Ca2+ signal transduction, Ca2+‐binding proteins known as Ca2+ sensors function to decode stimulus‐specific Ca2+ signals into downstream responses. Plants possess extended families of unique Ca2+ sensors termed calmodulin‐like proteins (CMLs) whose cellular roles are not well understood. CML39 encodes a predicted Ca2+ sensor whose expression is strongly increased in response to diverse external stimuli. In the present study, we explored the biochemical properties of recombinant CML39, and used a reverse genetics approach to investigate its physiological role. Our data indicate that Ca2+ binding by CML39 induces a conformational change in the protein that results in an increase in exposed‐surface hydrophobicity, a property that is consistent with its predicted function as a Ca2+ sensor. Loss‐of‐function cml39 mutants resemble wild‐type plants under normal growth conditions but exhibit persistent arrest at the seedling stage if grown in the absence of sucrose or other metabolizable carbon sources. Under short‐day conditions, cml39 mutants display increased sucrose‐induced hypocotyl elongation. When grown in the dark, cml39 mutants show impaired hypocotyl elongation in the absence of sucrose. Promoter–reporter data indicate that CML39 expression is prominent in the apical hook in dark‐grown seedlings. Collectively, our data suggest that CML39 functions in Arabidopsis as a Ca2+ sensor that plays an important role in the transduction of light signals that promote seedling establishment.  相似文献   

7.
Plants need to adapt to various stress factors originating from the environment. Signal transduction pathways connecting the recognition of environmental cues and the initiation of appropriate downstream responses in plants often involve intracellular Ca2+ concentration changes. These changes must be deciphered into specific cellular signals. Calmodulin-like proteins, CMLs, act as Ca2+ sensors in plants and are known to be involved in various stress reactions. Here, we show that in Arabidopsis 2 different CMLs, AtCML37 and AtCML42 are antagonistically involved in drought stress response. Whereas a CML37 knock-out line, cml37, was highly susceptible to drought stress, CML42 knockout line, cml42, showed no obvious effect compared to wild type (WT) plants. Accordingly, the analysis of the phytohormone abscisic acid (ABA) revealed a significant reduction of ABA upon drought stress in cml37 plants, while in cml42 plants an increase of ABA was detected. Summarizing, our results show that both CML37 and CML42 are involved in drought stress response but show antagonistic effects.  相似文献   

8.
Presynaptic group III metabotropic glutamate receptors (mGluRs) and Ca2+ channels are the main neuronal activity-dependent regulators of synaptic vesicle release, and they use common molecules in their signaling cascades. Among these, calmodulin (CaM) and the related EF-hand Ca2+-binding proteins are of particular importance as sensors of presynaptic Ca2+, and a multiple of them are indeed utilized in the signaling of Ca2+ channels. However, despite its conserved structure, CaM is the only known EF-hand Ca2+-binding protein for signaling by presynaptic group III mGluRs. Because the mGluRs and Ca2+ channels reciprocally regulate each other and functionally converge on the regulation of synaptic vesicle release, the mGluRs would be expected to utilize more EF-hand Ca2+-binding proteins in their signaling. Here I show that calcium-binding protein 1 (CaBP1) bound to presynaptic group III mGluRs competitively with CaM in a Ca2+-dependent manner and that this binding was blocked by protein kinase C (PKC)-mediated phosphorylation of these receptors. As previously shown for CaM, these results indicate the importance of CaBP1 in signal cross talk at presynaptic group III mGluRs, which includes many molecules such as cAMP, Ca2+, PKC, G protein, and Munc18-1. However, because the functional diversity of EF-hand calcium-binding proteins is extraordinary, as exemplified by the regulation of Ca2+ channels, CaBP1 would provide a distinct way by which presynaptic group III mGluRs fine-tune synaptic transmission.  相似文献   

9.
Transient receptor potential (TRP) cation channels, which are conserved across mammals, flies, fish, sea squirts, worms, and fungi, essentially contribute to cellular Ca2+ signaling. The activity of the unique TRP channel in yeast, TRP yeast channel 1 (TRPY1), relies on the vacuolar and cytoplasmic Ca2+ concentration. However, the mechanism(s) of Ca2+-dependent regulation of TRPY1 and possible contribution(s) of Ca2+-binding proteins are yet not well understood. Our results demonstrate a Ca2+-dependent binding of yeast calmodulin (CaM) to TRPY1. TRPY1 activity was increased in the cmd1–6 yeast strain, carrying a non–Ca2+-binding CaM mutant, compared with the parent strain expressing wt CaM (Cmd1). Expression of Cmd1 in cmd1–6 yeast rescued the wt phenotype. In addition, in human embryonic kidney 293 cells, hypertonic shock-induced TRPY1-dependent Ca2+ influx and Ca2+ release were increased by the CaM antagonist ophiobolin A. We found that coexpression of mammalian CaM impeded the activity of TRPY1 by reinforcing effects of endogenous CaM. Finally, inhibition of TRPY1 by Ca2+–CaM required the cytoplasmic amino acid stretch E33–Y92. In summary, our results show that TRPY1 is under inhibitory control of Ca2+–CaM and that mammalian CaM can replace yeast CaM for this inhibition. These findings add TRPY1 to the innumerable cellular proteins, which include a variety of ion channels, that use CaM as a constitutive or dissociable Ca2+-sensing subunit, and contribute to a better understanding of the modulatory mechanisms of Ca2+–CaM.  相似文献   

10.
We have shown previously that the Ca2+-dependent inhibition of lens epithelial cell-to-cell communication is mediated in part by the direct association of calmodulin (CaM) with connexin43 (Cx43), the major connexin in these cells. We now show that elevation of [Ca2+]i in HeLa cells transfected with the lens fiber cell gap junction protein sheep Cx44 also results in the inhibition of cell-to-cell dye transfer. A peptide comprising the putative CaM binding domain (aa 129-150) of the intracellular loop region of this connexin exhibited a high affinity, stoichiometric interaction with Ca2+-CaM. NMR studies indicate that the binding of Cx44 peptide to CaM reflects a classical embracing mode of interaction. The interaction is an exothermic event that is both enthalpically and entropically driven in which electrostatic interactions play an important role. The binding of the Cx44 peptide to CaM increases the CaM intradomain cooperativity and enhances the Ca2+-binding affinities of the C-domain of CaM more than twofold by slowing the rate of Ca2+ release from the complex. Our data suggest a common mechanism by which the Ca2+-dependent inhibition of the α-class of gap junction proteins is mediated by the direct association of an intracellular loop region of these proteins with Ca2+-CaM.  相似文献   

11.
We investigated the concentration- and Ca2+-dependent effects of CaM mutants, CaM12 and CaM34, in which Ca2+-binding to its N- and C-lobes was eliminated, respectively, on the CaV1.2 Ca2+ channel by inside-out patch clamp in guinea-pig cardiomyocytes. Both CaM12 and CaM34 (0.7-10 μM) applied with 3 mM ATP produced channel activity after “rundown”. Concentration-response curves were bell-shaped, similar to that for wild-type CaM. However, there was no obvious leftward shift of the curves by increasing [Ca2+], suggesting that both functional lobes of CaM were necessary for the Ca2+-dependent shift. However, channel activity induced by the CaM mutants showed Ca2+-dependent decrease, implying a Ca2+ sensor existing besides CaM. These results suggest that both N- and C-lobes of CaM are required for the Ca2+-dependent regulations of CaV1.2 Ca2+ channels.  相似文献   

12.
Complex signal transduction pathways underlie the myriad plant responses to attack by pathogens. Ca2+ is a universal second messenger in eukaryotes that modulates various signal transduction pathways through stimulus-specific changes in its intracellular concentration. Ca2+-binding proteins such as calmodulin (CaM) detect Ca2+ signals and regulate downstream targets as part of a coordinated cellular response to a given stimulus. Here we report the characterization of a tomato gene (APR134) encoding a CaM-related protein that is induced in disease-resistant leaves in response to attack by Pseudomonas syringae pv. tomato. We show that suppression of APR134 gene expression in tomato (Solanum lycopersicum), using virus-induced gene silencing (VIGS), compromises the plant’s immune response. We isolated APR134-like genes from Arabidopsis, termed CML42 and CML43, to investigate whether they serve a functionally similar role. Gene expression analysis revealed that CML43 is rapidly induced in disease-resistant Arabidopsis leaves following inoculation with Pseudomonas syringae pv. tomato. Overexpression of CML43 in Arabidopsis accelerated the hypersensitive response. Recombinant APR134, CML42, and CML43 proteins all bind Ca2+ in vitro. Collectively, our data support a role for CML43, and APR134 as important mediators of Ca2+-dependent signals during the plant immune response to bacterial pathogens. This work was supported by a research grant (WAS) and postgraduate scholarships (DC, SLD) from the Natural Science and Engineering Research Council of Canada, the National Science Foundation (IBN-0109633; GBM), and the Swedish Research Council (SKE).  相似文献   

13.
Many stimuli such as hormones and elicitors induce changes in intracellular calcium levels to integrate information and activate appropriate responses. The Ca2+ signals are perceived by various Ca2+ sensors, and calmodulin (CaM) is one of the best characterized in eukaryotes. Calmodulin‐like (CML) proteins extend the Ca2+ toolkit in plants; they share sequence similarity with the ubiquitous and highly conserved CaM but their roles at physiological and molecular levels are largely unknown. Knowledge of the contribution of Ca2+ decoding proteins to plant immunity is emerging, and we report here data on Arabidopsis thaliana CML9, whose expression is rapidly induced by phytopathogenic bacteria, flagellin and salicylic acid. Using a reverse genetic approach, we present evidence that CML9 is involved in plant defence by modulating responses to bacterial strains of Pseudomonas syringae. Compared to wild‐type plants, the later responses normally observed upon flagellin application are altered in knockout mutants and over‐expressing transgenic lines. Collectively, using PAMP treatment and P. syringae strains, we have established that CML9 participates in plant innate immunity.  相似文献   

14.
15.
Tang Jun  Wu Shupin  Bai Juan  Sun Daye 《Planta》1996,198(4):510-516
A 21-kDa calmodulin (CaM)-binding protein and a 19-kDa calmodulin-binding protein were detected in 0.1 M CaCl2 extracts of Angelica dahurica L. suspension-cultured cells and carrot (Daucus carota L.) suspension-cultured cells, respectively, using a biotinylated cauliflower CaM gel-overlay technique in the presence of 1 mM Ca2+. No bands, or very weak bands, were shown on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels overlayed with biotinylated cauliflower CaM when 1 mM Ca2+ was replaced by 5 mM EGTA, indicating that the binding of these two CaM-binding proteins to CaM was dependent on Ca2+. Less 21-kDa CaM-binding protein was found in culture medium of Angelica dahurica suspension cells; however, a 21-kDa protein was abundant in the cell wall. We believe that the 21-kDa CaM-binding protein is mainly in the cell wall of Angelica dahurica. Based on its reaction with periodic acid-Schiff (PAS) reagent, this 21-kDa protein would appear to be a glycoprotein. The 21-kDa CaM-binding protein was purified by a procedure including Sephadex G-100 gel filtration and CM-Sepharose cation-exchange column chromatography. The purity reached 91% according to gel scanning. The purified 21-kDa CaM-binding protein inhibited the activity of CaM-dependent NAD kinase and the degree of inhibition increased with augmentation of the 21-kDa protein, which appeared to be the typical characteristic of CaM-binding protein.  相似文献   

16.
Calmodulin (CaM) is the major pathway that transduces intracellular Ca2+ increases to the activation of a wide variety of downstream signaling enzymes. CaM and its target proteins form an integrated signaling network believed to be tuned spatially and temporally to control CaM's ability to appropriately pass signaling events downstream. Here, we report the spatial diffusivity and availability of CaM labeled with enhanced green fluorescent protein (eGFP)-CaM, at basal and elevated Ca2+, quantified by the novel fluorescent techniques of raster image scanning spectroscopy and number and brightness analysis. Our results show that in basal Ca2+ conditions cytoplasmic eGFP-CaM diffuses at a rate of 10 μm2/s, twofold slower than the noninteracting tracer, eGFP, indicating that a significant fraction of CaM is diffusing bound to other partners. The diffusion rate of eGFP-CaM is reduced to 7 μm2/s when a large (646 kDa) target protein Ca2+/CaM-dependent protein kinase II is coexpressed in the cells. In addition, the presence of Ca2+/calmodulin-dependent protein kinase II, which can bind up to 12 CaM molecules per holoenzyme, increases the stoichiometry of binding to an average of 3 CaMs per diffusive molecule. Elevating intracellular Ca2+ did not have a major impact on the diffusion of CaM complexes. These results present us with a model whereby CaM is spatially modulated by target proteins and support the hypothesis that CaM availability is a limiting factor in the network of CaM-signaling enzymes.  相似文献   

17.
《Cell calcium》2014,55(4):191-199
Insect odorant receptors (ORs) are heteromeric complexes of an odor-specific receptor protein (OrX) and a ubiquitous co-receptor protein (Orco). The ORs operate as non-selective cation channels, also conducting Ca2+ ions. The Orco protein contains a conserved putative calmodulin (CaM)-binding motif indicating a role of CaM in its function. Using Ca2+ imaging to monitor OR activity we investigated the effect of CaM inhibition on the function of OR proteins. Ca2+ responses elicited in Drosophila olfactory sensory neurons by stimulation with the synthetic OR agonist VUAA1 were reduced and prolonged by CaM inhibition with the potent antagonist W7 but not with the weak antagonist W5. A similar effect was observed for Orco proteins heterologously expressed in CHO cells when CaM was inhibited with W7, trifluoperazine or chlorpromazine, or upon overexpression of CaM-EF-hand mutants. With the Orco CaM mutant bearing a point mutation in the putative CaM site (K339N) the Ca2+ responses were akin to those obtained for wild type Orco in the presence of W7. There was no uniform effect of W7 on Ca2+ responses in CHO cells expressing complete ORs (Or22a/Orco, Or47a/Orco, Or33a/Orco, Or56a/Orco). For Or33a and Or47a we observed no significant effect of W7, while it caused a reduced response in cells expressing Or22a and a shortened response for Or56a.  相似文献   

18.
Reddy AS  Ben-Hur A  Day IS 《Phytochemistry》2011,72(10):1007-1019
Ca2+, a universal messenger in eukaryotes, plays a major role in signaling pathways that control many growth and developmental processes in plants as well as their responses to various biotic and abiotic stresses. Cellular changes in Ca2+ in response to diverse signals are recognized by protein sensors that either have their activity modulated or that interact with other proteins and modulate their activity. Calmodulins (CaMs) and CaM-like proteins (CMLs) are Ca2+ sensors that have no enzymatic activity of their own but upon binding Ca2+ interact and modulate the activity of other proteins involved in a large number of plant processes. Protein-protein interactions play a key role in Ca2+/CaM-mediated in signaling pathways. In this review, using CaM as an example, we discuss various experimental approaches and computational tools to identify protein-protein interactions. During the last two decades hundreds of CaM-binding proteins in plants have been identified using a variety of approaches ranging from simple screening of expression libraries with labeled CaM to high-throughput screens using protein chips. However, the high-throughput methods have not been applied to the entire proteome of any plant system. Nevertheless, the data provided by these screens allows the development of computational tools to predict CaM-interacting proteins. Using all known binding sites of CaM, we developed a computational method that predicted over 700 high confidence CaM interactors in the Arabidopsis proteome. Most (>600) of these are not known to bind calmodulin, suggesting that there are likely many more CaM targets than previously known. Functional analyses of some of the experimentally identified Ca2+ sensor target proteins have uncovered their precise role in Ca2+-mediated processes. Further studies on identifying novel targets of CaM and CMLs and generating their interaction network - “calcium sensor interactome” - will help us in understanding how Ca2+ regulates a myriad of cellular and physiological processes.  相似文献   

19.
Previously we have identified the lipid mediator sphingosylphosphorylcholine (SPC) as the first potentially endogenous inhibitor of the ubiquitous Ca2+ sensor calmodulin (CaM) (Kovacs, E., and Liliom, K. (2008) Biochem. J. 410, 427–437). Here we give mechanistic insight into CaM inhibition by SPC, based on fluorescence stopped-flow studies with the model CaM-binding domain melittin. We demonstrate that both the peptide and SPC micelles bind to CaM in a rapid and reversible manner with comparable affinities. Furthermore, we present kinetic evidence that both species compete for the same target site on CaM, and thus SPC can be considered as a competitive inhibitor of CaM-target peptide interactions. We also show that SPC disrupts the complex of CaM and the CaM-binding domain of ryanodine receptor type 1, inositol 1,4,5-trisphosphate receptor type 1, and the plasma membrane Ca2+ pump. By interfering with these interactions, thus inhibiting the negative feedback that CaM has on Ca2+ signaling, we hypothesize that SPC could lead to Ca2+ mobilization in vivo. Hence, we suggest that the action of the sphingolipid on CaM might explain the previously recognized phenomenon that SPC liberates Ca2+ from intracellular stores. Moreover, we demonstrate that unlike traditional synthetic CaM inhibitors, SPC disrupts the complex between not only the Ca2+-saturated but also the apo form of the protein and the target peptide, suggesting a completely novel regulation for target proteins that constitutively bind CaM, such as ryanodine receptors.  相似文献   

20.
OsCaM61 is one of five calmodulins known to be present in Oryza sativa that relays the increase of cytosolic [Ca2+] to downstream targets. OsCaM61 bears a unique C-terminal extension with a prenylation site. Using nuclear magnetic resonance (NMR) spectroscopy we studied the behavior of the calmodulin (CaM) domain and the C-terminal extension of OsCaM61 in the absence and presence of Ca2+. NMR dynamics data for OsCaM61 indicate that the two lobes of the CaM domain act together unlike the independent behavior of the lobes seen in mammalian CaM and soybean CaM4. Also, data demonstrate that the positively charged nuclear localization signal region in the tail in apo-OsCaM61 is helical, whereas it becomes flexible in the Ca2+-saturated protein. The extra helix in apo-OsCaM61 provides additional interactions in the C-lobe and increases the structural stability of the closed apo conformation. This leads to a decrease in the Ca2+ binding affinity of EF-hands III and IV in OsCaM61. In Ca2+-OsCaM61, the basic nuclear localization signal cluster adopts an extended conformation, exposing the C-terminal extension for prenylation or enabling OsCaM61 to be transferred to the nucleus. Moreover, Ser172 and Ala173, residues in the tail, interact with different regions of the protein. These interactions affect the ability of OsCaM61 to activate different target proteins. Altogether, our data show that the tail is not simply a linker between the prenyl group and the protein but that it also provides a new regulatory mechanism that some plants have developed to fine-tune Ca2+ signaling events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号